JPH01252834A - Coolant natural circulation type heat transferring device - Google Patents

Coolant natural circulation type heat transferring device

Info

Publication number
JPH01252834A
JPH01252834A JP63080042A JP8004288A JPH01252834A JP H01252834 A JPH01252834 A JP H01252834A JP 63080042 A JP63080042 A JP 63080042A JP 8004288 A JP8004288 A JP 8004288A JP H01252834 A JPH01252834 A JP H01252834A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
coolant
difference
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63080042A
Other languages
Japanese (ja)
Other versions
JP2530881B2 (en
Inventor
Mitsuo Seta
瀬田 光雄
Akio Yamashita
山下 彰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP63080042A priority Critical patent/JP2530881B2/en
Publication of JPH01252834A publication Critical patent/JPH01252834A/en
Application granted granted Critical
Publication of JP2530881B2 publication Critical patent/JP2530881B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To improve an efficiency of cooling capability within a wide temperature range even if a temperature difference between an indoor area and an outdoor area is substantially varied by a method wherein a coolant enclosing amount controlling means made variable in response to a temperature difference between an outdoor temperature and an indoor temperature is arranged in the midway of a liquid coolant pipe. CONSTITUTION:In case that a temperature difference DELTAT between an outdoor temperature T1 and an indoor temperature T2 is high, an amount of circulating coolant is calculated in a controller 14 in such a way as an efficiency of cooling capability may be increased. An actuator 11 is operated so as to be directed upwardly under an instruction from the controller 14, resulting in that an amount of coolant stored in a coolant storing container 10 is reduced. Thus, an amount of circulating coolant in a liquid coolant pipe 7 is increased, resulting in that a coolant liquid level is kept high. Thus, a difference in height of the coolant liquid surface is increased to show a value H, resulting in that a cooling pressure of the evaporator 1 is increased and a evaporating temperature of the coolant is increased. As a result, a difference between an evaporation temperature and a temperature T2 of cooled air (indoor side) around the evaporator 1 is decreased and a cooling capability is decreased. However, since a height difference (H) of the coolant liquid surface is high, so that the coolant circulating capability is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷媒自然循環サイクルを利用する冷媒自然循
環式熱移動装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a natural refrigerant circulation heat transfer device that utilizes a natural refrigerant circulation cycle.

〔従来の技術〕[Conventional technology]

最近、例えば、電算機室のような内部発熱が高く、しか
も温湿度条件、空気清浄を厳しく要求される室に対して
省エネルギ等を図った空調装置が要求されている。この
要求に沿ったもののひとつとして、低温夕(気を利用し
て室内側の熱を室外側に移動する冷媒自然循環式熱移動
装置を、冷暖房装置に併用した空調機が脚光を浴びてい
る。
Recently, there has been a demand for air conditioners that are energy efficient for rooms, such as computer rooms, which generate a high amount of internal heat and are subject to strict temperature and humidity conditions and air cleanliness. As one of the products that meet this demand, air conditioners that use a refrigerant natural circulation heat transfer device, which uses low-temperature air to transfer heat indoors to the outdoors, in conjunction with air conditioning equipment, are attracting attention.

上記の冷媒自然循環式熱移動装置は、サーモサイフオン
とも称せられており、室内外に設けられた熱交換器を冷
媒配管で環状に接続し、内部に低沸点冷媒を封入したも
のである。
The above-mentioned refrigerant natural circulation heat transfer device is also called a thermosiphon, and heat exchangers installed indoors and outdoors are connected in a ring shape with refrigerant piping, and a low boiling point refrigerant is sealed inside.

かかる冷媒自然循環式熱移動装置として、例えば、実開
昭6に79773号公報に示すものが知られている(第
6図図示)。
As such a natural refrigerant circulation type heat transfer device, for example, one disclosed in Japanese Utility Model Application Publication No. 79773 in 1983 is known (as shown in FIG. 6).

図示のように、冷媒自然循環式熱移動装置101は、室
内側に設置された蒸発器102と、その高所に配置され
るとともに室外側に設置された凝縮器103と、蒸発器
102の出口102Bと凝縮器103の入口103Aと
を接続するガス側冷媒配管104と、凝縮器103の出
口103Bと蒸発器102の入口102Aとを接続する
淡側冷媒配管105とを備えている。
As shown in the figure, the refrigerant natural circulation heat transfer device 101 includes an evaporator 102 installed indoors, a condenser 103 placed above the evaporator 103 and installed outside the room, and an outlet of the evaporator 102. 102B and an inlet 103A of the condenser 103, and a light side refrigerant pipe 105 that connects the outlet 103B of the condenser 103 and the inlet 102A of the evaporator 102.

