JPH07104013B2 - Refrigerant natural circulation heat transfer device - Google Patents

Refrigerant natural circulation heat transfer device

Info

Publication number
JPH07104013B2
JPH07104013B2 JP63080041A JP8004188A JPH07104013B2 JP H07104013 B2 JPH07104013 B2 JP H07104013B2 JP 63080041 A JP63080041 A JP 63080041A JP 8004188 A JP8004188 A JP 8004188A JP H07104013 B2 JPH07104013 B2 JP H07104013B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
evaporator
liquid
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63080041A
Other languages
Japanese (ja)
Other versions
JPH01252833A (en
Inventor
彰夫 山下
茂樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP63080041A priority Critical patent/JPH07104013B2/en
Publication of JPH01252833A publication Critical patent/JPH01252833A/en
Publication of JPH07104013B2 publication Critical patent/JPH07104013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷媒自然循環サイクルを利用する冷媒自然循
環式熱移動装置の改良に関する。
Description: [Industrial field of application] The present invention relates to an improvement of a refrigerant natural circulation heat transfer device that uses a refrigerant natural circulation cycle.

〔従来の技術〕[Conventional technology]

最近、例えば、電算機室のような内部発熱が高く、しか
も温湿度条件,空気清浄を厳しく要求される室に対して
省エネルギ等を図った空調装置が要求されている。この
要求に沿ったもののひとつとして、低温外気を利用して
室内側の熱を室外側に移動する冷媒自然循環式熱移動装
置を、冷暖房装置に併用した空調機が脚光を浴びてい
る。
Recently, there has been a demand for an air conditioner that saves energy, for example, in a room such as a computer room that has high internal heat generation and that is strictly required for temperature and humidity conditions and air cleaning. As one that meets this demand, an air conditioner that uses a refrigerant natural circulation heat transfer device that moves heat on the indoor side to the outdoor side by using low temperature outside air is in the limelight.

上記の冷媒自然循環式熱移動装置は、サーモサイフォン
とも称せられており、室内外に設けられた熱交換器を冷
媒配管で環状に接続し、内部に低沸点冷媒を封入したも
のである。
The refrigerant natural circulation heat transfer device is also called a thermosiphon, and is a device in which heat exchangers provided indoors and outdoors are annularly connected by a refrigerant pipe, and a low boiling point refrigerant is sealed inside.

かかる冷媒自然循環式熱移動装置として、例えば、実開
昭61−79773号公報に示すものが知られている(第6図
図示)。
As such a refrigerant natural circulation type heat transfer device, for example, one shown in Japanese Utility Model Laid-Open No. 61-79773 is known (shown in FIG. 6).

図示のように、冷媒自然循環式熱移動装置101は、室内
側に設置された蒸発器102と、その高所に配置されると
ともに室外側に設置された凝縮器103と、蒸発器102の出
口102Bと凝縮器103の入口103Aとを接続するガス側冷媒
配管104と、凝縮器103の出口103Bと蒸発器102の入口102
Aとを接続する液側冷媒配管105とを備えている。
As shown in the figure, the refrigerant natural circulation heat transfer device 101 includes an evaporator 102 installed on the indoor side, a condenser 103 installed at a high place thereof and installed on the outdoor side, and an outlet of the evaporator 102. Gas side refrigerant pipe 104 connecting 102B and inlet 103A of condenser 103, outlet 103B of condenser 103 and inlet 102 of evaporator 102
A liquid-side refrigerant pipe 105 connecting with A is provided.

冷媒自然循環式熱移動装置101においては、冷媒は、蒸
発器102で室内側の暖かい空気によって熱せられ、沸
騰,蒸発する。このときの蒸発潜熱により、室内空気は
冷却される。蒸発した冷媒は、ガス状になってガス側冷
媒配管104を上昇し、凝縮器103に導かれ、冷たい外気に
よって冷却される。冷却された冷媒は、凝縮液化して液
側冷媒配管105の内部を流下し、再び蒸発器102に戻る。
In the refrigerant natural circulation heat transfer device 101, the refrigerant is heated by the warm air inside the room in the evaporator 102, and boils and evaporates. The indoor air is cooled by the latent heat of vaporization at this time. The evaporated refrigerant becomes a gas, rises in the gas side refrigerant pipe 104, is guided to the condenser 103, and is cooled by cold outside air. The cooled refrigerant is condensed and liquefied, flows down inside the liquid side refrigerant pipe 105, and returns to the evaporator 102 again.

上記の冷媒循環は、室外側の温度が室内側の温度より低
ければ、冷媒の相変化に伴う圧力差と冷媒液面の高低差
による自然循環力によって起り、室内側の熱が室外側に
無動力で放出される。
If the temperature of the outdoor side is lower than the temperature of the indoor side, the refrigerant circulation described above occurs due to the natural circulation force due to the pressure difference due to the phase change of the refrigerant and the difference in height of the refrigerant liquid level, and the heat on the indoor side does not exist on the outdoor side. It is released by power.

そして、上記の自然循環力と配管系の抵抗と熱交換器
(蒸発器102,凝縮器103)の特性から、冷媒の循環量が
決定される。
Then, the circulation amount of the refrigerant is determined from the natural circulation force, the resistance of the piping system, and the characteristics of the heat exchanger (evaporator 102, condenser 103).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の冷媒自然循環式熱移動装置101にあっては、その
システムとしての冷却能力は、室内外の温度差及び冷媒
の循環量によって決定される。具体的に云えば、この冷
却能力は、室内外の温度差が小さい場合には、不安定と
なる場合があるが、室内外の温度差にほぼ比例して増加
する。しかし、冷媒液面の高低差が小さいと、自然循環
力が小さくなり、熱交換器(蒸発器102,凝縮器103)に
余裕があっても冷却能力は上限を示すようになる。
In the conventional refrigerant natural circulation heat transfer device 101, the cooling capacity of the system is determined by the temperature difference between the indoor and outdoor temperatures and the refrigerant circulation amount. More specifically, this cooling capacity may become unstable when the indoor / outdoor temperature difference is small, but increases almost in proportion to the indoor / outdoor temperature difference. However, if the height difference of the liquid level of the refrigerant is small, the natural circulation force becomes small, and the cooling capacity reaches the upper limit even if the heat exchanger (evaporator 102, condenser 103) has a margin.

この冷媒液面の高低差による冷却能力に対する影響を詳
述する。
The effect of the difference in liquid level of the refrigerant on the cooling capacity will be described in detail.

冷媒液面の高低差が大きいと、蒸発器102における冷媒
圧力が高くなり、冷媒の蒸発温度が高くなる。従って、
蒸発温度と蒸発器102の回りの被冷却空気(室内側)と
の温度との差が小さくなり、冷却能力が小さくなる。し
かし、冷媒液面の高低差が大きいので冷媒循環能力が大
きくなる。従って、冷却能力は上限に達し難い傾向とな
っている。この場合の冷却能力曲線は、第7図の(A)
に示される。
If the height difference of the refrigerant liquid level is large, the refrigerant pressure in the evaporator 102 becomes high, and the evaporation temperature of the refrigerant becomes high. Therefore,
The difference between the evaporation temperature and the temperature of the cooled air (inside the room) around the evaporator 102 becomes small, and the cooling capacity becomes small. However, since the difference in height of the liquid surface of the refrigerant is large, the refrigerant circulation capacity is large. Therefore, the cooling capacity tends to be hard to reach the upper limit. The cooling capacity curve in this case is shown in FIG.
Shown in.

一方、冷媒液面の高低差が小さいと、蒸発器102におけ
る冷媒圧力が低くなり、冷媒の蒸発温度が低くなる。従
って、蒸発温度と蒸発器102の回りの被冷却空気(室内
側)との温度との差が大きくなり、冷却能力が大きくな
る。しかし、冷媒液面の高低差が小さいので冷媒循環能
力が小さくなる。従って、冷却能力は上限に達し易い傾
向となっている。この場合の冷却能力曲線は、第7図の
(B)に示される。
On the other hand, when the height difference of the refrigerant liquid level is small, the refrigerant pressure in the evaporator 102 becomes low, and the evaporation temperature of the refrigerant becomes low. Therefore, the difference between the evaporation temperature and the temperature of the cooled air (inside the room) around the evaporator 102 becomes large, and the cooling capacity becomes large. However, since the height difference of the liquid level of the refrigerant is small, the refrigerant circulating ability becomes small. Therefore, the cooling capacity tends to reach the upper limit easily. The cooling capacity curve in this case is shown in FIG.

従って、所定の温度差に対して冷却能力は、冷媒液面の
高低差に従って決定されることになる。
Therefore, the cooling capacity for a given temperature difference is determined according to the level difference of the refrigerant liquid level.

ところが、従来の冷媒自然循環式熱移動装置101では、
その冷却能力は、何ら制御することのできない室内外の
温度差のみで決定されているため、冷媒液面の高低差が
一定の場合には、所定の温度差に対する冷却能力の大き
さは、(A)または(B)のどちらかの傾向をとるだけ
となり、冷却能力の効率が低くなることになる。従っ
て、室内外の温度差が大きく変化した場合、冷却能力の
効率が落ちることもあった。
However, in the conventional refrigerant natural circulation heat transfer device 101,
Since the cooling capacity is determined only by the indoor and outdoor temperature difference that cannot be controlled at all, if the height difference of the refrigerant liquid level is constant, the magnitude of the cooling capacity for a predetermined temperature difference is ( Only the tendency of A) or (B) is taken, and the efficiency of the cooling capacity becomes low. Therefore, if the indoor / outdoor temperature difference changes significantly, the efficiency of the cooling capacity may decrease.