冷媒自然循環式熱移動装置101においては、冷媒は、
蒸発器102で室内側の暖かい空気によって熱せられ、
沸騰、蒸発する。このときの蒸発潜熱により、室内空気
は冷却される。そして、蒸発器102.ガス側冷媒配管
104.凝縮器103、淡側冷媒配管105の間を一定
の封入量の冷媒が循環するようになっている。蒸発した
冷媒は、ガス状になってガス側冷媒配管104を上昇し
、凝縮器103に導かれ、冷たい外気によって冷却され
る。冷却された冷媒は、凝縮液化して淡側冷媒配管10
5の内部を流下し、再び蒸発器102に戻る。
In the refrigerant natural circulation heat transfer device 101, the refrigerant is
It is heated by the warm indoor air in the evaporator 102,
Boil and evaporate. The indoor air is cooled by the latent heat of vaporization at this time. and evaporator 102. Gas side refrigerant piping 104. A fixed amount of refrigerant is circulated between the condenser 103 and the light side refrigerant pipe 105. The evaporated refrigerant becomes a gas and moves up the gas side refrigerant pipe 104, is led to the condenser 103, and is cooled by the cold outside air. The cooled refrigerant is condensed and liquefied to the light side refrigerant pipe 10.
5 and returns to the evaporator 102 again.

上記の冷媒循環は、室外側の温度が室内側の温度より低
ければ、冷媒の相変化に伴う圧力差と冷媒液面の高低差
による自然W!環力によって起り、室内側の熱が室外側
に無動力で放出される。
If the temperature outside the room is lower than the temperature inside the room, the refrigerant circulation described above is caused by the pressure difference caused by the phase change of the refrigerant and the difference in height of the refrigerant liquid level. This occurs due to the ring force, and the heat inside the room is released to the outside without any power.

そして、上記の自然循環力と配管系の抵抗と熱交換器(
蒸発器102.@検器103)の特性から、冷媒の循環
量が決定される。
Then, the natural circulation force mentioned above, the resistance of the piping system, and the heat exchanger (
Evaporator 102. The circulating amount of refrigerant is determined from the characteristics of @detector 103).

[発明が解決しようとする課題] 従来の冷媒自然循環式熱移動装置101にあっては、そ
のシステムとしての冷却能力は、室内外の温度差及び冷
媒の循環量によって決定される。
[Problems to be Solved by the Invention] In the conventional refrigerant natural circulation heat transfer device 101, the cooling capacity of the system is determined by the temperature difference between indoors and outdoors and the amount of refrigerant circulated.

具体的に云えば、この冷却能力は、室内外の温度差が小
さい場合には、不安定となる場合があるが、室内外の温
度差にほぼ比例して増加する。しかし、冷媒液面の高低
差が小さいと、自然循環力が小ざくなり、熱交換器(蒸
発器102.凝縮器103)に余裕があっても冷却能力
は上限を示すようになる。
Specifically, this cooling capacity may become unstable if the temperature difference between indoors and outdoors is small, but it increases almost in proportion to the temperature difference between indoors and outdoors. However, if the difference in height of the refrigerant liquid level is small, the natural circulation force will be small, and even if the heat exchanger (evaporator 102, condenser 103) has a margin, the cooling capacity will reach its upper limit.

この冷媒液面の高低差による冷却能力に対する影響を詳
述する。
The influence of this height difference in the refrigerant liquid level on the cooling capacity will be explained in detail.

冷媒液面の高低差が大きいと、蒸発器102における冷
媒圧力が高くなり、冷媒の蒸発温度が高くなる。従って
、蒸発温度と蒸発器102の回りの被冷却空気(室内側
)との温度との差が小さくなり、冷却能力が小さくなる
。しかし、冷媒液面の高低差が大きいので冷媒循環能力
が大きくなる。
When the height difference between the refrigerant liquid levels is large, the refrigerant pressure in the evaporator 102 becomes high, and the evaporation temperature of the refrigerant becomes high. Therefore, the difference between the evaporation temperature and the temperature of the cooled air (indoor side) around the evaporator 102 becomes smaller, and the cooling capacity becomes smaller. However, since the difference in height of the refrigerant liquid level is large, the refrigerant circulation capacity becomes large.

従って、冷却能力は上限に達し難い傾向となっている。Therefore, the cooling capacity tends to be difficult to reach its upper limit.

この場合の冷却能力曲線は、第7図の(A)に示される
The cooling capacity curve in this case is shown in FIG. 7(A).

一方、冷媒液面の高低差が小さいと、蒸発器102にお
ける冷媒圧力が低(なり、冷媒の蒸発温度が低くなる。
On the other hand, when the height difference between the refrigerant liquid levels is small, the refrigerant pressure in the evaporator 102 becomes low (and the evaporation temperature of the refrigerant becomes low).

従って、蒸発温度と蒸発器102の回りの被冷却空気(
室内側)との温度との差が大きくなり、冷却能力が大き
くなる。しかし、冷媒液面の高低差が小さいので冷媒循
環能力が小さくなる。従って、冷却能力は上限に達し易
い傾向となっている。この場合の冷却能力曲線は、第7
図の(B)に示される。
Therefore, the evaporation temperature and the cooled air around the evaporator 102 (
The difference between the temperature (indoor side) and the inside temperature increases, and the cooling capacity increases. However, since the difference in height of the refrigerant liquid level is small, the refrigerant circulation ability becomes small. Therefore, the cooling capacity tends to reach its upper limit. The cooling capacity curve in this case is the seventh
This is shown in (B) of the figure.

従って、所定の温度差に対して冷却能力は、冷媒液面の
高低差に従って決定されることになる。
Therefore, the cooling capacity for a predetermined temperature difference is determined according to the height difference of the refrigerant liquid level.