本発明は、かかる従来の問題点を解決するためになされ
たもので、その目的は、室内外の温度差が大きく変化し
ても幅広い温度域で冷却能力の効率を良くする冷媒自然
循環式熱移動装置を提供することである。
The present invention has been made to solve such conventional problems, and an object thereof is to provide a refrigerant natural circulation type heat that improves the efficiency of the cooling capacity in a wide temperature range even if the temperature difference between the indoor and the outdoor greatly changes. A mobile device is provided.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するために、本発明は、室内側に設置さ
れた蒸発器と、室外側に設置されるとともに蒸発器の高
所に位置する凝縮器と、蒸発器の出口と凝縮器の入口と
を接続するガス側冷媒配管と、凝縮器の出口と蒸発器の
入口とを接続する液側冷媒配管とを備え、蒸発器,ガス
側冷媒配管,凝縮器,液側冷媒配管の間を一定量の冷媒
を循環させて、室外側の温度と室内側の温度との温度差
により室内側の熱を室外側に移動させる冷媒自然循環式
熱移動装置において、液側冷媒配管の途中に、前記の温
度差に対する冷却能力の効率を高くするように蒸発器の
冷媒の液位を前記の温度差に応じて可変とする冷媒液面
変位機構を設けたものである。
In order to achieve the above object, the present invention provides an evaporator installed on the indoor side, a condenser installed on the outdoor side and located at a high place of the evaporator, an outlet of the evaporator and an inlet of the condenser. A gas-side refrigerant pipe for connecting to the condenser and a liquid-side refrigerant pipe for connecting the outlet of the condenser and the inlet of the evaporator, and a constant distance between the evaporator, the gas-side refrigerant pipe, the condenser, and the liquid-side refrigerant pipe. In a refrigerant natural circulation heat transfer device that circulates an amount of the refrigerant and moves the heat on the indoor side to the outdoor side by the temperature difference between the temperature on the outdoor side and the temperature on the indoor side, in the middle of the liquid side refrigerant pipe, In order to increase the efficiency of the cooling capacity with respect to the temperature difference, the refrigerant liquid level displacement mechanism that changes the liquid level of the refrigerant of the evaporator according to the temperature difference is provided.

そして、冷媒液面変位機構は、液側冷媒配管の途中に介
装された複数個の開閉バルブと、液側冷媒配管の各開閉
バルブの両側部分に接続するバイパス管と、各バイパス
管に介装された2つのバイパス用バルブとを備えること
が効果的である。
The refrigerant liquid level displacement mechanism includes a plurality of on-off valves interposed in the middle of the liquid-side refrigerant pipe, a bypass pipe connected to both sides of each on-off valve of the liquid-side refrigerant pipe, and a bypass pipe connected to each bypass pipe. It is effective to have two bypass valves mounted.

〔作 用〕[Work]

本発明にあっては、室外側の温度と室内側の温度との温
度差が大きいと、冷媒液面変位機構により冷媒の液位は
高くなり、冷媒液面の高低差が大きくなる。
In the present invention, when the temperature difference between the temperature on the outdoor side and the temperature on the indoor side is large, the liquid level of the refrigerant increases due to the refrigerant liquid level displacement mechanism, and the height difference of the refrigerant liquid level increases.

従って、蒸発器における冷媒圧力が高くなり、冷媒の蒸
発温度が高くなる。この結果、蒸発温度と蒸発器の回り
の被冷却空気(室内側)との温度との差が小さくなり、
冷却能力が小さくなる。しかし、冷媒液面の高低差が大
きいので冷媒循環能力が大きくなる。従って、冷却能力
は上限に達し難い傾向となっている。
Therefore, the refrigerant pressure in the evaporator becomes high, and the evaporation temperature of the refrigerant becomes high. As a result, the difference between the evaporation temperature and the temperature of the cooled air (inside the room) around the evaporator is reduced,
Cooling capacity decreases. However, since the difference in height of the liquid surface of the refrigerant is large, the refrigerant circulation capacity is large. Therefore, the cooling capacity tends to be hard to reach the upper limit.

一方、温度差が小さいと、冷媒液面変位機構により冷媒
の液位は低くなり、冷媒液面の高低差が小さくなる。
On the other hand, when the temperature difference is small, the refrigerant liquid level displacement mechanism lowers the liquid level of the refrigerant, and the height difference of the refrigerant liquid level becomes small.

従って、蒸発器における冷媒圧力が低くなり、冷媒の蒸
発温度が低くなる。この結果、蒸発温度と蒸発器の回り
の被冷却空気(室内側)との温度との差が大きくなり、
冷却能力が大きくなる。しかし、冷媒液面の高低差が小
さいので冷媒循環能力が小さくなる。従って、冷却能力
は上限に達し易い傾向となっている。
Therefore, the refrigerant pressure in the evaporator is lowered, and the evaporation temperature of the refrigerant is lowered. As a result, the difference between the evaporation temperature and the temperature of the cooled air around the evaporator (inside the room) increases,
Cooling capacity increases. However, since the height difference of the liquid level of the refrigerant is small, the refrigerant circulating ability becomes small. Therefore, the cooling capacity tends to reach the upper limit easily.

〔実施例〕〔Example〕

以下、図面により本発明の実施例について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図ないし第4図は本発明の第1実施例に係る冷媒自
然循環式熱移動装置の内容を示す。
1 to 4 show the contents of a refrigerant natural circulation heat transfer device according to a first embodiment of the present invention.

第1図において、1は蒸発器で、室内側の室内ユニット
2の内側に設置されている。3は凝縮器で、蒸発器1の
高所に位置するとともに室外側の室外ユニット4の内側
に設置されている。室内ユニット2及び室外ユニット4
の内側には、送風機5が配置され、それぞれ蒸発器1,凝
縮器3の下流に位置している。6はガス側冷媒配管で、
蒸発器1の出口1Bと凝縮器3の入口3Aとを接続する。7
は液側冷媒配管で、凝縮器3の出口3Bと蒸発器1の入口
1Aとを接続する。蒸発器1,ガス側冷媒配管6,凝縮器3,液
側冷媒配管7の間を一定量の冷媒が循環するようになっ
ている。
In FIG. 1, 1 is an evaporator, which is installed inside the indoor unit 2 on the indoor side. A condenser 3 is located at a high place of the evaporator 1 and is installed inside the outdoor unit 4 on the outdoor side. Indoor unit 2 and outdoor unit 4
An air blower 5 is arranged inside of the above, and is located downstream of the evaporator 1 and the condenser 3, respectively. 6 is a gas side refrigerant pipe,
The outlet 1B of the evaporator 1 and the inlet 3A of the condenser 3 are connected. 7
Is a liquid side refrigerant pipe, and the outlet 3B of the condenser 3 and the inlet of the evaporator 1
Connect with 1A. A certain amount of refrigerant circulates among the evaporator 1, the gas side refrigerant pipe 6, the condenser 3 and the liquid side refrigerant pipe 7.

そして、液側冷媒配管7の途中に冷媒液面変位機構8が
設けられている。この冷媒液面変位機構8は、室外側の
温度と室内側の温度との温度差に対する冷却能力の効率
を高くするように蒸発器1の冷媒の液位をその温度差に
応じて可変とするもので、液側冷媒配管7の途中に介装
された第1開閉バルブV2及び第2開閉バルブV5と、液側
冷媒配管7の各開閉バルブV2,V5の両側部分に接続する
第1バイパス管9及び第2バイパス管10と、各バイパス
管9,10にそれぞれ介装された第1液タンク11及び第2液
タンク12と、バイパス管9に介装されて第1液タンク11
の両側部分に位置する上流側バイパス用バルブV1及び下
流側バイパス用バルブV3と、第2バイパス管10に介装さ
れて第2液タンク12の両側部分に位置する上流側バイパ
ス用バルブV4及び下流側バイパス用バルブV6とから構成
されている。
A refrigerant liquid level displacement mechanism 8 is provided in the middle of the liquid side refrigerant pipe 7. The refrigerant liquid level displacement mechanism 8 changes the liquid level of the refrigerant of the evaporator 1 in accordance with the temperature difference so that the efficiency of the cooling capacity with respect to the temperature difference between the outdoor temperature and the indoor temperature is increased. Connected to the first opening / closing valve V 2 and the second opening / closing valve V 5 provided in the middle of the liquid side refrigerant pipe 7 and both sides of each of the opening / closing valves V 2 and V 5 of the liquid side refrigerant pipe 7. First bypass pipe 9 and second bypass pipe 10, first liquid tank 11 and second liquid tank 12 installed in each bypass pipe 9, 10, and first liquid tank installed in bypass pipe 9 11
Upstream bypass valve V 1 and downstream bypass valve V 3 located on both sides of the second bypass tank 10 and upstream bypass valve V interposed on the second bypass pipe 10 and located on both sides of the second liquid tank 12. 4 and a downstream bypass valve V 6 .

次に、本実施例の作用を第2図ないし第4図に基づいて
説明する。
Next, the operation of this embodiment will be described with reference to FIGS. 2 to 4.

第2図は、室外側の温度T1と室内側の温度T2との温度差
ΔTが所定の温度差ΔT0より大きい場合を示し、第1開
閉バルブV2は閉じ、上流側バイパス用バルブV1及び下流
側バイパス用バルブV3は開いている。一方、第2開閉バ
ルブV5は開き、上流側バイパス用バルブV4及び下流側バ
イパス用バルブV6は閉じている。この場合、冷媒液面変
位機構8により冷媒の液位は第1液タンク11にまで達
し、高くなっている。従って、冷媒液面の高低差が大き
くなり、Hとなっている。
FIG. 2 shows a case where the temperature difference ΔT between the outdoor temperature T 1 and the indoor temperature T 2 is larger than a predetermined temperature difference ΔT 0 , and the first opening / closing valve V 2 is closed and the upstream bypass valve is used. V 1 and the downstream bypass valve V 3 are open. On the other hand, the second opening / closing valve V 5 is open, and the upstream bypass valve V 4 and the downstream bypass valve V 6 are closed. In this case, the liquid level of the refrigerant reaches the first liquid tank 11 by the refrigerant liquid level displacement mechanism 8 and becomes high. Therefore, the difference in height of the liquid surface of the refrigerant becomes large and is H.