ここで、蒸発器102.ガス側冷媒配管104゜凝縮器
103.流側冷媒配管1050間を、封入された一定の
封入量の冷媒が循環するようになっているが、この循環
に係る冷媒の封入量が一定の場合、その冷媒の封入量に
対応して冷媒液面の高低差が決まることになる。
Here, the evaporator 102. Gas side refrigerant piping 104° condenser 103. A fixed amount of sealed refrigerant is circulated between the downstream refrigerant pipes 1050, but if the amount of refrigerant sealed in this circulation is constant, the refrigerant is This will determine the difference in height of the liquid level.

ところが、従来の冷媒自然循環式熱移動装置101では
、その冷却能力は、何ら制御することのできない室内外
の温度差のみで決定されているため、冷媒の封入量が一
定の場合には、所定の温度差に対する冷却能力の大きさ
は、(A)または(B)のどちらかの傾向をとるだけと
なり、冷却能力の効率が低くなることになる。従って、
室内外の温度差が大きく変化した場合、冷却能力の効率
が落ちることもあった。
However, in the conventional refrigerant natural circulation heat transfer device 101, its cooling capacity is determined only by the temperature difference between indoors and outdoors, which cannot be controlled in any way. The magnitude of the cooling capacity with respect to the temperature difference will only take either trend (A) or (B), and the efficiency of the cooling capacity will become low. Therefore,
If the temperature difference between indoors and outdoors changed significantly, the efficiency of the cooling capacity could drop.

本発明は、かかる従来の問題点を解決するためになされ
たもので、その目的は、室内外の温度差が大きく変化し
ても幅広い温度域で冷却能力の効率を良くする冷媒自然
循環式熱移動装置を提供することである。
The present invention was made to solve these conventional problems, and its purpose is to improve the efficiency of cooling capacity over a wide temperature range even when the temperature difference between indoors and outdoors changes significantly. The purpose of the present invention is to provide a mobile device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、室内側に設置さ
れた蒸発器と、室外側に設置されるとともに蒸発器の高
所に位置するa検器と、蒸発器の出口と凝縮器の入口と
を接続するガス側冷媒配管と、凝縮器の出口と蒸発器の
入口とを接続する腹側冷媒配管とを備え、室外側の温度
と室内側の温度との温度差により室内側の熱を室外側に
移動させる冷媒自然循環式熱移動装置において、腹側冷
媒配管の途中に、室外側の温度と室内側の温度との温度
差に対する冷却能力の効率を高くするように循環する冷
媒の量をその温度差に応じて可変とする冷媒封入量制御
手段を設けたものである。
In order to achieve the above object, the present invention includes an evaporator installed indoors, an a-detector installed outside outdoors and located at a high place of the evaporator, and a It is equipped with a gas side refrigerant pipe that connects the inlet and a vent side refrigerant pipe that connects the condenser outlet and the evaporator inlet. In a refrigerant natural circulation heat transfer device that moves refrigerant to the outdoor side, there is a refrigerant that circulates in the middle of the ventral refrigerant piping so as to increase the efficiency of the cooling capacity against the temperature difference between the outdoor side and the indoor temperature. A refrigerant charge amount control means is provided to vary the amount of refrigerant in accordance with the temperature difference.

(作 用〕 本発明にあっては、室外側の温度と室内側の温度との温
度差が大きいと、冷媒封入量制御手段における冷媒の収
納される量が少なく、循環に係る冷媒量は多くなる。従
って、冷媒の液位は高くなり、冷媒液面の高低差が大き
い状態となる。
(Function) In the present invention, when the temperature difference between the outdoor temperature and the indoor temperature is large, the amount of refrigerant stored in the refrigerant charge amount control means is small, and the amount of refrigerant related to circulation is large. Therefore, the liquid level of the refrigerant becomes high, and the difference in height between the refrigerant liquid levels becomes large.

従って、蒸発器におりる冷媒圧力が高くなり、冷媒の蒸
発温度が高くなる。この結果、蒸発温度と蒸発器の回り
の被冷却空気(室内側)との温度との差が小さくなり、
冷却能力が小さくなる。し2かし7、冷媒液面の高低差
が大きいので冷媒循環能力が大きくなる。従って、冷却
能力は上限に達し難い傾向となっている。
Therefore, the pressure of the refrigerant flowing into the evaporator increases, and the evaporation temperature of the refrigerant increases. As a result, the difference between the evaporation temperature and the temperature of the cooled air (indoor side) around the evaporator becomes smaller.
Cooling capacity decreases. However, 2 and 7, since the difference in height of the refrigerant liquid level is large, the refrigerant circulation capacity becomes large. Therefore, the cooling capacity tends to be difficult to reach its upper limit.

一方、温度差が小さいと、冷媒封入量制御手段における
冷媒の収納される星が多く、循環に係る冷媒量が少なく
なる。従って、冷媒の液位は低くなり、冷媒液面の高低
差が小さい状態となる。
On the other hand, when the temperature difference is small, there are many stars in which the refrigerant is accommodated in the refrigerant filling amount control means, and the amount of refrigerant involved in circulation is reduced. Therefore, the liquid level of the refrigerant becomes low, and the difference in height between the refrigerant liquid levels becomes small.