そのため、蒸発器1における冷媒圧力が高くなり、冷媒
の蒸発温度が高くなる。この結果、蒸発温度と蒸発器1
の回りの被冷却空気(室内側)の温度T2との温度との差
が小さくなり(冷媒の沸点は室外側の温度T1と室内側の
温度T2との間の温度)、冷却能力が小さくなる。しか
し、冷媒液面の高低差(H)が大きいので冷媒循環能力
が大きくなる。従って、冷却能力は上限に達し難い傾向
となっている。この場合の冷却能力曲線は、ΔT0以上に
おいて第4図の(A)の実線で示される。
Therefore, the refrigerant pressure in the evaporator 1 becomes high, and the evaporation temperature of the refrigerant becomes high. As a result, the evaporation temperature and the evaporator 1
The difference between the temperature of the air to be cooled (inside the room) and the temperature T 2 is small (the boiling point of the refrigerant is the temperature between the outside temperature T 1 and the inside temperature T 2 ) and the cooling capacity Becomes smaller. However, since the height difference (H) of the liquid level of the refrigerant is large, the refrigerant circulation capacity becomes large. Therefore, the cooling capacity tends to be hard to reach the upper limit. The cooling capacity curve of the case, shown by the solid line in FIG. 4 (A) In the [Delta] T 0 or more.

第3図は、室外側の温度T1と室内側の温度T2との温度差
ΔTが所定の温度差ΔT0より小さい場合を示し、第1開
閉バルブV2は開き、上流側バイパス用バルブV1及び下流
側バイパス用バルブV3は閉じている。一方、第2開閉バ
ルブV5は閉じ、上流側バイパス用バルブV4及び下流側バ
イパス用バルブV6は開いている。この場合、冷媒液面変
位機構8により冷媒の液位は第2液タンク12に達し、低
くなっている。従って、冷媒液面の高低差が小さくな
り、hとなっている。
FIG. 3 shows a case where the temperature difference ΔT between the outdoor temperature T 1 and the indoor temperature T 2 is smaller than a predetermined temperature difference ΔT 0. The first opening / closing valve V 2 is opened and the upstream bypass valve is used. V 1 and the downstream bypass valve V 3 are closed. On the other hand, the second opening / closing valve V 5 is closed, and the upstream bypass valve V 4 and the downstream bypass valve V 6 are open. In this case, the liquid level of the refrigerant reaches the second liquid tank 12 by the liquid level displacing mechanism 8 and is lowered. Therefore, the difference in height of the liquid surface of the refrigerant is reduced to h.

そのため、蒸発器1における冷媒圧力が低くなり、冷媒
の蒸発温度が低くなる。この結果、蒸発温度と蒸発器1
の回りの被冷却空気(室内側)の温度T2との差が大きく
なり、冷却能力が大きくなる。しかし、冷媒液面の高低
差が小さい(h)ので冷媒循環能力が小さくなる。従っ
て、冷却能力は上限に達し易い傾向となっている。
Therefore, the refrigerant pressure in the evaporator 1 becomes low, and the evaporation temperature of the refrigerant becomes low. As a result, the evaporation temperature and the evaporator 1
The difference from the temperature T 2 of the air to be cooled (inside the room) around is increased, and the cooling capacity is increased. However, since the difference in level of the refrigerant liquid level is small (h), the refrigerant circulation ability becomes small. Therefore, the cooling capacity tends to reach the upper limit easily.

この場合の冷却能力曲線は、ΔT0以下において第4図の
(B)の実線で示される。
Cooling capacity curve of this case is shown by the solid line of FIG. 4 (B) in the [Delta] T 0 or less.

なお、上述のように、第1液タンク11から第2液タンク
12へ切り替える場合、手動により上流側バイパス用バル
ブV1及び第2開閉バルブV5を閉じ、第1開閉バルブV2,
下流側バイパス用バルブV3,上流側バイパス用バルブV4
及び下流側バイパス用バルブV6を開き、一定時間後第1
液タンク11に冷媒液が無くなった後、下流側バイパス用
バルブV3を閉じれば良い。
As described above, from the first liquid tank 11 to the second liquid tank
When switching to 12, the upstream bypass valve V 1 and the second opening / closing valve V 5 are closed manually, and the first opening / closing valve V 2 ,
Downstream bypass valve V 3 , upstream bypass valve V 4
And the downstream bypass valve V 6 is opened, and after a certain time, the first
After the liquid tank 11 is exhausted of the refrigerant liquid, the downstream bypass valve V 3 may be closed.

一方、第2液タンク12から第1液タンク11へ切り替える
場合、手動により第1開閉バルブV2,第2開閉バルブV5,
上流側バイパス用バルブV4を閉じ、上流側バイパス用バ
ルブV1,下流側バイパス用バルブV3,下流側バイパス用バ
ルブV6を開き、一定時間後に第2液タンク12に冷媒液が
無くなった後に、下流側バイパス用バルブV6を閉じ、第
2開閉バルブV5を開けば良い。
On the other hand, when switching from the second liquid tank 12 to the first liquid tank 11, the first opening / closing valve V 2 , the second opening / closing valve V 5 ,
The upstream bypass valve V 4 was closed, and the upstream bypass valve V 1 , the downstream bypass valve V 3 , and the downstream bypass valve V 6 were opened, and after a certain time, the second liquid tank 12 ran out of refrigerant liquid. After that, the downstream bypass valve V 6 may be closed and the second opening / closing valve V 5 may be opened.

以上の如き構成によれば、第4図に示すように、温度差
ΔTが変化する場合、冷却能力は、ΔT0以上において冷
媒液面の高低差が高くなり、(A)の実線が選択され、
一方、ΔT0以下において冷媒液面の高低差が低くなり、
(B)の実線が選択される。即ち、温度差ΔTに応じ
て、その温度差ΔTに対する冷媒液面の高低差を選択・
制御することにより、温度差ΔTに対する冷却能力の効
率を高くすることができ、従って、温度差ΔTが大きく
変化しても幅広い温度域で冷却能力の効率を良くするこ
とができる。
According to the above structure, as shown in FIG. 4, when the temperature difference ΔT changes, the cooling capacity has a high level difference of the refrigerant liquid level at ΔT 0 or more, and the solid line (A) is selected. ,
On the other hand, when ΔT 0 or less, the height difference of the refrigerant liquid level becomes small,
The solid line in (B) is selected. That is, in accordance with the temperature difference ΔT, the height difference of the refrigerant liquid level with respect to the temperature difference ΔT is selected.
By controlling, the efficiency of the cooling capacity with respect to the temperature difference ΔT can be increased, and therefore, the efficiency of the cooling capacity can be improved in a wide temperature range even if the temperature difference ΔT changes greatly.

なお、本実施例の冷媒液面変位機構8においては、液側
冷媒配管7の途中に2つの開閉バルブV2,V5が介装さ
れ、これに対応してバイパス管9,10も介装され、その途
中にバイパス用バルブV1,V3,V4,V6が介装されている
が、開閉バルブの数を3以上とし、これに対応してバイ
パス管の数も3以上にし、このバイパス管に対応してそ
の途中に液タンク及びバイパス用バルブを介装させるこ
ともできる。
In the refrigerant liquid level displacement mechanism 8 of the present embodiment, two opening / closing valves V 2 and V 5 are provided in the middle of the liquid side refrigerant pipe 7, and correspondingly the bypass pipes 9 and 10 are also installed. is, although the bypass valve V 1, V 3, V 4 , V 6 is interposed on the way, and the number of opening and closing valve 3 or more, and the number is also 3 or more bypass pipe correspondingly, A liquid tank and a bypass valve may be provided on the way corresponding to the bypass pipe.

また、本実施例においては、各バイパス管9,10に液タン
ク11,12が介装されているが、これら液タンク11,12は無
くても良い。
Further, in the present embodiment, the liquid tanks 11 and 12 are provided in the bypass pipes 9 and 10, respectively, but the liquid tanks 11 and 12 may be omitted.

第5図は本発明の第2実施例に係る冷媒自然循環式熱移
動装置を示す。
FIG. 5 shows a refrigerant natural circulation heat transfer device according to a second embodiment of the present invention.

図示のように、第2実施例に係る冷媒自然循環式熱移動
装置は、第1実施例と同様の基本的構成を有し、室外側
の温度T1と室内側の温度T2との温度差により室内側の熱
を室外側に移動させる制御が自動的に為される。即ち、
室外側の温度T1は温度検出器21により、室内側の温度T2
は温度検出器22により検出され、それぞれコントローラ
23に送られる。コントローラ23において、室外側の温度
T1と室内側の温度T2との温度差ΔTが計算され、設定温
度ΔT0と比較される。そして、設定温度ΔT0と温度差Δ
Tとの差に応じて、コントローラ23からの指令により第
1実施例で述べたように、適当なアクチュエータ(図示
せず)を介して第1開閉バルブV2、第2開閉バルブV5
第1バイパス管9の上流側バイパス用バルブV1及び下流
側バイパス用バルブV3、第2バイパス管10の上流側バイ
パス用バルブV4及び下流側バイパス用バルブV6の開閉が
制御される。
As shown in the figure, the refrigerant natural circulation heat transfer device according to the second embodiment has the same basic configuration as that of the first embodiment, and the temperature of the outdoor temperature T 1 and the indoor temperature T 2 The control for automatically moving the heat inside the room to the outside due to the difference is performed. That is,
The temperature T 1 of the temperature detector 21 of the outdoor side, the temperature of the indoor side T 2
Are detected by the temperature detector 22 and
Sent to 23. In the controller 23, the temperature outside the room
The temperature difference ΔT between T 1 and the room temperature T 2 is calculated and compared with the set temperature ΔT 0 . Then, the set temperature ΔT 0 and the temperature difference Δ
According to the difference from T, as described in the first embodiment by a command from the controller 23, the first opening / closing valve V 2 , the second opening / closing valve V 5 , via an appropriate actuator (not shown),
Opening / closing of the upstream bypass valve V 1 and the downstream bypass valve V 3 of the first bypass pipe 9 and the upstream bypass valve V 4 and the downstream bypass valve V 6 of the second bypass pipe 10 are controlled.