従って、蒸発器における冷媒圧力が低くなり、冷媒の蒸
発温度が低くなる。この結果、蒸発温度と蒸発器の回り
の被冷却空気(室内側)との温度との差が大きくなり、
冷却能力が大きくなる。しかし、冷媒液面の高低差が小
さいので冷媒循環能力が小さくなる。従って、冷却能力
は上限に達し易い傾向となっている。
Therefore, the refrigerant pressure in the evaporator becomes low, and the evaporation temperature of the refrigerant becomes low. As a result, the difference between the evaporation temperature and the temperature of the cooled air (indoor side) around the evaporator increases,
Cooling capacity increases. However, since the difference in height of the refrigerant liquid level is small, the refrigerant circulation ability becomes small. Therefore, the cooling capacity tends to reach its upper limit.

(実施例〕 以下、図面により本発明の実施例について説明する。(Example〕 Embodiments of the present invention will be described below with reference to the drawings.

第1図ないし第5図は本発明の実施例に係る冷媒自然循
環式熱移動装置の内容を示す。
1 to 5 show the contents of a natural refrigerant circulation type heat transfer device according to an embodiment of the present invention.

第1図において、lは蒸発器で、室内側の室内1ニツト
2の内側に設置されている。、3は凝縮器で、蒸発器1
の高所に位置するとともに室外側の室外ユニ・・[・4
の内側に設置されている。室内ユニン1−2及び室外ユ
ニット4の内側には、送風機5が配置され、それぞれ蒸
発器1.凝縮器3の下流に位置j〜でいる。6はガス側
冷媒配管で、蒸発器1の出口IBと凝縮器3の入口3A
とを接続する。7は腹側冷媒配管で、凝縮器3の出口3
Bと伏発器lの入口IAとを接続する。
In FIG. 1, reference numeral 1 denotes an evaporator, which is installed inside the indoor unit 2 on the indoor side. , 3 is a condenser, and evaporator 1
It is located at a high place and has an outdoor unit on the outside... [・4
is installed inside. A blower 5 is arranged inside the indoor unit 1-2 and the outdoor unit 4, and the evaporator 1. It is located downstream of the condenser 3 at a position j~. 6 is a gas side refrigerant pipe, which connects the outlet IB of the evaporator 1 and the inlet 3A of the condenser 3.
Connect with. 7 is the ventral refrigerant pipe, which is connected to the outlet 3 of the condenser 3.
Connect B and the inlet IA of the generator l.

そし、て、第2図にも示すように、腹側冷媒配管7の途
中に、冷媒封入量制御手段8が設げられている。この冷
媒封入量制御手段8は、室外側の温度と室内側の温度と
の温度差に対する冷却能力の効率を高くするように循環
する冷媒の叶をその温度差に応して可変とするもので、
腹側冷媒配管7に連通管9を介して連通ずる冷媒収納容
器IOと、冷媒収納容器10の内部に収納される冷媒の
容積を変えるアクチュエータ11とから構成されている
。ここで、連通管9及び冷媒収納容器10に収納されて
いる冷媒は、腹側冷媒配管7での冷媒の流れに対し2て
、留まった状態にあるので、蒸発器1と凝縮器3との間
を循環しないよ・うになっている。
As shown in FIG. 2, a refrigerant filling amount control means 8 is provided in the middle of the vent side refrigerant pipe 7. This refrigerant filling amount control means 8 changes the flow of refrigerant to be circulated according to the temperature difference between the temperature outside the room and the temperature inside the room so as to increase the efficiency of the cooling capacity against the temperature difference between the outside temperature and the inside temperature. ,
It is composed of a refrigerant storage container IO that communicates with the ventral refrigerant pipe 7 via a communication pipe 9, and an actuator 11 that changes the volume of refrigerant stored inside the refrigerant storage container 10. Here, the refrigerant stored in the communication pipe 9 and the refrigerant storage container 10 remains in a state in contrast to the flow of refrigerant in the vent side refrigerant pipe 7, so that the refrigerant between the evaporator 1 and the condenser 3 It is designed so that it does not circulate between the two.

12は室外側温度検出器で、室外側の温度′Flを検出
する。13は室内側温度検出器で、室内側の温度T2を
検出する。14はコントローラで1、その入力側は室外
側温度検出2S12及び室内側温度検出器13に接続し
、その出力側はアクチュエータ11に接続している。
Reference numeral 12 denotes an outdoor temperature sensor that detects the outdoor temperature 'Fl. Reference numeral 13 denotes an indoor temperature detector that detects the temperature T2 on the indoor side. 14 is a controller 1 whose input side is connected to the outdoor temperature sensor 2S12 and the indoor temperature sensor 13, and whose output side is connected to the actuator 11.

次に、本実施例の作用を第3図ない1.第5図に基づい
て説明する。
Next, the operation of this embodiment will be explained in Figure 3 (1). This will be explained based on FIG.

先ず、第1図において、室夕)側温度検出器12により
室外側の温度T3が、室内側温度検出器13!こより室
内側の温度T、が検出される。これら温度信号は、コン
トローラ14に送られる。コントローラI4において、
室外側の温度T1と室内側の温度Ttとの温度差へTが
計算され、その温度差ΔTに対する冷却能力の効率を高
くするように循環する冷媒の量が計算される。そして、
コントローラ14からの指令でその計算された冷媒の量
が液側冷媒配管7に供給されるようにアクチュエータ1
1が作動される。
First, in FIG. 1, the outdoor side temperature T3 is detected by the indoor side temperature detector 12, and the indoor side temperature detector 13! From this, the temperature T on the indoor side is detected. These temperature signals are sent to controller 14. In controller I4,
The temperature difference T between the temperature T1 on the outdoor side and the temperature Tt on the indoor side is calculated, and the amount of refrigerant to be circulated is calculated so as to increase the efficiency of the cooling capacity with respect to the temperature difference ΔT. and,
The actuator 1 is actuated so that the calculated amount of refrigerant is supplied to the liquid side refrigerant pipe 7 according to a command from the controller 14.
1 is activated.

例えば、第3図に示すように、室外側の温度T。For example, as shown in FIG. 3, the temperature T outside the room.

と室内側の温度Tzとの温度差ΔTが大きい場合には、
コントローラ14において、その温度差ΔTに対する冷
却能力の効率を高くするように循環する冷媒の量が計算
される。この場合、循環する冷媒の量は多いと計算され
る。そして、コントローラ14からの指令により、アク
チュエータ11が上方向に作動し、冷媒収納容器10に
収納される冷媒の量が少なくなる。従って、液側冷媒配
管7における循環に係る冷媒の量が多くなり、冷媒の液
位は高い状態となっている。従って、冷媒液面の高低差
が大きくなり、Hとなっている。
If the temperature difference ΔT between the temperature Tz and the temperature Tz on the indoor side is large,
In the controller 14, the amount of refrigerant to be circulated is calculated so as to increase the efficiency of the cooling capacity with respect to the temperature difference ΔT. In this case, the amount of circulating refrigerant is calculated to be large. Then, in response to a command from the controller 14, the actuator 11 operates upward, and the amount of refrigerant stored in the refrigerant storage container 10 decreases. Therefore, the amount of refrigerant circulating in the liquid side refrigerant pipe 7 increases, and the liquid level of the refrigerant becomes high. Therefore, the difference in height of the refrigerant liquid level becomes large and becomes H.

そのため、蒸発器1における冷媒圧力が高くなり、冷媒
の蒸発温度が高くなる。この結果、蒸発温度と蒸発器l
の回りの被冷却空気(室内側)の温度T2との温度との
差が小さくなり(冷媒の沸点は室外側の温度T1と室内
側の温度T2との間の温度)、冷却能力が小さくなる。
Therefore, the refrigerant pressure in the evaporator 1 increases, and the evaporation temperature of the refrigerant increases. As a result, the evaporation temperature and evaporator l
The difference between the temperature T2 of the surrounding cooled air (indoor side) becomes smaller (the boiling point of the refrigerant is between the temperature T1 outside the room and the temperature T2 inside the room), and the cooling capacity becomes smaller. .

しかし、冷媒液面の高低差()f)が大きいので冷媒循
環能力が大きくなる。従って、冷却能力は上限に達し難
い傾向となっている。この場合の冷却能力曲線は、第5
図の(A)の実線で示されることになる。
However, since the height difference ()f) of the refrigerant liquid level is large, the refrigerant circulation capacity becomes large. Therefore, the cooling capacity tends to be difficult to reach its upper limit. The cooling capacity curve in this case is the fifth
This is shown by the solid line in (A) of the figure.

また、例えば、第4図に示すように、室外側の温度T1
と室内側の温度T2との温度差ΔTが小さい場合には、
コントローラ14において、その温度差ΔTに対する冷
却能力の効率を高くするように循環する冷媒の量が計算
される。この場合、循環する冷媒の量は少ないと計算さ
れる。そして、コントローラ14からの指令により、ア
クチュエータ11が下方向に作動し、冷媒収納容器1o
に収納される冷媒の量が多くなる。従って、液側冷媒配
管7における循環に係る冷媒の量が少なくなり、冷媒の
液位は低い状態となっている。従って、冷媒液面の高低
差が小さくなり、hとなっている。
Furthermore, for example, as shown in FIG. 4, the temperature outside the room T1
If the temperature difference ΔT between the temperature T2 and the temperature T2 on the indoor side is small,
In the controller 14, the amount of refrigerant to be circulated is calculated so as to increase the efficiency of the cooling capacity with respect to the temperature difference ΔT. In this case, the amount of circulating refrigerant is calculated to be small. Then, in response to a command from the controller 14, the actuator 11 operates downward, and the refrigerant storage container 1o
The amount of refrigerant stored in the Therefore, the amount of refrigerant circulating in the liquid side refrigerant pipe 7 is reduced, and the liquid level of the refrigerant is in a low state. Therefore, the difference in height of the refrigerant liquid level becomes small and becomes h.

そのため、蒸発器1における冷媒圧力が低くなり、冷媒
の蒸発温度が低くなる。この結果、蒸発温度と蒸発器1
の回りの被冷却空気(室内側)の温度T2との差が大き
くなり、冷却能力が大きくなる。しかし、冷媒液面の高
低差が小さい(h)ので冷媒循環能力が小さくなる。従
って、冷却能力は上限に達し易い傾向となっている。こ
の場合の冷却能力曲線は、第5図の(B)の実線で示さ
れることになる。
Therefore, the refrigerant pressure in the evaporator 1 becomes low, and the evaporation temperature of the refrigerant becomes low. As a result, the evaporation temperature and evaporator 1
The difference from the temperature T2 of the surrounding air to be cooled (indoor side) increases, and the cooling capacity increases. However, since the difference in height of the refrigerant liquid level is small (h), the refrigerant circulation ability becomes small. Therefore, the cooling capacity tends to reach its upper limit. The cooling capacity curve in this case is shown by the solid line in FIG. 5(B).

以上のように、温度差ΔTが変化する場合、この温度差
ΔTが大きい時、循環する冷媒の量が多く、(A)の実
線で示す冷却能力が確保される。
As described above, when the temperature difference ΔT changes, when the temperature difference ΔT is large, the amount of circulating refrigerant is large, and the cooling capacity shown by the solid line in (A) is ensured.

一方、温度差ΔTが小さい時、循環する冷媒の量が少く
、(B)の実線で示す冷却能力が確保される。上記の説
明では、温度差ΔTの大小に応じて温度差ΔTに対する
冷却能力の曲線(A)(B)として示したが、温度差Δ
Tを無段階に分けた場合には、循環する冷媒の量は最適
に制御され、温度差ΔTが変化する冷却能力は(C)の
点線で示される。即ち、温度差ΔTの変化に応じて、そ
の温度差ΔTに対する循環する冷媒の最適な量が確保さ
れ、これに基づき、冷媒液面の高低差が最適に制御され
、温度差ΔTに対する冷却能力の効率を高くすることが
でき、従って、温度差ΔTが大きく変化しても幅広い温
度域で冷却能力の効率を良くすることができる。
On the other hand, when the temperature difference ΔT is small, the amount of circulating refrigerant is small, and the cooling capacity shown by the solid line in (B) is ensured. In the above explanation, curves (A) and (B) of the cooling capacity against the temperature difference ΔT were shown depending on the size of the temperature difference ΔT.
When T is divided steplessly, the amount of circulating refrigerant is optimally controlled, and the cooling capacity at which the temperature difference ΔT changes is shown by the dotted line in (C). That is, in accordance with changes in the temperature difference ΔT, the optimal amount of circulating refrigerant is secured for the temperature difference ΔT, and based on this, the height difference of the refrigerant liquid level is optimally controlled, and the cooling capacity is adjusted for the temperature difference ΔT. The efficiency can be increased, and therefore, even if the temperature difference ΔT changes greatly, the efficiency of the cooling capacity can be improved over a wide temperature range.

なお、本実施例においては、温度差ΔTの変化に応じて
、その温度差ΔTに対する循環する冷媒の最適な量が決
定されるようになっているが、かかる制御だけでなく、
第5図に示すように、温度差ΔTが所定の温度差ΔT0
より大きい時(A)の実線で示す冷却能力、または温度
差ΔTが所定の温度差ΔT0より小さい時CB)の実線
で示す冷却能力にすることもできる。
In this embodiment, the optimal amount of circulating refrigerant for the temperature difference ΔT is determined in accordance with the change in the temperature difference ΔT, but in addition to such control,
As shown in FIG. 5, the temperature difference ΔT is a predetermined temperature difference ΔT0.
When the temperature difference ΔT is smaller than the predetermined temperature difference ΔT0, the cooling capacity can be the cooling capacity shown by the solid line (A), or the cooling capacity shown by the solid line CB) when the temperature difference ΔT is smaller than the predetermined temperature difference ΔT0.

また、本実施例においては、冷媒封入量制御手段8は、
液側冷媒配管7に連通管9を介して連通ずる冷媒収納容
器10と、アクチュエータエIとから構成され、コント
ローラ14がらの指令にょリアクチュエータ11を自動
的に作動させるようになっているが、かかる場合に限定
されず、室外側の温度と室内側の温度との温度差に対す
る冷却能力の効率を高くするように循環する冷媒の量を
その温度差に応じて可変とするものならばこれに代える
ことができる。例えば、本実施例におけるアクチュエー
タ11.室外側温度検出器12.室内側温度検出器13
.コントローラ14を採用せず、螺子式の往復ロッドを
腹側冷媒配管7に組み込み、これを温度差に応じて手動
により上下させ、冷媒収納容器10における冷媒の量を
調整することもできる。
In addition, in this embodiment, the refrigerant filling amount control means 8 is
It is composed of a refrigerant storage container 10 that communicates with the liquid side refrigerant pipe 7 via a communication pipe 9, and an actuator I, and is designed to automatically operate the reactor 11 according to commands from the controller 14. This is not limited to such a case, but it is applicable if the amount of circulating refrigerant is varied according to the temperature difference between the temperature outside the room and the temperature inside the room so as to increase the efficiency of the cooling capacity against the temperature difference between the outside temperature and the inside temperature. It can be replaced. For example, the actuator 11 in this embodiment. Outdoor temperature sensor 12. Indoor temperature detector 13
.. It is also possible to adjust the amount of refrigerant in the refrigerant storage container 10 by incorporating a screw-type reciprocating rod into the ventral refrigerant pipe 7 and manually moving it up and down according to the temperature difference without employing the controller 14.

〔発明の効果] 以上述べたように、本発明に係る冷媒自然循環式熱移動
装置本発明によれば、室内夕)の温度差が変化した場合
、この変化に応じて、冷媒封入量制御手段により温度差
に対する冷却能力の効率を高くするように循環する冷媒
の量が制御され、これに基づき、冷媒液面の高低差が制
御され、所定の温度差に対する冷却能力の効率を高くす
ることができ、従って、温度差が大きく変化しても幅広
い温度域で冷却能力の効率を良くすることができる。
[Effects of the Invention] As described above, according to the refrigerant natural circulation type heat transfer device according to the present invention, when the temperature difference indoors (at night) changes, the refrigerant charge amount control means The amount of refrigerant that circulates is controlled to increase the efficiency of the cooling capacity for a given temperature difference, and based on this, the difference in height of the refrigerant liquid level is controlled, making it possible to increase the efficiency of the cooling capacity for a given temperature difference. Therefore, even if the temperature difference changes greatly, the efficiency of the cooling capacity can be improved over a wide temperature range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る冷媒自然循環式熱移動装
置の構成図である。 第2図は冷媒封入量制御手段の断面説明図である。 第3図は同冷媒自然循環式熱移動装置の室内外の温度差
が大きい時の使用状態説明図である。 第4図は同冷媒自然循環式熱移動装置の室内外の温度差
が小さい時の使用状態説明図である。 第5図は同冷媒自然循環式熱移動装置の効果の説明図で
ある。 第6図は従来における冷媒自然循環式熱移動装置の構成
図である。 第7図は同冷媒自然循環式熱移動装置の効果の説明図で
ある。 [主要な部分の符号の説明] 1・・・蒸発器 IA・・・入口 1B・・・出口 3・・・凝縮器 3A・・・入口 3 B・・・出口 6・・・ガス側冷媒配管 7・・・腹側冷媒配管 8・・・冷媒封入量制御手段 10・・・冷媒収納容器 11・・・アクチュエータ。 s3図   第4図 第5tm 手続補正書彷式) 昭和63年7月4日 特許庁長官  吉 1)文 毅 殿 昭和63年特許願第80042号 2、 発明の名称 冷媒自然循環式熱移動装置 3、 補正をする者 事件との関係   出願人 住 所  東京都千代田区有楽町−丁目4番1号名 称
 (183)三機工業株式会社 4、代理人 〒1519 (03)375−1631住
 所  東京都渋谷区代々木2丁目11番2号由井ビル
6階 6、補正の対象 図面全図 7、 補正の内容
FIG. 1 is a configuration diagram of a natural refrigerant circulation type heat transfer device according to an embodiment of the present invention. FIG. 2 is an explanatory cross-sectional view of the refrigerant charge amount control means. FIG. 3 is an explanatory diagram of the state in which the refrigerant natural circulation type heat transfer device is used when there is a large temperature difference between indoor and outdoor temperatures. FIG. 4 is an explanatory diagram of the usage state of the refrigerant natural circulation type heat transfer device when the temperature difference between indoor and outdoor is small. FIG. 5 is an explanatory diagram of the effect of the refrigerant natural circulation type heat transfer device. FIG. 6 is a configuration diagram of a conventional refrigerant natural circulation type heat transfer device. FIG. 7 is an explanatory diagram of the effect of the refrigerant natural circulation type heat transfer device. [Explanation of symbols of main parts] 1...Evaporator IA...Inlet 1B...Outlet 3...Condenser 3A...Inlet 3 B...Outlet 6...Gas side refrigerant piping 7... Ventral refrigerant piping 8... Refrigerant filling amount control means 10... Refrigerant storage container 11... Actuator. s3 diagram Figure 4 Figure 5tm Procedural amendment form) July 4, 1988 Director General of the Japan Patent Office Yoshi 1) Tsuyoshi Moon Patent Application No. 80042 of 1988 2, Name of invention Refrigerant natural circulation heat transfer device 3 , Relationship to the case of the person making the amendment Applicant address: 4-1 Yurakucho-chome, Chiyoda-ku, Tokyo Name (183) Sanki Kogyo Co., Ltd. 4, Agent 1519 (03) 375-1631 Address: Tokyo, Japan 6th floor, 6th floor, Yui Building, 2-11-2 Yoyogi, Shibuya-ku, All drawings subject to correction 7, Details of correction

Claims (1)

【特許請求の範囲】[Claims] (1)室内側に設置された蒸発器と、室外側に設置され
るとともに蒸発器の高所に位置する凝縮器と、蒸発器の
出口と凝縮器の入口とを接続するガス側冷媒配管と、凝
縮器の出口と蒸発器の入口とを接続する液側冷媒配管と
を備え、室外側の温度と室内側の温度との温度差により
室内側の熱を室外側に移動させる冷媒自然循環式熱移動
装置において、液側冷媒配管の途中に、室外側の温度と
室内側の温度との温度差に対する冷却能力の効率を高く
するように循環する冷媒の量をその温度差に応じて可変
とする冷媒封入量制御手段を設けたことを特徴とする冷
媒自然循環式熱移動装置。
(1) An evaporator installed on the indoor side, a condenser installed on the outdoor side and located at a high place of the evaporator, and a gas side refrigerant pipe connecting the outlet of the evaporator and the inlet of the condenser. , a refrigerant natural circulation type that is equipped with a liquid side refrigerant pipe that connects the outlet of the condenser and the inlet of the evaporator, and moves heat from the indoor side to the outdoor side due to the temperature difference between the outdoor temperature and the indoor temperature. In a heat transfer device, the amount of refrigerant that circulates in the middle of the liquid side refrigerant piping is variable according to the temperature difference in order to increase the efficiency of the cooling capacity against the temperature difference between the outdoor temperature and the indoor temperature. 1. A refrigerant natural circulation type heat transfer device, characterized in that a refrigerant natural circulation type heat transfer device is provided with a refrigerant charge amount control means.
JP63080042A 1988-03-31 1988-03-31 Refrigerant natural circulation heat transfer device Expired - Lifetime JP2530881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63080042A JP2530881B2 (en) 1988-03-31 1988-03-31 Refrigerant natural circulation heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63080042A JP2530881B2 (en) 1988-03-31 1988-03-31 Refrigerant natural circulation heat transfer device

Publications (2)

Publication Number Publication Date
JPH01252834A true JPH01252834A (en) 1989-10-09
JP2530881B2 JP2530881B2 (en) 1996-09-04

Family

ID=13707189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63080042A Expired - Lifetime JP2530881B2 (en) 1988-03-31 1988-03-31 Refrigerant natural circulation heat transfer device

Country Status (1)

Country Link
JP (1) JP2530881B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007987A (en) * 2008-06-27 2010-01-14 Hoshizaki Electric Co Ltd Cooling device
JP2011027333A (en) * 2009-07-27 2011-02-10 Shinko Kogyo Co Ltd Heating and cooling air conditioning system by refrigerant natural circulation
JP2012030699A (en) * 2010-07-30 2012-02-16 Hitachi Ltd Heat cycle system
JP2014157494A (en) * 2013-02-15 2014-08-28 Panasonic Corp Server cooling system
WO2018047532A1 (en) * 2016-09-09 2018-03-15 株式会社デンソー Device temperature adjusting apparatus
WO2018047531A1 (en) * 2016-09-09 2018-03-15 株式会社デンソー Device temperature adjusting apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099419U (en) * 1983-12-12 1985-07-06 ダイキン工業株式会社 Natural circulation natural convection air conditioner
JPS6179773U (en) * 1984-10-29 1986-05-28

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099419U (en) * 1983-12-12 1985-07-06 ダイキン工業株式会社 Natural circulation natural convection air conditioner
JPS6179773U (en) * 1984-10-29 1986-05-28

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007987A (en) * 2008-06-27 2010-01-14 Hoshizaki Electric Co Ltd Cooling device
JP2011027333A (en) * 2009-07-27 2011-02-10 Shinko Kogyo Co Ltd Heating and cooling air conditioning system by refrigerant natural circulation
JP2012030699A (en) * 2010-07-30 2012-02-16 Hitachi Ltd Heat cycle system
JP2014157494A (en) * 2013-02-15 2014-08-28 Panasonic Corp Server cooling system
WO2018047532A1 (en) * 2016-09-09 2018-03-15 株式会社デンソー Device temperature adjusting apparatus
WO2018047531A1 (en) * 2016-09-09 2018-03-15 株式会社デンソー Device temperature adjusting apparatus
JPWO2018047531A1 (en) * 2016-09-09 2019-02-14 株式会社デンソー Equipment temperature controller
JPWO2018047532A1 (en) * 2016-09-09 2019-02-21 株式会社デンソー Equipment temperature controller
CN109690222A (en) * 2016-09-09 2019-04-26 株式会社电装 Device temperature regulating device
CN109690222B (en) * 2016-09-09 2020-07-03 株式会社电装 Equipment temperature adjusting device

Also Published As

Publication number Publication date
JP2530881B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
JP4018443B2 (en) Thermosiphon chiller refrigerator for cold regions
JP4885481B2 (en) Cooling device operation method
JPS63118546A (en) Air conditioning system for building
JPH01252834A (en) Coolant natural circulation type heat transferring device
EP0035873A2 (en) Absorption type heat pump having radiators
US4202493A (en) Heating system having solar assist
JPH0432669A (en) Heat pump system controlling method therefor
JP2011237138A (en) Absorption air conditioning hot water supply system
WO2007043952A1 (en) Heat exchanger device
JPH0792251B2 (en) Air conditioning equipment
CN206637769U (en) Using the computer room heat pipe air conditioner of VRV systems
JPH07104013B2 (en) Refrigerant natural circulation heat transfer device
CN111912029A (en) Air conditioning device and control method thereof
JPH083889Y2 (en) Cooling water heater
JPH01281378A (en) Heat pump type cooler/hot water heater
JP7485909B2 (en) Air conditioning equipment
JPH01174834A (en) Air conditioning system for building
JPH10170179A (en) Air conditioning apparatus
JPH0225641A (en) Refrigerant natural circulation type heat migrating device
JP2007285640A (en) Heat storage type water heater
JP3594426B2 (en) Air conditioner
JPH10132332A (en) Air conditioner
JPH10132331A (en) Air conditioner
JPH024178A (en) Cooling system of absorption type refrigerating machine and air-conditioning system utilizing absorption type refrigerating machine
JPH01107031A (en) Air conditioning system for building