第2実施例によれば、第1実施例の効果に加えて、バル
ブ類の制御を自動的に行なうことができる。
According to the second embodiment, in addition to the effect of the first embodiment, the valves can be automatically controlled.

〔発明の効果〕〔The invention's effect〕

本発明は、上述のとおり構成されているので、次に記載
する効果を奏する。
Since the present invention is configured as described above, it has the following effects.

請求項1記載の冷媒自然循環式熱移動装置においては、
室内外の温度差が変化した場合、温度差に応じて、その
温度差に対する冷媒液面の高低差を選択・制御すること
により、温度差に対する冷却能力の効率を高くすること
ができ、従って、温度差が大きく変化しても幅広い温度
域で冷却能力の効率を良くすることができる。
In the refrigerant natural circulation heat transfer device according to claim 1,
When the indoor / outdoor temperature difference changes, by selecting and controlling the level difference of the refrigerant liquid level with respect to the temperature difference, it is possible to increase the efficiency of the cooling capacity with respect to the temperature difference. Even if the temperature difference largely changes, the efficiency of the cooling capacity can be improved in a wide temperature range.

請求項2記載の冷媒自然循環式熱移動装置においては、
冷媒液面変位機構により蒸発器の冷媒の液位を可変とす
ることができる。
In the refrigerant natural circulation heat transfer device according to claim 2,
The liquid level of the refrigerant in the evaporator can be made variable by the refrigerant liquid level displacement mechanism.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1実施例に係る冷媒自然循環式熱移
動装置の構成図である。 第2図は同冷媒自然循環式熱移動装置の室内外の温度差
が大きい時の使用状態説明図である。 第3図は同冷媒自然循環式熱移動装置の室内外の温度差
が小さい時の使用状態説明図である。 第4図は同冷媒自然循環式熱移動装置の効果の説明図で
ある。 第5図は本発明の第2実施例に係る冷媒自然循環式熱移
動装置の構成図である。 第6図は従来における冷媒自然循環式熱移動装置の構成
図である。 第7図は同冷媒自然循環式熱移動装置の効果の説明図で
ある。 〔主要な部分の符号の説明〕 1……蒸発器 1A……入口 1B……出口 3……凝縮器 3A……入口 3B……出口 6……ガス側冷媒配管 7……液側冷媒配管 8……冷媒液面変位機構 9……第1バイパス管 10……第2バイパス管 V1……上流側バイパス用バルブ V2……第1開閉バルブ V3……下流側バイパス用バルブ V4……上流側バイパス用バルブ V5……第2開閉バルブ V6……下流側バイパス用バルブ。
FIG. 1 is a configuration diagram of a refrigerant natural circulation type heat transfer device according to a first embodiment of the present invention. FIG. 2 is an explanatory view of a state of use when the refrigerant natural circulation heat transfer device has a large temperature difference between the indoor and outdoor temperatures. FIG. 3 is an explanatory view of a state of use of the refrigerant natural circulation heat transfer device when the temperature difference between the indoor and outdoor sides is small. FIG. 4 is an explanatory diagram of effects of the refrigerant natural circulation heat transfer device. FIG. 5 is a block diagram of a refrigerant natural circulation type heat transfer device according to a second embodiment of the present invention. FIG. 6 is a block diagram of a conventional refrigerant natural circulation heat transfer device. FIG. 7 is an explanatory diagram of an effect of the refrigerant natural circulation type heat transfer device. [Explanation of symbols for main parts] 1 ... Evaporator 1A ... Inlet 1B ... Outlet 3 ... Condenser 3A ... Inlet 3B ... Outlet 6 ... Gas side refrigerant pipe 7 ... Liquid side refrigerant pipe 8 …… Refrigerant liquid level displacement mechanism 9 …… First bypass pipe 10 …… Second bypass pipe V 1 …… Upstream bypass valve V 2 …… First opening / closing valve V 3 …… Downstream bypass valve V 4 … … Upstream bypass valve V 5 …… Second on-off valve V 6 …… Downstream bypass valve.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】室内側に設置された蒸発器と、室外側に設
置されるとともに蒸発器の高所に位置する凝縮器と、蒸
発器の出口と凝縮器の入口とを接続するガス側冷媒配管
と、凝縮器の出口と蒸発器の入口とを接続する液側冷媒
配管とを備え、蒸発器,ガス側冷媒配管,凝縮器,液側
冷媒配管の間を一定量の冷媒を循環させて、室外側の温
度と室内側の温度との温度差により室内側の熱を室外側
に移動させる冷媒自然循環式熱移動装置において、液側
冷媒配管の途中に、前記の温度差に対する冷却能力の効
率を高くするように蒸発器の冷媒の液位を前記の温度差
に応じて可変とする冷媒液面変位機構を設けたことを特
徴とする冷媒自然循環式熱移動装置。
1. An evaporator installed inside a room, a condenser installed outside the room and located at a high place of the evaporator, and a gas-side refrigerant connecting an outlet of the evaporator and an inlet of the condenser. A pipe and a liquid-side refrigerant pipe connecting the outlet of the condenser and the inlet of the evaporator are provided, and a certain amount of refrigerant is circulated between the evaporator, the gas-side refrigerant pipe, the condenser, and the liquid-side refrigerant pipe. In the refrigerant natural circulation heat transfer device that moves the heat on the indoor side to the outdoor side due to the temperature difference between the temperature on the outdoor side and the temperature on the indoor side, in the middle of the liquid side refrigerant pipe, the cooling capacity for the temperature difference A refrigerant natural circulation heat transfer device comprising a refrigerant liquid level displacement mechanism for varying the liquid level of the refrigerant of the evaporator according to the temperature difference so as to increase efficiency.
【請求項2】冷媒液面変位機構は、液側冷媒配管の途中
に介装された複数個の開閉バルブと、液側冷媒配管の各
開閉バルブの両側部分に接続するバイパス管と、各バイ
パス管に介装された2つのバイパス用バルブとを備えて
なることを特徴とする請求項1記載の冷媒自然循環式熱
移動装置。
2. The refrigerant liquid level displacement mechanism comprises a plurality of opening / closing valves interposed in the middle of the liquid side refrigerant pipe, bypass pipes connected to both sides of the opening / closing valves of the liquid side refrigerant pipe, and respective bypasses. The refrigerant natural circulation heat transfer device according to claim 1, comprising two bypass valves interposed in the pipe.
JP63080041A 1988-03-31 1988-03-31 Refrigerant natural circulation heat transfer device Expired - Fee Related JPH07104013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63080041A JPH07104013B2 (en) 1988-03-31 1988-03-31 Refrigerant natural circulation heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63080041A JPH07104013B2 (en) 1988-03-31 1988-03-31 Refrigerant natural circulation heat transfer device

Publications (2)

Publication Number Publication Date
JPH01252833A JPH01252833A (en) 1989-10-09
JPH07104013B2 true JPH07104013B2 (en) 1995-11-08

Family

ID=13707162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63080041A Expired - Fee Related JPH07104013B2 (en) 1988-03-31 1988-03-31 Refrigerant natural circulation heat transfer device

Country Status (1)

Country Link
JP (1) JPH07104013B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002877A (en) * 2011-06-14 2013-01-07 Toshiba Corp Cooling system for reactor container
JP2013068370A (en) * 2011-09-22 2013-04-18 Gac Corp Cooling system
JP6559471B2 (en) * 2015-06-02 2019-08-14 株式会社日立製作所 Air conditioning system and operation method thereof

Also Published As

Publication number Publication date
JPH01252833A (en) 1989-10-09

Similar Documents

Publication Publication Date Title
US4333517A (en) Heat exchange method using natural flow of heat exchange medium
US4843832A (en) Air conditioning system for buildings
US4295342A (en) Heat exchange method using natural flow of heat exchange medium
US4429541A (en) Apparatus for controlling operation of refrigerator
JPS63118546A (en) Air conditioning system for building
JPS6155018B2 (en)
JP2530881B2 (en) Refrigerant natural circulation heat transfer device
JPH07104013B2 (en) Refrigerant natural circulation heat transfer device
JPH0792251B2 (en) Air conditioning equipment
JP2544433B2 (en) Refrigerant natural circulation heat transfer device
JPH0762539B2 (en) Refrigerant natural circulation heat transfer device
JPS6367633B2 (en)
JPH01174834A (en) Air conditioning system for building
JPS5816622Y2 (en) air conditioner
JPH05340641A (en) Heat pump
JPS6017637Y2 (en) Heat pump air conditioner
JPH01107031A (en) Air conditioning system for building
JP2780546B2 (en) Heat transfer device
JPS5856507Y2 (en) air conditioner
JPH0510191Y2 (en)
JPS5829396Y2 (en) Air conditioning equipment
JPS604043Y2 (en) Separate air conditioner/heater
JPH0333987B2 (en)
JPS5977265A (en) Method of cooling compressor
JPS604040Y2 (en) Separate air conditioner/heater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees