JP2019086275A - Equipment temperature controller - Google Patents

Equipment temperature controller Download PDF

Info

Publication number
JP2019086275A
JP2019086275A JP2018082432A JP2018082432A JP2019086275A JP 2019086275 A JP2019086275 A JP 2019086275A JP 2018082432 A JP2018082432 A JP 2018082432A JP 2018082432 A JP2018082432 A JP 2018082432A JP 2019086275 A JP2019086275 A JP 2019086275A
Authority
JP
Japan
Prior art keywords
working fluid
coolers
cooler
pipe
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018082432A
Other languages
Japanese (ja)
Inventor
義則 毅
Takeshi Yoshinori
毅 義則
康光 大見
Yasumitsu Omi
康光 大見
功嗣 三浦
Koji Miura
功嗣 三浦
竹内 雅之
Masayuki Takeuchi
雅之 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to PCT/JP2018/040774 priority Critical patent/WO2019093230A1/en
Publication of JP2019086275A publication Critical patent/JP2019086275A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

To more stably control a temperature of target equipment.SOLUTION: An equipment temperature controller comprises a plurality of coolers 14, a condenser 16, an outgoing pipe 21 and a return pipe 22. The plurality of coolers 14 each has an inflow port 141 introducing, into an internal space of a body 143, working fluid flowing in the outgoing pipe 21, and a discharge port 142 discharging, to the return pipe 22, the working fluid evaporated in the body 143. The outgoing pipe 21 is arranged so that at least a part of liquid passage 21a formed by the outgoing pipe 21 is positioned higher than the inflow port 141 of the plurality of coolers 14.SELECTED DRAWING: Figure 4

Description

本発明は、作動流体の液相と気相との相変化によって対象機器の温度を調整する機器温調装置に関するものである。   BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a device temperature control apparatus that adjusts the temperature of a target device by phase change between a liquid phase and a gas phase of a working fluid.

近年、電気自動車またはハイブリッド自動車などの電動車両に搭載される蓄電装置などの電気機器の温度を調整するための機器温調装置としてサーモサイフォンを使用した技術が検討されている。   In recent years, a technology using thermosiphon as a device temperature control device for adjusting the temperature of an electric device such as a power storage device mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle has been studied.

特許文献1に記載の機器温調装置は、電池の冷却時に、機器用熱交換器の内側の作動流体が電池から吸熱して蒸発し、気相通路を通って凝縮器に流入する。凝縮器で凝縮した液相の作動流体は、液相通路を通り機器用熱交換器に流入する。このように、機器温調装置は、サーモサイフォン回路を循環する作動流体の相変化により電池を冷却する構成となっている。   In the device temperature control device described in Patent Document 1, when the battery is cooled, the working fluid inside the device heat exchanger absorbs heat from the battery, evaporates, and flows into the condenser through the gas phase passage. The liquid phase working fluid condensed by the condenser flows through the liquid phase passage into the equipment heat exchanger. As described above, the device temperature control device is configured to cool the battery by the phase change of the working fluid circulating in the thermosyphon circuit.

特開2015−041418号公報Unexamined-Japanese-Patent No. 2015-041418

発明者らは、特許文献1に記載されるようなサーモサイフォン式の機器温調装置に関し、以下のような課題を見出した。すなわち、自動車等の車両等に搭載される機器温調装置は、二次電池などの対象機器の温度を調整するために、複数の温度調整部を配管で接続した構成となる。また、自動車等の車両等に機器温調装置が搭載される場合、車両と共に機器温調装置も傾斜することがある。例えば、車両が上り坂を上っている場合、車両の進行方向前側が車両進行方向後ろ側よりも上位に位置する。そして、機器温調装置も車両と同様に傾いた状態となる。   The inventors have found the following problems regarding the thermosiphon-type instrument temperature control apparatus as described in Patent Document 1. That is, the apparatus temperature control apparatus mounted in vehicles, such as a motor vehicle, becomes a structure which connected the several temperature control part by piping, in order to adjust temperature of object apparatuses, such as a secondary battery. In addition, when the device temperature control device is mounted on a vehicle such as a car, the device temperature control device may tilt along with the vehicle. For example, when the vehicle is moving up a hill, the front side in the traveling direction of the vehicle is positioned higher than the rear side in the vehicle traveling direction. And an apparatus temperature control apparatus will also be in the inclined state similarly to a vehicle.

この場合、機器温調装置の作動流体は、重力の影響を受けて、複数の温度調整部のうち下位の温度調整部に集まる。すなわち、複数の温度調整部のうち高位の温度調整部には、十分な作動流体が供給されなくなる場合がある。   In this case, the working fluid of the device temperature control apparatus is concentrated in the lower temperature control unit among the plurality of temperature control units under the influence of gravity. That is, a sufficient working fluid may not be supplied to the higher temperature control unit among the plurality of temperature control units.

一方、自動車等の車両等に機器温調装置を搭載する場合、二次電池などの電気機器および温度調整部を平坦な面に設置するのが好ましい。しかし、車両内に機器温調装置や温度調整部を設置するのに十分な平坦なスペースを確保できない場合がある。   On the other hand, when the device temperature control device is mounted on a vehicle such as a car, it is preferable to install an electric device such as a secondary battery and a temperature control unit on a flat surface. However, there may be a case where a flat space sufficient for installing the device temperature control device and the temperature control unit in the vehicle can not be secured.

このような場合にも、機器温調装置の作動流体は、重力の影響を受けて、複数の温度調整部のうち低位の温度調整部に集まる。すなわち、複数の温度調整部のうち高位の温度調整部には、十分な作動流体が供給されなくなる場合がある。   Even in such a case, the working fluid of the device temperature control apparatus is concentrated in the lower temperature control section among the plurality of temperature control sections under the influence of gravity. That is, a sufficient working fluid may not be supplied to the higher temperature control unit among the plurality of temperature control units.

したがって、各温度調整部への作動流体の供給が不安定になり、対象機器の温度調整が不安定になるといった問題がある。   Therefore, there is a problem that supply of the working fluid to each temperature control part becomes unstable, and temperature control of an object apparatus becomes unstable.

本発明は上記問題に鑑みたもので、より安定的に対象機器の温度調整を実現できるようにすることを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to enable temperature control of a target device to be realized more stably.

上記目的を達成するため、請求項1に記載の発明は、作動流体を循環させる循環回路(26)を有し、作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置であって、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器(14)と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備え、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体(143)の内部空間に導入する流入口(141)と、本体にて蒸発した作動流体を復路配管へ排出する排出口(142)と、を有し、往路配管は、該往路配管により形成される液通路の少なくとも一部が複数の冷却器の流入口よりも高い位置となるよう配置されている。   In order to achieve the above object, the invention according to claim 1 has a circulation circuit (26) for circulating a working fluid, and a target device (12a, 12b) by a phase change between a liquid phase and a gas phase of the working fluid. A plurality of coolers (14) included in the circulation circuit for heat exchange between the heat of the target equipment and the heat of the working fluid to cool the target equipment; And a condenser (16) for dissipating the heat of the working fluid evaporated by the cooler to condense the working fluid, and the working fluid contained in the circulation circuit and condensed in the condenser to a plurality of coolers A return pipe (21) forming a liquid passage (21a) to be supplied, and a return pipe (22a) included in a circulation circuit to form a gas passage (22a) for supplying a working fluid evaporated by a plurality of coolers to a condenser 22) and, the plurality of coolers are each an outgoing pipe It has an inlet (141) for introducing the working fluid flowing into the internal space of the main body (143), and an outlet (142) for discharging the working fluid evaporated in the main body to the return pipe, and the forward pipe At least a part of the liquid passage formed by the forward piping is arranged higher than the inlets of the plurality of coolers.

上記した構成によれば、複数の冷却器が傾斜した場合でも、往路配管により各冷却器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の冷却器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the above configuration, even when the plurality of coolers are inclined, the liquid storage portion is formed in the internal space of the main body of each cooler by the forward piping, and the liquid phase refrigerant is stored in the liquid storage portion. Therefore, the movement of the liquid-phase refrigerant from the high order cooler to the low order cooler is suppressed, and the temperature adjustment of the target device can be realized more stably.

上記目的を達成するため、請求項4に記載の発明は、作動流体を循環させる循環回路(26)を有し、作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置であって、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器(14)と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備え、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体(143)の内部空間に導入する流入口(141)および本体にて蒸発した作動流体を復路配管へ排出する排出口(142)を有し、複数の冷却器の流入口の少なくとも1つは、本体の内部空間の最下端よりも高さの高い位置に配置されている。   In order to achieve the above object, the invention according to claim 4 has a circulation circuit (26) for circulating a working fluid, and a target device (12a, 12b) by a phase change between a liquid phase and a gas phase of the working fluid. A plurality of coolers (14) included in the circulation circuit for heat exchange between the heat of the target equipment and the heat of the working fluid to cool the target equipment; And a condenser (16) for dissipating the heat of the working fluid evaporated by the cooler to condense the working fluid, and the working fluid contained in the circulation circuit and condensed in the condenser to a plurality of coolers A return pipe (21) forming a liquid passage (21a) to be supplied, and a return pipe (22a) included in a circulation circuit to form a gas passage (22a) for supplying a working fluid evaporated by a plurality of coolers to a condenser 22) and, the plurality of coolers are each an outgoing pipe It has an inlet (141) for introducing the working fluid flowing into the internal space of the main body (143) and an outlet (142) for discharging the working fluid evaporated in the main body to the return pipe, and the inlets of the plurality of coolers At least one is disposed at a position higher than the lowermost end of the internal space of the main body.

上記した構成によれば、複数の冷却器が傾斜した場合でも、各冷却器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の冷却器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the above configuration, even when the plurality of coolers are inclined, the liquid storage portion is formed in the internal space of the main body of each cooler, and the liquid phase refrigerant is stored in the liquid storage portion. Therefore, the movement of the liquid-phase refrigerant from the high order cooler to the low order cooler is suppressed, and the temperature adjustment of the target device can be realized more stably.

上記目的を達成するため、請求項7に記載の発明は、作動流体を循環させる循環回路(26)を有し、作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置であって、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器(14)と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備え、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体(143)の内部空間に導入する流入口(141)および本体にて蒸発した作動流体を復路配管へ排出する排出口(142)を有し、往路配管は、複数の冷却器のうちの1つの第1冷却器の流入口と複数の冷却器のうちの第1冷却器と異なる第2冷却器の流入口との間に配置された凸部配管(214)を有し、凸部配管により形成される液通路の少なくとも一部が第1冷却器の流入口および第2冷却器の流入口よりも上下方向上側に突出している。   In order to achieve the above object, the invention according to claim 7 has a circulation circuit (26) for circulating a working fluid, and a target device (12a, 12b) by a phase change between a liquid phase and a gas phase of the working fluid. A plurality of coolers (14) included in the circulation circuit for heat exchange between the heat of the target equipment and the heat of the working fluid to cool the target equipment; And a condenser (16) for dissipating the heat of the working fluid evaporated by the cooler to condense the working fluid, and the working fluid contained in the circulation circuit and condensed in the condenser to a plurality of coolers A return pipe (21) forming a liquid passage (21a) to be supplied, and a return pipe (22a) included in a circulation circuit to form a gas passage (22a) for supplying a working fluid evaporated by a plurality of coolers to a condenser 22) and, the plurality of coolers are each an outgoing pipe It has an inlet (141) for introducing the working fluid flowing into the internal space of the main body (143) and an outlet (142) for discharging the working fluid evaporated in the main body to the return pipe, and the outgoing pipe has a plurality of coolers A convex portion pipe (214) disposed between an inlet of one of the first coolers and a first cooler of the plurality of coolers and an inlet of a different second cooler, At least a part of the liquid passage formed by the convex portion piping protrudes vertically above the inlet of the first cooler and the inlet of the second cooler.

上記した構成によれば、複数の冷却器が傾斜した場合でも、凸部配管により各冷却器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の冷却器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the above configuration, even when the plurality of coolers are inclined, the liquid storage portion is formed in the internal space of the main body of each cooler by the convex piping, and the liquid phase refrigerant is stored in the liquid storage portion . Therefore, the movement of the liquid-phase refrigerant from the high order cooler to the low order cooler is suppressed, and the temperature adjustment of the target device can be realized more stably.

上記目的を達成するため、請求項13に記載の発明は、作動流体を循環させる循環回路(26)を有し、作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置であって、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器(14)と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備え、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体(143)の内部空間に導入する流入口(141)および本体にて蒸発した作動流体を復路配管へ排出する排出口(142)を有し、往路配管は、凝縮器の凝縮器出口と複数の冷却器のうち凝縮器に接続された冷却器の流入口との間を接続する凸部配管(215)を有し、凸部配管により形成される液通路の少なくとも一部が凝縮器の凝縮器出口と凝縮器に接続された冷却器の流入口よりも上下方向上側に突出する凸部配管(215)を有している。   In order to achieve the above object, the invention according to claim 13 has a circulation circuit (26) for circulating a working fluid, and a target device (12a, 12b) by a phase change between a liquid phase and a gas phase of the working fluid. A plurality of coolers (14) included in the circulation circuit for heat exchange between the heat of the target equipment and the heat of the working fluid to cool the target equipment; And a condenser (16) for dissipating the heat of the working fluid evaporated by the cooler to condense the working fluid, and the working fluid contained in the circulation circuit and condensed in the condenser to a plurality of coolers A return pipe (21) forming a liquid passage (21a) to be supplied, and a return pipe (22a) included in a circulation circuit to form a gas passage (22a) for supplying a working fluid evaporated by a plurality of coolers to a condenser 22) and the plurality of coolers The inlet (141) for introducing the working fluid flowing into the inner space of the main body (143) and the outlet (142) for discharging the working fluid evaporated in the main body to the return path piping, It has convex part piping (215) connecting between the condenser outlet and the inlet of the cooler connected to the condenser among the plurality of coolers, and at least a part of the liquid passage formed by the convex part piping Has a convex portion pipe (215) projecting vertically upward above the condenser outlet of the condenser and the inlet of the cooler connected to the condenser.

上記した構成によれば、複数の冷却器が傾斜した場合でも、凸部配管により各冷却器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の冷却器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the above configuration, even when the plurality of coolers are inclined, the liquid storage portion is formed in the internal space of the main body of each cooler by the convex piping, and the liquid phase refrigerant is stored in the liquid storage portion . Therefore, the movement of the liquid-phase refrigerant from the high order cooler to the low order cooler is suppressed, and the temperature adjustment of the target device can be realized more stably.

上記目的を達成するため、請求項15に記載の発明は、作動流体を循環させる循環回路(26)を有し、作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置であって、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器(14)と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備え、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体(143)の内部空間に導入する流入口(141)および本体に導入された作動流体を流出させる流出口(144)を有し、往路配管は、複数の冷却器の1つの第1冷却器の流出口と複数の冷却器のうちの第1冷却器と異なる第2冷却器の流入口との間を接続する凸部配管(216)を有し、凸部配管は、該凸部配管により形成される液通路の少なくとも一部が第1冷却器の流出口および第2冷却器の流入口よりも上下方向上側に突出している。   In order to achieve the above object, the invention according to claim 15 has a circulation circuit (26) for circulating the working fluid, and the target device (12a, 12b) is obtained by the phase change between the liquid phase and the gas phase of the working fluid. A plurality of coolers (14) included in the circulation circuit for heat exchange between the heat of the target equipment and the heat of the working fluid to cool the target equipment; And a condenser (16) for dissipating the heat of the working fluid evaporated by the cooler to condense the working fluid, and the working fluid contained in the circulation circuit and condensed in the condenser to a plurality of coolers A return pipe (21) forming a liquid passage (21a) to be supplied, and a return pipe (22a) included in a circulation circuit to form a gas passage (22a) for supplying a working fluid evaporated by a plurality of coolers to a condenser 22) and the plurality of coolers The inlet (141) for introducing the working fluid flowing into the inner space of the main body (143) and the outlet (144) for discharging the working fluid introduced to the main body, and the outgoing pipe includes one of the plurality of coolers A convex portion pipe (216) connecting between an outlet of one first cooler and a first cooler of the plurality of coolers and an inlet of a different second cooler; At least a part of the liquid passage formed by the convex portion pipe protrudes vertically above the outlet of the first cooler and the inlet of the second cooler.

上記した構成によれば、複数の冷却器が傾斜した場合でも、凸部配管により各冷却器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の冷却器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the above configuration, even when the plurality of coolers are inclined, the liquid storage portion is formed in the internal space of the main body of each cooler by the convex piping, and the liquid phase refrigerant is stored in the liquid storage portion . Therefore, the movement of the liquid-phase refrigerant from the high order cooler to the low order cooler is suppressed, and the temperature adjustment of the target device can be realized more stably.

上記目的を達成するため、請求項17に記載の発明は、作動流体を循環させる循環回路(26)を有し、作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置であって、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器(14)と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備え、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体(143)の内部空間に導入する流入口(141)および本体に導入された作動流体を流出させる流出口(144)を有し、複数の冷却器の流入口および流出口の少なくとも1つは、本体の内部空間の最下端よりも高さの高い位置に配置されている。   In order to achieve the above object, the invention according to claim 17 has a circulation circuit (26) for circulating a working fluid, and a target device (12a, 12b) by a phase change between a liquid phase and a gas phase of the working fluid. A plurality of coolers (14) included in the circulation circuit for heat exchange between the heat of the target equipment and the heat of the working fluid to cool the target equipment; And a condenser (16) for dissipating the heat of the working fluid evaporated by the cooler to condense the working fluid, and the working fluid contained in the circulation circuit and condensed in the condenser to a plurality of coolers A return pipe (21) forming a liquid passage (21a) to be supplied, and a return pipe (22a) included in a circulation circuit to form a gas passage (22a) for supplying a working fluid evaporated by a plurality of coolers to a condenser 22) and the plurality of coolers The inlet (141) for introducing the working fluid flowing into the inner space of the main body (143) and the outlet (144) for discharging the working fluid introduced to the main body, the inlet and outlet of the plurality of coolers At least one of which is disposed at a position higher than the lowermost end of the internal space of the main body.

上記した構成によれば、複数の冷却器が傾斜した場合でも、複数の冷却器の流入口および流出口の少なくとも1つは、本体の内部空間の最下端よりも高さの高い位置に配置されているので、各冷却器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の冷却器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the above configuration, even when the plurality of coolers are inclined, at least one of the inlet and the outlet of the plurality of coolers is disposed at a position higher than the lowermost end of the internal space of the main body Therefore, a liquid storage portion is formed in the internal space of the main body of each cooler, and the liquid phase refrigerant is stored in the liquid storage portion. Therefore, the movement of the liquid-phase refrigerant from the high order cooler to the low order cooler is suppressed, and the temperature adjustment of the target device can be realized more stably.

上記目的を達成するため、請求項20に記載の発明は、作動流体を循環させる循環回路(26)を有し、作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置であって、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器(14)と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備え、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体(143)の内部空間に導入する流入口(141)および本体にて蒸発した作動流体を復路配管へ排出する排出口(142)を有し、複数の冷却器は、第1高さ位置に配置された低段冷却器と、第1高さ位置より高い第2高さ位置に配置された高段冷却器と、を含み、往路配管は、低段冷却器の流入口と高段冷却器の流入口との間を接続する高低接続配管(217)を有し、高低接続配管により形成される液通路の少なくとも一部が低段冷却器の流入口と高段冷却器の流入口よりも上下方向上側に突出している。   In order to achieve the above object, the invention according to claim 20 has a circulation circuit (26) for circulating a working fluid, and a target device (12a, 12b) by a phase change between a liquid phase and a gas phase of the working fluid. A plurality of coolers (14) included in the circulation circuit for heat exchange between the heat of the target equipment and the heat of the working fluid to cool the target equipment; And a condenser (16) for dissipating the heat of the working fluid evaporated by the cooler to condense the working fluid, and the working fluid contained in the circulation circuit and condensed in the condenser to a plurality of coolers A return pipe (21) forming a liquid passage (21a) to be supplied, and a return pipe (22a) included in a circulation circuit to form a gas passage (22a) for supplying a working fluid evaporated by a plurality of coolers to a condenser 22) and the plurality of coolers And an outlet (142) for discharging the working fluid evaporated in the main body (143) to the return path piping, the plurality of coolers The low-stage cooler includes a low-stage cooler disposed at one height position, and a high-stage cooler disposed at a second height position higher than the first height position, and the forward piping is an inlet of the low-stage cooler High and low connection piping (217) connecting between the high stage cooler and the inlet of the high stage cooler, and at least a part of the liquid passage formed by the high and low connection piping is the inlet and high stage cooler of the low stage cooler It projects upward and downward from the inflow port of.

上記した構成によれば、低段冷却器よりも高い第2高さ位置に高段冷却器が配置されたような場合でも、凸部配管により高段冷却器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の冷却器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the above configuration, even when the high-stage cooler is disposed at the second height position higher than the low-stage cooler, the liquid storage portion is formed in the internal space of the main body of the high-stage cooler by the convex piping The liquid phase refrigerant is stored in the liquid storage portion. Therefore, the movement of the liquid-phase refrigerant from the high order cooler to the low order cooler is suppressed, and the temperature adjustment of the target device can be realized more stably.

上記目的を達成するため、請求項21に記載の発明は、作動流体を循環させる循環回路(26)を有し、作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置であって、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器(14)と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備え、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体(143)の内部空間に導入する流入口(141)および本体に導入された作動流体を流出させる流出口(144)を有し、複数の冷却器は、第1高さ位置に配置された低段冷却器と、第1高さ位置より高い第2高さ位置に配置された高段冷却器と、を含み、往路配管は、低段冷却器の流入口と高段冷却器の流出口との間を接続する高低接続配管(217)を有し、高低接続配管により形成される液通路の少なくとも一部は高段冷却器の本体の内部空間の最下端よりも高さの高い位置に配置されている。   In order to achieve the above object, the invention according to claim 21 has a circulation circuit (26) for circulating a working fluid, and a target device (12a, 12b) by a phase change between a liquid phase and a gas phase of the working fluid. A plurality of coolers (14) included in the circulation circuit for heat exchange between the heat of the target equipment and the heat of the working fluid to cool the target equipment; And a condenser (16) for dissipating the heat of the working fluid evaporated by the cooler to condense the working fluid, and the working fluid contained in the circulation circuit and condensed in the condenser to a plurality of coolers A return pipe (21) forming a liquid passage (21a) to be supplied, and a return pipe (22a) included in a circulation circuit to form a gas passage (22a) for supplying a working fluid evaporated by a plurality of coolers to a condenser 22) and the plurality of coolers And an outlet (144) for discharging the working fluid introduced into the main body (143), the plurality of coolers having the first height A low stage cooler disposed at a position and a high stage cooler disposed at a second height position higher than the first height position, wherein the forward piping includes an inlet and a high stage of the low stage cooler It has high and low connection piping (217) connecting with the outlet of the cooler, and at least a part of the liquid passage formed by the high and low connection piping is higher than the lowest end of the internal space of the main body of the high stage cooler Is located at a high position.

上記した構成によれば、低段冷却器よりも高い第2高さ位置に高段冷却器が配置されたような場合でも、高低接続配管により形成される液通路の少なくとも一部は高段冷却器の本体の内部空間の最下端よりも高さの高い位置に配置されているので、高段冷却器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の冷却器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the above configuration, even when the high-stage cooler is disposed at the second height position higher than the low-stage cooler, at least a part of the liquid passage formed by the high-low connection piping is high-stage cooling The liquid storage portion is formed in the inner space of the main body of the high stage cooler, and the liquid phase refrigerant is stored in the liquid storage portion. Be liquid. Therefore, the movement of the liquid-phase refrigerant from the high order cooler to the low order cooler is suppressed, and the temperature adjustment of the target device can be realized more stably.

上記目的を達成するため、請求項23に記載の発明は、作動流体を循環させる循環回路(26)を有し、作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置であって、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器(14)と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備え、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体(143)の内部空間に導入する流入口(141)および本体に導入された作動流体を流出させる流出口(144)を有し、複数の冷却器は、第1高さ位置に配置された低段冷却器と、第1高さ位置より高い第2高さ位置に配置された高段冷却器と、を含み、往路配管は、低段冷却器の流入口と高段冷却器の流出口との間を接続する高低接続配管(217、218)を有し、高低接続配管により形成される液通路の少なくとも一部が低段冷却器の流入口と高段冷却器の流出口よりも上下方向上側に突出している。   In order to achieve the above object, the invention according to claim 23 has a circulation circuit (26) for circulating a working fluid, and a target device (12a, 12b) by a phase change between a liquid phase and a gas phase of the working fluid. A plurality of coolers (14) included in the circulation circuit for heat exchange between the heat of the target equipment and the heat of the working fluid to cool the target equipment; And a condenser (16) for dissipating the heat of the working fluid evaporated by the cooler to condense the working fluid, and the working fluid contained in the circulation circuit and condensed in the condenser to a plurality of coolers A return pipe (21) forming a liquid passage (21a) to be supplied, and a return pipe (22a) included in a circulation circuit to form a gas passage (22a) for supplying a working fluid evaporated by a plurality of coolers to a condenser 22) and the plurality of coolers And an outlet (144) for discharging the working fluid introduced into the main body (143), the plurality of coolers having the first height A low stage cooler disposed at a position and a high stage cooler disposed at a second height position higher than the first height position, wherein the forward piping includes an inlet and a high stage of the low stage cooler It has high and low connection piping (217, 218) to connect with the outlet of the cooler, and at least a part of the liquid passage formed by the high and low connection piping is the inlet of the low stage cooler and the high stage cooler It projects above the outlet in the vertical direction.

上記した構成によれば、低段冷却器よりも高い第2高さ位置に高段冷却器が配置されたような場合でも、高段冷却器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の冷却器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the above configuration, even when the high-stage cooler is disposed at the second height position higher than the low-stage cooler, the liquid storage portion is formed in the internal space of the main body of the high-stage cooler, The liquid phase refrigerant is stored in the liquid storage portion. Therefore, the movement of the liquid-phase refrigerant from the high order cooler to the low order cooler is suppressed, and the temperature adjustment of the target device can be realized more stably.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the parenthesis of each means described by this column and the claim shows correspondence with the specific means as described in embodiment mentioned later.

第1実施形態の機器温調装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the apparatus temperature control apparatus of 1st Embodiment. 第1実施形態の機器温調装置の構成図である。It is a block diagram of the apparatus temperature control apparatus of 1st Embodiment. 第1実施形態の冷却器および二次電池の分解図である。It is an exploded view of a cooler and a rechargeable battery of a 1st embodiment. 第1実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and 1st Embodiment of 1st Embodiment. 図4中のV-V断面図である。FIG. 5 is a cross-sectional view taken along the line V-V in FIG. 4; 第1実施形態の機器温調装置を搭載した車両が上り坂を走行している場合の機器温調装置の状態を表した図である。It is a figure showing the state of the apparatus temperature control apparatus in case the vehicle carrying the apparatus temperature control apparatus of 1st Embodiment is driving an upward slope. 第1実施形態の機器温調装置を搭載した車両が下り坂を走行している場合の機器温調装置の状態を表した図である。It is a figure showing the state of the apparatus temperature control apparatus in case the vehicle carrying the apparatus temperature control apparatus of 1st Embodiment is driving downhill. 第2実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 2nd Embodiment. 図8中のIX-IX断面図である。FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG. 第3実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 3rd Embodiment. 第4実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 4th Embodiment. 第5実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 5th Embodiment. 第5実施形態の冷却器および二次電池に対する比較例を表した図である。It is a figure showing the comparative example with respect to the cooler and secondary battery of 5th Embodiment. 第6実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 6th Embodiment. 第7実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 7th Embodiment. 第8実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 8th Embodiment. 第8実施形態の冷却器および二次電池に対する比較例を表した図である。It is a figure showing the comparative example with respect to the cooler and secondary battery of 8th Embodiment. 第9実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 9th Embodiment. 第10実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 10th Embodiment. 第11実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 11th Embodiment. 第12実施形態の冷却器を示した構成図であって、図4中のV-V断面図の変形例を表した図である。FIG. 16 is a configuration view showing a cooler according to a twelfth embodiment, and is a view showing a modified example of the VV sectional view in FIG. 4; 変形例について説明するための図である。It is a figure for demonstrating a modification. 変形例について説明するための図である。It is a figure for demonstrating a modification. 第13実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 13th Embodiment. 図24中のXXV-XXV断面図である。FIG. 25 is a cross-sectional view taken along the line XXV-XXV in FIG. 24. 第13実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 13th Embodiment. 第13実施形態の冷却器の対象機器の冷却時の冷媒の流れを示した図である。It is a figure showing the flow of the refrigerant at the time of cooling of the object apparatus of the cooler of a 13th embodiment. 第14実施形態の冷却器の対象機器の暖機時の冷媒の流れを示した図である。It is the figure which showed the flow of the refrigerant | coolant at the time of warming-up of the object apparatus of the cooler of 14th Embodiment. 図24中のXXIX-XXIX断面図である。FIG. 25 is a cross-sectional view taken along line XXIX-XXIX in FIG. 24. 第14実施形態の冷却器の対象機器の冷却時の冷媒の流れを示した図である。It is a figure showing the flow of the refrigerant at the time of cooling of the object apparatus of the cooler of a 14th embodiment. 第14実施形態の冷却器の対象機器の冷却時の冷媒の流れを示した図である。It is a figure showing the flow of the refrigerant at the time of cooling of the object apparatus of the cooler of a 14th embodiment. 第15実施形態の冷却器の対象機器の暖機時の冷媒の流れを示した図である。It is the figure which showed the flow of the refrigerant | coolant at the time of warming-up of the object apparatus of the cooler of 15th Embodiment. 第16実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 16th Embodiment. 第17実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 17th Embodiment. 第18実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 18th Embodiment. 第19実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 19th Embodiment. 第20実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 20th Embodiment. 第21実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 21st Embodiment. 第22実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 22nd Embodiment. 第23実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 23rd Embodiment. 第24実施形態の冷却器の熱源機の上面図である。It is a top view of a heat source machine of a cooler of a 24th embodiment. 第24実施形態の冷却器の熱源機の上面図である。It is a top view of a heat source machine of a cooler of a 24th embodiment. 図41中のXXXXIII−XXXXIII断面図である。It is XXXXIII-XXXXIII sectional drawing in FIG. 変形例の熱源機の上面図である。It is a top view of a heat source machine of a modification. 図41中のXXXXV−XXXXV断面図である。It is XXXXV-XXXXV sectional drawing in FIG. 第25実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 25th Embodiment. 第26実施形態の冷却器および二次電池を示した構成図である。It is the block diagram which showed the cooler and secondary battery of 26th Embodiment.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。   Hereinafter, an embodiment of the present invention will be described based on the drawings. In the following embodiments, parts identical or equivalent to each other are denoted by the same reference numerals in the drawings in order to simplify the description.

(第1実施形態)
本実施形態に係る機器温調装置について図1〜図7を用いて説明する。図1に示す機器温調装置10は、電気自動車やハイブリッド自動車などの車両に搭載される。そして、本実施形態では、機器温調装置10は、その電動自動車に搭載される二次電池12a、12bを冷却する。すなわち、本実施形態の機器温調装置10が冷却する被冷却対象は二次電池12a、12bである。
First Embodiment
The apparatus temperature control apparatus which concerns on this embodiment is demonstrated using FIGS. 1-7. The device temperature control device 10 shown in FIG. 1 is mounted on a vehicle such as an electric vehicle or a hybrid vehicle. Then, in the present embodiment, the device temperature control device 10 cools the secondary batteries 12a and 12b mounted on the electric vehicle. That is, the objects to be cooled which the device temperature control apparatus 10 of the present embodiment is cooled are the secondary batteries 12a and 12b.

機器温調装置10を搭載する車両では、二次電池12a、12bを主要構成部品として含む蓄電装置に蓄えた電力がインバータ回路などを介して電動モータに供給され、それによって車両は走行する。二次電池12a、12bは、電力をインバータを介して電動モータに出力する際に自己発熱する。   In a vehicle equipped with the device temperature control device 10, the electric power stored in the power storage device including the secondary batteries 12a and 12b as main components is supplied to the electric motor via an inverter circuit or the like, whereby the vehicle travels. The secondary batteries 12a, 12b generate heat when outputting power to the electric motor via the inverter.

そして、二次電池12a、12bが過度に高温になると、その二次電池12a、12bを構成する電池セル13の劣化が促進されることから、自己発熱が少なくなるように電池セル13の出力および入力に制限を設ける必要がある。   Then, when the temperature of the secondary batteries 12a and 12b becomes excessively high, the deterioration of the battery cells 13 constituting the secondary batteries 12a and 12b is promoted, so that the output of the battery cells 13 and the self-heating are reduced. It is necessary to set restrictions on input.

そのため、電池セル13の出力および入力を確保するためには、二次電池12a、12bを所定の温度以下に維持するための冷却装置が必要となる。   Therefore, in order to secure the output and input of the battery cell 13, a cooling device for maintaining the secondary batteries 12a and 12b at a predetermined temperature or lower is required.

また、車両走行中だけでなく夏季の駐車放置中などにも電池温度は上昇する。また、蓄電装置は車両の床下やトランクルーム下などに配置されることが多く、二次電池12a、12bに与えられる単位時間当たりの熱量は小さいものの、長時間の放置により電池温度は徐々に上昇する。   In addition, the battery temperature rises not only while the vehicle is traveling but also when it is parked in summer. In addition, although the power storage device is often arranged under the floor of the vehicle or under the trunk room, the amount of heat per unit time given to the secondary batteries 12a and 12b is small, but the battery temperature gradually rises by leaving for a long time .

二次電池12a、12bを高温状態で放置すると、二次電池12a、12bの寿命が大幅に低下するので、車両の放置中も二次電池12a、12bを冷却するなど電池温度を低温に維持することが望まれている。   If the secondary batteries 12a and 12b are left in a high temperature state, the life of the secondary batteries 12a and 12b is significantly reduced. Therefore, the battery temperature is maintained at a low temperature by cooling the secondary batteries 12a and 12b even while the vehicle is left. Is desired.

本実施形態の二次電池12a、12bは、複数の電池セル13を車両進行方向に積層してなる組電池として構成されているが、各電池セル13の温度にばらつきがあると電池セル13の劣化に偏りが生じ、蓄電装置の性能が低下してしまう。   The secondary batteries 12a and 12b of the present embodiment are configured as a battery pack formed by stacking a plurality of battery cells 13 in the traveling direction of the vehicle, but if the temperature of each battery cell 13 varies, the battery cells 13 Deterioration is uneven and performance of the power storage device is degraded.

これは、最も劣化した電池セル13の特性に合わせて蓄電装置の入出力特性が決まることによる。そのため、長期間にわたって蓄電装置に所望の性能を発揮させるためには、複数の電池セル13相互間の温度ばらつきを低減させる均温化が重要となる。   This is because the input / output characteristics of the power storage device are determined in accordance with the characteristics of the most deteriorated battery cell 13. Therefore, in order to cause the power storage device to exhibit desired performance over a long period of time, temperature equalization for reducing temperature variations among the plurality of battery cells 13 is important.

また、二次電池12a、12bを冷却する他の冷却装置として、これまでブロワによる送風や、冷凍サイクルを用いた空冷、水冷、あるいは冷媒直接冷却方式が一般的となっているが、ブロワは車室内の空気を送風するだけなので、ブロワの冷却能力は低い。   Also, as other cooling devices for cooling the secondary batteries 12a and 12b, air blowing with a blower, air cooling using a refrigeration cycle, water cooling, or direct refrigerant cooling has been generally used. The blower has only a low cooling capacity because it only blows the air in the room.

また、ブロワによる送風では空気の顕熱で二次電池12a、12bを冷却するので、空気流れの上流と下流との間で温度差が大きくなり、電池セル13間の温度ばらつきを十分に抑制できない。   Further, since the secondary batteries 12a and 12b are cooled by the sensible heat of air in the blowing by the blower, the temperature difference between the upstream and the downstream of the air flow becomes large, and the temperature variation among the battery cells 13 can not be sufficiently suppressed. .

また、冷凍サイクル方式では冷却能力は高いが、電池セル13との熱交換部は空冷または水冷の何れでも顕熱冷却であるので、同じく、電池セル13間の温度ばらつきを十分に抑制できない。更には、駐車放置中に冷凍サイクルのコンプレッサや冷却ファンを駆動させることは、電力消費の増大や騒音などの原因となるので好ましくない。   In the refrigeration cycle system, although the cooling capacity is high, since the heat exchange portion with the battery cell 13 is sensible heat cooling in either air cooling or water cooling, temperature variation among the battery cells 13 can not be sufficiently suppressed as well. Furthermore, it is not preferable to drive the compressor and the cooling fan of the refrigeration cycle while leaving the vehicle parked because it causes an increase in power consumption and noise.

これらの背景から、本実施形態の機器温調装置10では、コンプレッサを用いず冷媒の自然対流で二次電池12a、12bを冷却するサーモサイフォン方式が採用されている。   From these backgrounds, in the device temperature control apparatus 10 according to the present embodiment, a thermosyphon system is employed in which the secondary batteries 12a and 12b are cooled by natural convection of the refrigerant without using a compressor.

具体的に、機器温調装置10は、図1に示すように、冷却器14、凝縮器16、往路配管21と、復路配管22とを備える。そして、その凝縮器16と往路配管21と冷却器14と復路配管22は環状に連結され、機器温調装置10の作動流体としての冷媒が循環するサーモサイフォン回路26を構成する。   Specifically, as shown in FIG. 1, the device temperature control device 10 includes a cooler 14, a condenser 16, a forward pipe 21, and a return pipe 22. The condenser 16, the forward pipe 21, the cooler 14 and the return pipe 22 are annularly connected to form a thermosyphon circuit 26 in which a refrigerant as a working fluid of the device temperature control apparatus 10 circulates.

すなわち、サーモサイフォン回路26は、冷媒の蒸発および凝縮により熱移動を行うサーモサイフォンを構成する。そして、サーモサイフォン回路26は、気相冷媒が流れる流路と液相冷媒が流れる流路とが分離されたループ型のサーモサイフォンとなるように構成されている。なお、サーモサイフォン回路26は、作動流体を循環させる循環回路に相当する。   That is, the thermosiphon circuit 26 constitutes a thermosiphon that transfers heat by evaporation and condensation of the refrigerant. The thermosyphon circuit 26 is configured to be a loop-type thermosyphon in which a flow path through which the gas phase refrigerant flows and a flow path through which the liquid phase refrigerant flows are separated. The thermosiphon circuit 26 corresponds to a circulation circuit for circulating the working fluid.

各図において、矢印DR1は、上下方向を示すもので、矢印DR1において上矢印は車両の上下方向の上側を示し、下矢印は車両の上下方向の下側を示している。矢印DR2は、車両前後方向を示している。矢印DR3は、車幅方向を示している。   In each of the drawings, the arrow DR1 indicates the vertical direction, and in the arrow DR1, the upper arrow indicates the upper side in the vertical direction of the vehicle, and the lower arrow indicates the lower side in the vertical direction of the vehicle. An arrow DR2 indicates the longitudinal direction of the vehicle. An arrow DR3 indicates the vehicle width direction.

本実施形態のサーモサイフォン回路26内には冷媒が封入充填されている。そして、サーモサイフォン回路26内はその冷媒で満たされている。その冷媒はサーモサイフォン回路26を自然対流により循環し、機器温調装置10は、その冷媒の液相と気相との相変化によって二次電池12a、12bの温度を調整する。詳細には、その冷媒の相変化によって二次電池12a、12bを冷却する。   A refrigerant is sealed and filled in the thermosyphon circuit 26 of the present embodiment. The thermosiphon circuit 26 is filled with the refrigerant. The refrigerant circulates through the thermosyphon circuit 26 by natural convection, and the device temperature adjusting device 10 adjusts the temperature of the secondary batteries 12a and 12b by the phase change between the liquid phase and the gas phase of the refrigerant. In detail, the secondary batteries 12a and 12b are cooled by the phase change of the refrigerant.

サーモサイフォン回路26内に充填されている冷媒は、例えば、HFO−1234yfまたはHFC−134aなどのフロン系冷媒である。或いは、冷媒として、水、アンモニア等のフロン系冷媒以外の各種の作動流体を用いても良い。   The refrigerant filled in the thermosyphon circuit 26 is, for example, a fluorocarbon-based refrigerant such as HFO-1234yf or HFC-134a. Alternatively, various working fluids other than fluorocarbon-based refrigerants such as water and ammonia may be used as the refrigerant.

図3に示すように、冷却器14は、二次電池12a、12bの間に配置される。冷却器14は、二次電池12a、12bの熱と冷媒の熱をと熱交換して二次電池12a、12bを冷却する。冷却器14は、例えば熱伝導性の高い金属製で構成された本体143を有している。   As shown in FIG. 3, the cooler 14 is disposed between the secondary batteries 12 a and 12 b. The cooler 14 exchanges heat between the heat of the secondary batteries 12a and 12b and the heat of the refrigerant to cool the secondary batteries 12a and 12b. The cooler 14 has a main body 143 made of, for example, a metal having high thermal conductivity.

冷却器14の本体143には、図2に示すように、流入口141と排出口142とが形成されている。排出口142は、流入口141に対して上下方向上側に配置されている。   As shown in FIG. 2, an inlet 141 and an outlet 142 are formed in the main body 143 of the cooler 14. The outlet 142 is disposed above the inlet 141 in the vertical direction.

往路配管21の内部に形成された液通路21aは、冷却器14の本体143と接続されている。したがって、サーモサイフォン回路26を冷媒が循環すると、液通路21aの液相冷媒は、流入口141を介して本体143の内部空間に流入する。   The liquid passage 21 a formed inside the forward piping 21 is connected to the main body 143 of the cooler 14. Therefore, when the refrigerant circulates in the thermosyphon circuit 26, the liquid-phase refrigerant in the liquid passage 21 a flows into the internal space of the main body 143 via the inflow port 141.

液通路21aは、凝縮器16から冷却器14へ液相冷媒を流通させる冷媒の流路である。冷却器14の排出口142は、冷却器14の本体143と接続されている。   The liquid passage 21 a is a flow path of a refrigerant that causes the liquid phase refrigerant to flow from the condenser 16 to the cooler 14. The outlet 142 of the cooler 14 is connected to the main body 143 of the cooler 14.

したがって、サーモサイフォン回路26を冷媒が循環すると、冷却器14内の気相冷媒は排出口142を通してガス通路22aへ出る。そのガス通路22aは、冷却器14の排出口142から凝縮器16へ気相冷媒を流す冷媒流路である。   Therefore, when the refrigerant circulates in the thermosyphon circuit 26, the gas phase refrigerant in the cooler 14 exits the gas passage 22a through the outlet 142. The gas passage 22 a is a refrigerant flow passage that causes the gas phase refrigerant to flow from the outlet 142 of the cooler 14 to the condenser 16.

冷却器14の本体143の下方には比較的比重の大きな液相冷媒が溜まり、冷却器14の本体143の上方には比較的比重の小さな気相冷媒が溜まる。したがって、本体143内の気相冷媒は、流入口141と排出口142とのうち専ら排出口142から排出される。   A liquid phase refrigerant with a relatively large specific gravity is accumulated below the main body 143 of the cooler 14, and a gas phase refrigerant with a relatively low specific gravity is accumulated above the main body 143 of the cooler 14. Therefore, the gas phase refrigerant in the main body 143 is exclusively discharged from the outlet 142 among the inlet 141 and the outlet 142.

凝縮器16は、凝縮器16内の気相冷媒および受熱流体の間で熱交換して冷媒から受熱流体へ放熱させる熱交換器である。詳細に言えば、凝縮器16の凝縮器入口161には復路配管22から気相冷媒が流入し、凝縮器16は、冷媒から受熱流体に放熱させることによりその冷媒を凝縮させる。凝縮器16により凝縮された液相冷媒は凝縮器出口162から流出する。   The condenser 16 is a heat exchanger that exchanges heat between the gas phase refrigerant and the heat receiving fluid in the condenser 16 to dissipate the heat from the refrigerant to the heat receiving fluid. Specifically, the gas phase refrigerant flows from the return pipe 22 into the condenser inlet 161 of the condenser 16, and the condenser 16 condenses the refrigerant by radiating heat from the refrigerant to the heat receiving fluid. The liquid-phase refrigerant condensed by the condenser 16 flows out of the condenser outlet 162.

凝縮器16内の冷媒と熱交換させられる受熱流体としては、例えば、車室外の空気、或いは水などである。   The heat receiving fluid which is heat-exchanged with the refrigerant in the condenser 16 is, for example, air outside the passenger compartment or water.

本実施形態の凝縮器16は、車両の車両進行方向、あるいは、車両幅方向が水平方向に対して傾いた状態になっても、冷却器14よりも上下方向上側に位置するように設置されている。   The condenser 16 of the present embodiment is installed so as to be positioned above the cooler 14 in the vertical direction even when the vehicle traveling direction of the vehicle or the vehicle width direction is inclined with respect to the horizontal direction. There is.

凝縮器16は、冷却器14よりも上下方向の上側に配置されている。本実施形態では、凝縮器16は、フロント格納室やトランクルームに収納されている。フロント格納室は、車両のうち車室内に対して車両進行方向前側に配置されて、走行用エンジンや走行用電動機を収納する室である。トランクルームは、車両のうち車室内に対して車両進行方向後側に配置されて荷物等を収納する格納室である。   The condenser 16 is disposed above the cooler 14 in the vertical direction. In the present embodiment, the condenser 16 is housed in the front storage room or the trunk room. The front storage room is a room which is disposed on the front side in the vehicle traveling direction with respect to a vehicle compartment of the vehicle and stores a traveling engine and a traveling motor. The trunk room is a storage room which is disposed on the rear side in the vehicle traveling direction with respect to the vehicle compartment of the vehicle and stores luggage and the like.

凝縮器16のうち上下方向の上側の部位には復路配管22が接続されている。具体的には、復路配管22は、往路配管21よりも上下方向の上側にて凝縮器16に接続されている。   A return pipe 22 is connected to the upper part of the condenser 16 in the vertical direction. Specifically, the return line pipe 22 is connected to the condenser 16 above the forward line pipe 21 in the vertical direction.

本実施形態の機器温調装置10は、車両に搭載された二次電池12a、12bの温度を調整するために、多数の冷却器14を往路配管21および復路配管22で接続した構成となっている。図4は、多数の冷却器14として4つの冷却器14A〜14Dが往路配管21および復路配管22で接続された構成を示している。   The device temperature control apparatus 10 according to the present embodiment has a configuration in which a large number of coolers 14 are connected by the forward pipe 21 and the return pipe 22 in order to adjust the temperature of the secondary batteries 12 a and 12 b mounted on the vehicle. There is. FIG. 4 shows a configuration in which four coolers 14A to 14D are connected by the forward pipe 21 and the return pipe 22 as the large number of coolers 14.

冷却器14A〜14Dは、それぞれ二次電池12aと二次電池12bの間に配置されている。冷却器14A〜14Dは、それぞれ本体14の下部に配置された流入口141と、流入口141よりも上方に配置された排出口142を有している。   The coolers 14A to 14D are respectively disposed between the secondary battery 12a and the secondary battery 12b. Each of the coolers 14A to 14D has an inlet 141 disposed at the lower portion of the main body 14 and an outlet 142 disposed above the inlet 141.

流入口141は、凝縮器16からの液相冷媒を本体143に流入するものである。排出口142は、本体143内で蒸発した気相冷媒を排出するためのものであり、流入口141よりも上方に配置されている。   The inflow port 141 is for flowing the liquid-phase refrigerant from the condenser 16 into the main body 143. The discharge port 142 is for discharging the gas phase refrigerant evaporated in the main body 143, and is disposed above the inflow port 141.

各冷却器14A〜14Dは、凝縮器16に対して並列に接続されている。すなわち、往路配管21は、凝縮器16の凝縮器出口162と各冷却器14A〜14Dの流入口141との間を接続している。往路配管21は、凝縮器16の凝縮器出口162から流出する液相冷媒を各冷却器14A〜14Dに分配する。なお、各図において、液相冷媒を点ハッチングで示してある。   Each cooler 14A-14D is connected in parallel with respect to the condenser 16. That is, the forward pipe 21 connects between the condenser outlet 162 of the condenser 16 and the inlet 141 of each of the coolers 14A to 14D. The forward pipe 21 distributes the liquid-phase refrigerant flowing out of the condenser outlet 162 of the condenser 16 to the respective coolers 14A to 14D. In each of the drawings, the liquid-phase refrigerant is indicated by dot hatching.

復路配管22は、各冷却器14A〜14Dの排出口142と凝縮器16の凝縮器入口161との間を接続している。復路配管22は、各冷却器14A〜14Dの排出口142から排出された気相冷媒を集合して凝縮器16の凝縮器入口161に供給する。   The return pipe 22 is connected between the outlet 142 of each of the coolers 14A to 14D and the condenser inlet 161 of the condenser 16. The return pipe 22 collects the gas phase refrigerant discharged from the outlet 142 of each of the coolers 14A to 14D and supplies it to the condenser inlet 161 of the condenser 16.

往路配管21は、前後方向に延びる液通路211aを形成する液相連接配管211と、各冷却器14A〜14Dの流入口141と液相連接配管211との間を接続する接続配管212と、を有している。   The forward pipe 21 includes a liquid phase connecting pipe 211 which forms a liquid passage 211a extending in the front-rear direction, and a connecting pipe 212 which connects between the inlet 141 of each of the coolers 14A to 14D and the liquid phase connecting pipe 211. Have.

図5に示すように、接続配管212は、各冷却器14A〜14Dの流入口141から水平方向に延びた後、上方に向きを変えて液相連接配管211と接続されている。   As shown in FIG. 5, the connection pipe 212 extends horizontally from the inlets 141 of the coolers 14A to 14D, and then turns upward and is connected to the liquid phase connection pipe 211.

往路配管21は、該往路配管21により形成される液通路の少なくとも一部が各冷却器14A〜14Dの流入口141よりも高い位置となるよう配置されている。より具体的には、往路配管21は、液相連接配管211により形成される液通路211aが各冷却器14A〜14Dの流入口141よりも高い位置となるよう配置されている。   The forward pipe 21 is disposed such that at least a part of the liquid passage formed by the forward pipe 21 is at a position higher than the inflow ports 141 of the coolers 14A to 14D. More specifically, the forward piping 21 is disposed such that the liquid passage 211a formed by the liquid phase connecting piping 211 is at a higher position than the inflow ports 141 of the coolers 14A to 14D.

ここで、サーモサイフォン回路26内への冷媒の充填は、二次電池12a、12bおよび冷媒の間の熱交換が停止した状態において行われる。サーモサイフォン回路26内への冷媒の充填量は、冷却器14の本体143内の液面が適正液面となるように設定されている。具体的には、冷却器14の本体143内の液面が、予め定められた目標液面となるようにサーモサイフォン回路26内に冷媒が充填される。   Here, the charging of the refrigerant into the thermosyphon circuit 26 is performed in a state where the heat exchange between the secondary batteries 12a and 12b and the refrigerant is stopped. The filling amount of the refrigerant into the thermosyphon circuit 26 is set such that the liquid level in the main body 143 of the cooler 14 is an appropriate liquid level. Specifically, the refrigerant is filled in the thermosyphon circuit 26 so that the liquid level in the main body 143 of the cooler 14 becomes a predetermined target liquid level.

液相連接配管211は、該液相連接配管211により形成される液通路211aがサーモサイフォン回路26に作動流体が充填される際の各冷却器14A〜14Dにおける冷媒の目標液面以上の高さに配置されている。   The liquid phase connecting pipe 211 has a height equal to or higher than the target liquid level of the refrigerant in each of the coolers 14A to 14D when the thermosiphon circuit 26 is filled with the working fluid by the liquid path 211a formed by the liquid phase connecting pipe 211. Is located in

次に、機器温調装置10の作動について説明する。図4は、機器温調装置10が水平状態にある場合を示している。凝縮器16で凝縮した液相冷媒は、自重により凝縮器16の凝縮器出口162から往路配管21を流れ、各冷却器14A〜14Dの流入口141から各冷却器14A〜14Dの本体143に分配され、各冷却器14A〜14Dの本体143内に貯液される。   Next, the operation of the device temperature control apparatus 10 will be described. FIG. 4 shows the case where the device temperature control apparatus 10 is in the horizontal state. The liquid phase refrigerant condensed in the condenser 16 flows from the condenser outlet 162 of the condenser 16 to the forward piping 21 by its own weight, and is distributed to the main bodies 143 of the respective coolers 14A to 14D from the inlets 141 of the respective coolers 14A to 14D. And stored in the body 143 of each of the coolers 14A-14D.

各冷却器14A〜14Dの本体143に貯液された液相冷媒は、二次電池12a、12bと熱交換することにより蒸発し気化する。この過程で、二次電池12a、12bは、液相冷媒の蒸発潜熱により冷却される。その後、気相となった冷媒は、各冷却器14A〜14Dの本体143の排出口142から排出される。各冷却器14A〜14Dの本体143の排出口142から排出された気相冷媒は、復路配管22で集合された後、凝縮器16の凝縮器入口161から凝縮器16内に戻る。   The liquid phase refrigerant stored in the main body 143 of each of the coolers 14A to 14D is evaporated and vaporized by heat exchange with the secondary batteries 12a and 12b. In this process, the secondary batteries 12a and 12b are cooled by the latent heat of vaporization of the liquid phase refrigerant. Thereafter, the refrigerant in the vapor phase is discharged from the outlet 142 of the main body 143 of each of the coolers 14A to 14D. The gas phase refrigerant discharged from the outlet 142 of the main body 143 of each of the coolers 14A to 14D is collected in the return pipe 22, and then returns to the condenser 16 from the condenser inlet port 161 of the condenser 16.

上述の通り、二次電池12a、12bの冷却時の冷媒の流れは、凝縮器16→往路配管21→各冷却器14A〜14Dの本体143→復路配管22→凝縮器16の順となる。すなわち、凝縮器16と各冷却器14A〜14Dを含むループ状の流路が形成される。   As described above, the flow of the refrigerant at the time of cooling the secondary batteries 12a and 12b is in the order of the condenser 16 → the outgoing pipe 21 → the main body 143 of each of the coolers 14A to 14D → the return pipe 22 → the condenser 16. That is, a looped flow path including the condenser 16 and the coolers 14A to 14D is formed.

次に、機器温調装置10を搭載した車両が傾斜状態にある場合について図6〜図7を用いて説明する。図6は、各冷却器14A〜14Dよりも車両前方に凝縮器16が配置された車両が上り坂を走行している状態を示している。   Next, the case where the vehicle equipped with the device temperature control device 10 is in the inclined state will be described with reference to FIGS. FIG. 6 shows a state where a vehicle in which the condenser 16 is disposed forward of the coolers 14A to 14D is traveling uphill.

図6に示すように、各冷却器14A〜14Dが傾斜した場合でも、凝縮器16から往路配管21を通って各冷却器14A〜14Dの本体143に分配され、各冷却器14A〜14Dの本体143内に貯液される。   As shown in FIG. 6, even when each cooler 14A-14D is inclined, it is distributed to the main body 143 of each cooler 14A-14D from the condenser 16 through the forward piping 21 and the main body of each cooler 14A-14D It is stored in 143.

また、往路配管21は、該往路配管21により形成される液通路の少なくとも一部が各冷却器14A〜14Dの流入口141よりも高い位置となるよう配置されている。より具体的には、往路配管21は、液相連接配管211により形成される液通路211aが各冷却器14A〜14Dの流入口141よりも高い位置となるよう配置されている。   In addition, the forward pipe 21 is disposed such that at least a part of the liquid passage formed by the forward pipe 21 is at a position higher than the inflow ports 141 of the coolers 14A to 14D. More specifically, the forward piping 21 is disposed such that the liquid passage 211a formed by the liquid phase connecting piping 211 is at a higher position than the inflow ports 141 of the coolers 14A to 14D.

したがって、車両が上り坂あるいは下り坂を走行して各冷却器14A〜14Dが傾斜した場合でも、各冷却器14A〜14Dの本体143の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。これにより、高位の冷却器14から低位の冷却器14への液相冷媒の移動が抑制される。なお、図6では、各冷却器14A〜14Dの本体143の内部空間に貯液される液相冷媒の液面Hが、接続配管212と液相連接配管211の接続部の高さと同程度となった状態を表している。   Therefore, even if the vehicle travels uphill or downhill and each cooler 14A-14D is inclined, a liquid storage portion is formed in the internal space of the main body 143 of each cooler 14A-14D, and this liquid storage portion Liquid phase refrigerant is stored. Thereby, the movement of the liquid phase refrigerant from the high order cooler 14 to the low order cooler 14 is suppressed. In FIG. 6, the liquid level H of the liquid phase refrigerant stored in the internal space of the main body 143 of each of the coolers 14A to 14D is approximately the same as the height of the connection portion between the connection pipe 212 and the liquid phase connecting pipe 211. It represents a lost state.

一方、図7は、各冷却器14A〜14Dよりも車両前方に凝縮器16が配置された車両が下り坂を走行している状態を示している。   On the other hand, FIG. 7 shows a state where the vehicle having the condenser 16 disposed forward of the coolers 14A to 14D is traveling downhill.

図7に示すように、各冷却器14A〜14Dが傾斜した場合でも、凝縮器16から往路配管21を通って各冷却器14A〜14Dの本体143に分配され、各冷却器14A〜14Dの本体143内に貯液される。   As shown in FIG. 7, even when each cooler 14A-14D is inclined, it is distributed to the main body 143 of each cooler 14A-14D from the condenser 16 through the forward piping 21 and the main body of each cooler 14A-14D It is stored in 143.

また、往路配管21は、該往路配管21により形成される液通路21aの少なくとも一部が各冷却器14A〜14Dの流入口141よりも高い位置となるよう配置されている。より具体的には、往路配管21は、液相連接配管211により形成される液通路211aが各冷却器14A〜14Dの流入口141よりも高い位置となるよう配置されている。   In addition, the forward pipe 21 is disposed such that at least a part of the liquid passage 21a formed by the forward pipe 21 is at a position higher than the inflow ports 141 of the coolers 14A to 14D. More specifically, the forward piping 21 is disposed such that the liquid passage 211a formed by the liquid phase connecting piping 211 is at a higher position than the inflow ports 141 of the coolers 14A to 14D.

したがって、各冷却器14A〜14Dが傾斜した場合でも、各冷却器14A〜14Dの本体143の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。これにより、高位の冷却器14から低位の冷却器14への液相冷媒の移動が抑制される。なお、図7では、各冷却器14A〜14Dの本体143の内部空間に貯液される液相冷媒の液面Hが、接続配管212と液相連接配管211の接続部の高さと同程度となった状態を表している。   Therefore, even when each cooler 14A-14D inclines, a liquid storage part is formed in the interior space of main part 143 of each cooler 14A-14D, and liquid phase refrigerant is stored by this liquid storage part. Thereby, the movement of the liquid phase refrigerant from the high order cooler 14 to the low order cooler 14 is suppressed. In FIG. 7, the liquid level H of the liquid phase refrigerant stored in the internal space of the main body 143 of each of the coolers 14A to 14D is approximately the same as the height of the connection portion between the connection pipe 212 and the liquid phase connecting pipe 211. It represents a lost state.

以上、説明したように、本実施形態の機器温調装置10は、作動流体を循環させる循環回路26を有し、作動流体の液相と気相との相変化によって対象機器12a、12bの温度を調整する装置である。そして、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器14と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器16と、を備えている。   As described above, the device temperature control device 10 of the present embodiment includes the circulation circuit 26 that circulates the working fluid, and the temperature of the target devices 12a and 12b is determined by the phase change between the liquid phase and the gas phase of the working fluid. To adjust the Then, the plurality of coolers 14 included in the circulation circuit and performing heat exchange between the heat of the target device and the heat of the working fluid to cool the target device, and the heat of the working fluid included in the circulation circuit and evaporated by the cooler And a condenser 16 for radiating heat to condense the working fluid.

また、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路21aを形成する往路配管21と、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路22aを形成する復路配管22と、を備えている。また、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体143の内部空間に導入する流入口141と、本体にて蒸発した作動流体を復路配管へ排出する排出口142と、を有している。   Further, the forward pipe 21 is included in the circulation circuit and forms the liquid passage 21a for supplying the working fluid condensed in the condenser to the plurality of coolers, and the operation included in the circulation circuit and evaporated in the plurality of coolers And a return pipe 22 forming a gas passage 22a for supplying the fluid to the condenser. Each of the plurality of coolers has an inlet 141 for introducing the working fluid flowing in the forward piping into the internal space of the main body 143, and an outlet 142 for discharging the working fluid evaporated in the main body to the return piping. ing.

そして、往路配管は、該往路配管により形成される液通路の少なくとも一部が複数の冷却器の流入口よりも高い位置となるよう配置されている。   The forward piping is arranged such that at least a part of the liquid passage formed by the forward piping is at a higher position than the inlets of the plurality of coolers.

上記した構成によれば、車両が上り坂あるいは下り坂を走行して各冷却器14A〜14Dが傾斜した場合でも、各冷却器14A〜14Dの本体143の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器14から低位の冷却器14への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the configuration described above, even when the vehicle travels uphill or downhill and each of the coolers 14A to 14D inclines, a liquid storage portion is formed in the internal space of the main body 143 of each of the coolers 14A to 14D, The liquid phase refrigerant is stored in the liquid storage portion. Therefore, the movement of the liquid phase refrigerant from the high order cooler 14 to the low order cooler 14 is suppressed, and the temperature adjustment of the target device can be realized more stably.

また、往路配管は、前後方向に延びる液通路を形成する液相連接配管211と、複数の冷却器の流入口と液相連接配管との間を接続する接続配管212と、を有している。そして、液相連接配管により形成される液通路が複数の冷却器の流入口よりも高い位置となるよう配置されている。   In addition, the forward piping has a liquid phase connection pipe 211 which forms a liquid passage extending in the front-rear direction, and a connection pipe 212 which connects between the inlets of the plurality of coolers and the liquid phase connection pipe. . The liquid passage formed by the liquid phase connecting pipe is disposed at a position higher than the inlets of the plurality of coolers.

このように、液相連接配管により形成される液通路が複数の冷却器の流入口よりも高い位置となるよう構成することができる。   As described above, the liquid passage formed by the liquid phase connection piping can be configured to be at a higher position than the inlets of the plurality of coolers.

なお、液相連接配管は、該液相連接配管により形成される液通路が循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面以上の高さとなるよう配置されるのが好ましい。   The liquid phase connection piping is disposed such that the liquid passage formed by the liquid phase connection piping is at a height higher than the target liquid level of the working fluid in the plurality of coolers when the working circuit is filled with the working fluid. Is preferred.

本実施形態では、4つの冷却器14A〜14Dの全てに対し、液相連接配管211により形成される液通路211aが各冷却器14A〜14Dの流入口141よりも高い位置となるよう構成した。これにより、4つの冷却器14A〜14Dに対し、液相冷媒を安定的に供給することが可能となる。   In the present embodiment, the liquid passage 211a formed by the liquid phase connecting pipe 211 is positioned higher than the inlets 141 of the coolers 14A to 14D for all the four coolers 14A to 14D. As a result, the liquid-phase refrigerant can be stably supplied to the four coolers 14A to 14D.

しかし、必ずしも複数の冷却器14の全てに対し、液相連接配管211により形成される液通路211aが各冷却器14A〜14Dの流入口141よりも高い位置となるよう構成する必要はない。すなわち、複数の冷却器14の一部に対し、液相連接配管211により形成される液通路211aが複数の冷却器14の流入口141と同等もしくはより低い位置となるよう構成することもできる。   However, the liquid passage 211a formed by the liquid phase connection pipe 211 does not necessarily have to be at a position higher than the inlets 141 of the respective coolers 14A to 14D for all the plurality of coolers 14. That is, the liquid passage 211 a formed by the liquid phase connection pipe 211 may be configured to be at a position equivalent to or lower than the inflow ports 141 of the plurality of coolers 14 with respect to a part of the plurality of coolers 14.

(第2実施形態)
第2実施形態に係る機器温調装置について図8〜図9を用いて説明する。上記第1実施形態の機器温調装置10は、複数の冷却器14の流入口141が冷却器14の本体143の下方に配置され、往路配管21が複数の冷却器14の流入口141よりも高い位置に配置されている。これに対し、本実施形態の機器温調装置10は、往路配管21および複数の冷却器14の流入口141が、それぞれ各冷却器14A〜14Dの本体143の内部空間の最下端よりも高さの高い位置に配置されている点が異なる。
Second Embodiment
The apparatus temperature control apparatus which concerns on 2nd Embodiment is demonstrated using FIGS. 8-9. In the device temperature control apparatus 10 according to the first embodiment, the inlets 141 of the plurality of coolers 14 are disposed below the main body 143 of the cooler 14, and the forward piping 21 is more than the inlets 141 of the plurality of coolers 14. It is located high. On the other hand, in the device temperature control apparatus 10 of the present embodiment, the forward piping 21 and the inflow ports 141 of the plurality of coolers 14 are respectively higher than the lowermost end of the internal space of the main body 143 of each cooler 14A to 14D. It is different in that it is placed at the high position of.

図9に示すように、各冷却器14A〜14Dの流入口141は、各冷却器14A〜14Dの本体143の内部空間の最下端よりも高さの高い位置に配置されている。   As shown in FIG. 9, the inlet 141 of each cooler 14A-14D is arrange | positioned in the height position higher than the lowest end of the interior space of the main body 143 of each cooler 14A-14D.

往路配管21は、該往路配管21により形成される液通路21aの少なくとも一部が、各冷却器14A〜14Dの本体143の内部空間の最下端よりも高さの高い位置に配置されている。   At least a part of the liquid passage 21a formed by the forward pipe 21 is disposed at a position higher in height than the lowermost end of the internal space of the main body 143 of each of the coolers 14A to 14D.

具体的には、往路配管21は、前後方向に延びる液通路211aを形成する液相連接配管211と、各冷却器14A〜14Dの流入口141と液相連接配管211との間を接続する接続配管213と、を有している。   Specifically, the forward piping 21 is a connection that connects between the liquid phase connecting pipe 211 forming the liquid passage 211a extending in the front-rear direction, the inlet 141 of each of the coolers 14A to 14D, and the liquid phase connecting pipe 211. And a pipe 213.

液相連接配管211は、各冷却器14A〜14Dの流入口141とほぼ同じ高さに配置されている。また、接続配管213は、各冷却器14A〜14Dの流入口141から水平方向に延びるように液相連接配管211と接続されている。そして、液相連接配管211により形成される液通路211aは、各冷却器14A〜14Dの本体143の内部空間の最下端よりも高さの高い位置に配置されている。   The liquid phase connection piping 211 is disposed at substantially the same height as the inlets 141 of the respective coolers 14A to 14D. Further, the connection pipe 213 is connected to the liquid phase connection pipe 211 so as to extend in the horizontal direction from the inlets 141 of the respective coolers 14A to 14D. And liquid passage 211a formed of liquid phase connecting piping 211 is arranged at a position higher in height than the lowest end of the internal space of main part 143 of each cooler 14A-14D.

したがって、車両が上り坂あるいは下り坂を走行して各冷却器14A〜14Dが傾斜した場合でも、各冷却器14A〜14Dの本体143の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。これにより、高位の冷却器14から低位の冷却器14への液相冷媒の移動が抑制される。   Therefore, even if the vehicle travels uphill or downhill and each cooler 14A-14D is inclined, a liquid storage portion is formed in the internal space of the main body 143 of each cooler 14A-14D, and this liquid storage portion Liquid phase refrigerant is stored. Thereby, the movement of the liquid phase refrigerant from the high order cooler 14 to the low order cooler 14 is suppressed.

さらに、液相連接配管211は、該液相連接配管211により形成される液通路211aが、サーモサイフォン回路26に冷媒が充填される際の各冷却器14A〜14Dにおける冷媒の目標液面である適正液面以上の高さとなるよう配置されている。   Furthermore, the liquid phase connecting pipe 211 is a target liquid surface of the refrigerant in each of the coolers 14A to 14D when the liquid passage 211a formed by the liquid phase connecting pipe 211 is filled with the refrigerant in the thermosyphon circuit 26. It is arranged to be at a level above the proper liquid level.

以上、説明したように、本実施形態の機器温調装置10では、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体143の内部空間に導入する流入口141および本体にて蒸発した作動流体を復路配管へ排出する排出口142を有している。そして、複数の冷却器の流入口の少なくとも1つは、本体の内部空間の最下端よりも高さの高い位置に配置されている。   As described above, in the device temperature control apparatus 10 according to the present embodiment, the plurality of coolers are operated by introducing the working fluid flowing in the forward piping into the internal space of the main body 143 and the evaporation of the working fluid at the main body It has an outlet 142 for discharging the fluid to the return pipe. And, at least one of the inlets of the plurality of coolers is disposed at a height higher than the lowermost end of the internal space of the main body.

上記した構成によれば、複数の冷却器が傾斜した場合でも、各冷却器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の冷却器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the above configuration, even when the plurality of coolers are inclined, the liquid storage portion is formed in the internal space of the main body of each cooler, and the liquid phase refrigerant is stored in the liquid storage portion. Therefore, the movement of the liquid-phase refrigerant from the high order cooler to the low order cooler is suppressed, and the temperature adjustment of the target device can be realized more stably.

なお、複数の冷却器の流入口の少なくとも1つは、循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面である適正液面以上の高さに配置されるのが好ましい。   Note that at least one of the inlets of the plurality of coolers is disposed at a height above the appropriate liquid level, which is the target level of the working fluid in the plurality of coolers when the circulation circuit is filled with the working fluid. Is preferred.

具体的には、往路配管は、前後方向に延びる液通路を形成する液相連接配管211を有している。そして、液相連接配管は、該液相連接配管により形成される液通路が循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面である適正液面以上の高さとなるよう配置されるのが好ましい。   Specifically, the forward piping has a liquid phase connection piping 211 that forms a liquid passage extending in the front-rear direction. The liquid phase connecting pipe is higher than the appropriate liquid level which is the target liquid level of the working fluid in the plurality of coolers when the liquid passage formed by the liquid phase linking pipe is filled with the working fluid in the circulation circuit. Preferably, they are arranged to

(第3実施形態)
第3実施形態に係る機器温調装置について図10を用いて説明する。本実施形態の機器温調装置の往路配管21は、液通路214aを形成する凸部配管214を有し、液通路214aの少なくとも一部が複数の冷却器14のうちの1つの第1冷却器の流入口141と第1冷却器14と異なる第2冷却器14の流入口141よりも上下方向上側に突出している。
Third Embodiment
An apparatus temperature control apparatus according to a third embodiment will be described with reference to FIG. The forward piping 21 of the device temperature control apparatus of the present embodiment has a convex portion piping 214 that forms the liquid passage 214a, and at least a portion of the liquid passage 214a is the first cooler of the plurality of coolers 14 It projects vertically above the inlet 141 of the second cooler 14 different from the inlet 141 of the first cooler 14 and the first cooler 14.

凸部配管214は、第1冷却器の流入口141と第2冷却器14の流入口141の間に配置されている。そして、凸部配管214により形成される液通路214aの一部は、第1冷却器の流入口141と第2冷却器14の流入口141よりも上下方向上側に突出している。   The convex portion pipe 214 is disposed between the inlet 141 of the first cooler and the inlet 141 of the second cooler 14. A part of the liquid passage 214 a formed by the convex portion pipe 214 protrudes upward in the vertical direction with respect to the inflow port 141 of the first cooler and the inflow port 141 of the second cooler 14.

すなわち、凸部配管214により形成される液通路214aは、第1冷却器14の流入口141と第2冷却器14の流入口141との間で第1冷却器の流入口141および第2冷却器14の流入口141よりも上下方向上側に突出した逆U字形状を成している。   That is, the liquid passage 214 a formed by the convex portion pipe 214 is between the inlet 141 of the first cooler 14 and the inlet 141 of the second cooler 14, and the inlet 141 of the first cooler and the second cooling. It has an inverted U-shape projecting upward in the vertical direction with respect to the inlet 141 of the vessel 14.

凸部配管214は、冷却器14Aの流入口141と冷却器14Bの流入口141との間と、冷却器14Bの流入口141と冷却器14Cの流入口141との間と、冷却器14Cの流入口141と冷却器14Dの流入口141との間に配置されている。   The convex portion pipe 214 is provided between the inlet 141 of the cooler 14A and the inlet 141 of the cooler 14B, between the inlet 141 of the cooler 14B and the inlet 141 of the cooler 14C, and of the cooler 14C. It is disposed between the inlet 141 and the inlet 141 of the cooler 14D.

したがって、車両が上り坂あるいは下り坂を走行して各冷却器14A〜14Dが傾斜した場合でも、各冷却器14A〜14Dの本体143の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。これにより、高位の冷却器14から低位の冷却器14への液相冷媒の移動が抑制される。   Therefore, even if the vehicle travels uphill or downhill and each cooler 14A-14D is inclined, a liquid storage portion is formed in the internal space of the main body 143 of each cooler 14A-14D, and this liquid storage portion Liquid phase refrigerant is stored. Thereby, the movement of the liquid phase refrigerant from the high order cooler 14 to the low order cooler 14 is suppressed.

以上、説明したように、本実施形態の機器温調装置10は、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体143の内部空間に導入する流入口141および本体にて蒸発した作動流体を復路配管へ排出する排出口142を有している。また、往路配管は、複数の冷却器のうちの1つの第1冷却器の流入口と複数の冷却器のうちの第1冷却器と異なる第2冷却器の流入口との間に配置された凸部配管214を有している。そして、凸部配管により形成される液通路の少なくとも一部が第1冷却器の流入口および第2冷却器の流入口よりも上下方向上側に突出している。   As described above, in the device temperature control apparatus 10 according to the present embodiment, the plurality of coolers are operated by introducing the working fluid flowing in the forward piping into the internal space of the main body 143 and the evaporation of the fluid at the main body It has an outlet 142 for discharging the fluid to the return pipe. Also, the forward piping is disposed between the inlet of the first cooler of one of the plurality of coolers and the inlet of the second cooler different from the first cooler of the plurality of coolers. It has a convex portion pipe 214. Then, at least a part of the liquid passage formed by the convex portion pipe protrudes vertically upward from the inflow port of the first cooler and the inflow port of the second cooler.

上記した構成によれば、複数の冷却器が傾斜した場合でも、凸部配管により各冷却器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の冷却器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the above configuration, even when the plurality of coolers are inclined, the liquid storage portion is formed in the internal space of the main body of each cooler by the convex piping, and the liquid phase refrigerant is stored in the liquid storage portion . Therefore, the movement of the liquid-phase refrigerant from the high order cooler to the low order cooler is suppressed, and the temperature adjustment of the target device can be realized more stably.

第1冷却器の流入口および第2冷却器の流入口は、循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面よりも低い位置に配置されるのが好ましい。   Preferably, the inlet of the first cooler and the inlet of the second cooler are positioned lower than the target fluid level of the working fluid in the plurality of coolers when the working circuit is filled with the working fluid. .

また、凸部配管は、該凸部配管により形成される液通路の少なくとも一部が循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面以上の高さとなるよう配置されるのが好ましい。   In addition, in the convex portion pipe, at least a part of the liquid passage formed by the convex portion pipe is at a height higher than the target liquid level of the working fluid in the plurality of coolers when the working circuit is filled with the working fluid. Preferably it is arranged.

また、往路配管は、前後方向に延びる液通路を形成するとともに第1冷却器の流入口に接続された第1液相連接配管と、前後方向に延びる液通路を形成する第2冷却器の流入口に接続された第2液相連接配管を有している。凸部配管は、第1液相連接配管と第2液相連接配管の間に配置されている。   In addition, the forward piping forms a liquid passage extending in the front-rear direction, and the flow of the first liquid phase connecting piping connected to the inlet of the first cooler and a flow of the second cooler forming the liquid passage extending in the front-rear direction It has a second liquid phase connecting pipe connected to the inlet. The convex portion pipe is disposed between the first liquid phase connecting pipe and the second liquid phase connecting pipe.

このように、凸部配管は、第1冷却器の流入口に接続された第1液相連接配管と、第2冷却器の流入口に接続された第2液相連接配管との間に設けることができる。   Thus, the projection piping is provided between the first liquid phase connecting pipe connected to the inlet of the first cooler and the second liquid phase connecting pipe connected to the inlet of the second cooler. be able to.

また、凸部配管は、第1冷却器の流入口と第2冷却器の流入口の中央よりも液相連接配管211の内部を流れる作動流体の流体流れ上流側に配置されている。   Further, the convex portion piping is disposed on the upstream side of the fluid flow of the working fluid flowing inside the liquid phase connection piping 211 from the center of the inlet of the first cooler and the inlet of the second cooler.

このような構成とすることで、第1冷却器の流入口と第2冷却器の流入口の中央或いは中央よりも液相連接配管の内部を流れる作動流体の流体流れ下流側に凸部配管を配置した場合と比較して、凸部配管より作動流体の流体流れ上流側の冷却器に貯液される作動流体の流量を多くすることができる。   With such a configuration, the convex portion pipe is disposed downstream of the working fluid flow that flows inside the liquid phase connecting pipe rather than at the center of the inlet of the first cooler and the inlet of the second cooler. The flow rate of the working fluid stored in the cooler on the upstream side of the fluid flow of the working fluid from the projection piping can be increased as compared with the case of arranging.

(第4実施形態)
第4実施形態に係る機器温調装置について図11を用いて説明する。上記第2実施形態の機器温調装置10は、液相連接配管211により形成される液通路211aが、サーモサイフォン回路26に冷媒が充填される際の各冷却器14A〜14Dにおける冷媒の目標液面である適正液面以上の高さとなるよう配置されている。これに対し、本実施形態の機器温調装置10は、液相連接配管211により形成される液通路211aが、冷却器14A〜14Dの流入口141の間で適正液面より低い位置となるよう構成されている。
Fourth Embodiment
An apparatus temperature control apparatus according to the fourth embodiment will be described with reference to FIG. In the device temperature control apparatus 10 according to the second embodiment, the target fluid of the refrigerant in each of the coolers 14A to 14D when the thermosiphon circuit 26 is filled with the refrigerant in the liquid passage 211a formed by the liquid phase connection pipe 211 It is arranged to be higher than the appropriate liquid level, which is the surface. On the other hand, in the device temperature control apparatus 10 according to the present embodiment, the liquid passage 211a formed by the liquid phase connection pipe 211 is positioned lower than the appropriate liquid level between the inlets 141 of the coolers 14A to 14D. It is configured.

具体的には、液相連接配管211により形成される液通路211aが、冷却器14A〜14Dの流入口141の間で上下方向下側に窪むように形成されている。   Specifically, a liquid passage 211a formed by the liquid phase connection pipe 211 is formed to be recessed downward in the vertical direction between the inlets 141 of the coolers 14A to 14D.

このように、液相連接配管211により形成される液通路211aが、冷却器14A〜14Dの流入口141の間で上下方向下側に窪むように形成することもできる。   As described above, the liquid passages 211 a formed by the liquid phase connection piping 211 may be formed to be recessed downward in the vertical direction between the inlets 141 of the coolers 14A to 14D.

(第5実施形態)
第5実施形態に係る機器温調装置について図12〜図13を用いて説明する。本実施形態の機器温調装置10の往路配管21は、液通路215aを形成する凸部配管215を有している。凸部配管215は、凝縮器16の凝縮器出口162と複数の冷却器14のうち凝縮器16に接続された冷却器14の流入口141との間を接続するとともに液通路21aの少なくとも一部が凝縮器16の凝縮器出口162と凝縮器16に接続された冷却器14の流入口141よりも上下方向上側に突出する液通路215aを形成する。
Fifth Embodiment
The apparatus temperature control apparatus which concerns on 5th Embodiment is demonstrated using FIGS. 12-13. The forward piping 21 of the device temperature control apparatus 10 of the present embodiment has a convex piping 215 that forms the liquid passage 215a. The convex portion pipe 215 connects between the condenser outlet 162 of the condenser 16 and the inlet 141 of the cooler 14 of the plurality of coolers 14 connected to the condenser 16 and at least a part of the liquid passage 21 a. Form a liquid passage 215 a which protrudes vertically upward above the condenser outlet 162 of the condenser 16 and the inlet 141 of the cooler 14 connected to the condenser 16.

したがって、凝縮器16の高さが凝縮器16に接続された冷却器14Aよりも高くなるように車両が傾斜した場合でも、凝縮器16の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液されるので、凝縮器から低段冷却器14への液相移動が抑制される。また、凝縮器16の高さが凝縮器16に接続された冷却器14Aよりも低くなるように車両が傾斜した場合でも、冷却器14Aの内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。これにより、高位の冷却器14から低位の冷却器14への液相冷媒の移動が抑制される。   Therefore, even when the vehicle is inclined such that the height of the condenser 16 is higher than that of the cooler 14A connected to the condenser 16, a liquid storage portion is formed in the internal space of the condenser 16, and this liquid storage portion Since the liquid phase refrigerant is stored, the liquid phase transfer from the condenser to the low stage cooler 14 is suppressed. Even when the vehicle is inclined so that the height of the condenser 16 is lower than that of the cooler 14A connected to the condenser 16, a liquid storage portion is formed in the internal space of the cooler 14A, and this liquid storage portion Liquid phase refrigerant is stored. Thereby, the movement of the liquid phase refrigerant from the high order cooler 14 to the low order cooler 14 is suppressed.

図13に示すように、機器温調装置10の往路配管21に凸部配管215が設けられていない場合には、凝縮器16の高さが凝縮器16に接続された冷却器14Aよりも高くなるように車両が傾斜した場合、凝縮器16から冷却器14A、更に低位の冷却器に液冷媒が流入してしまう。また、凝縮器16の高さが凝縮器16に接続された冷却器14Aよりも低くなるように車両が傾斜した場合、冷却器14Aから凝縮器16に液冷媒が流入してしまう。このため、冷却器14への液相冷媒の供給が不安定になり、二次電池12a、12bの温度調整が不安定となってしまう。   As shown in FIG. 13, when the projection piping 215 is not provided in the forward piping 21 of the device temperature control apparatus 10, the height of the condenser 16 is higher than that of the cooler 14 </ b> A connected to the condenser 16. When the vehicle is inclined as described above, the liquid refrigerant flows from the condenser 16 to the cooler 14A and further to the lower cooler. In addition, when the vehicle is inclined so that the height of the condenser 16 is lower than that of the cooler 14A connected to the condenser 16, the liquid refrigerant may flow from the cooler 14A to the condenser 16. For this reason, supply of the liquid phase refrigerant to cooler 14 becomes unstable, and temperature control of secondary batteries 12a and 12b will become unstable.

以上、説明したように、本実施形態の機器温調装置10では、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体143の内部空間に導入する流入口141および本体にて蒸発した作動流体を復路配管へ排出する排出口142を有している。   As described above, in the device temperature control apparatus 10 according to the present embodiment, the plurality of coolers are operated by introducing the working fluid flowing in the forward piping into the internal space of the main body 143 and the evaporation of the working fluid at the main body It has an outlet 142 for discharging the fluid to the return pipe.

また、往路配管は、凝縮器の凝縮器出口と複数の冷却器のうち凝縮器に接続された冷却器の流入口との間を接続する凸部配管215を有している。また、凸部配管により形成される液通路の少なくとも一部が凝縮器の凝縮器出口と凝縮器に接続された冷却器の流入口よりも上下方向上側に突出している。   In addition, the forward piping has a convex portion piping 215 that connects between the condenser outlet of the condenser and the inlet of the cooler connected to the condenser among the plurality of coolers. In addition, at least a part of the liquid passage formed by the convex portion piping protrudes vertically above the condenser outlet of the condenser and the inlet of the cooler connected to the condenser.

上記した構成によれば、凝縮器がより低位となるよう、或いは凝縮器がより高位になるように凝縮器および複数の冷却器が傾斜した場合でも、凸部配管により各冷却器或いは凝縮器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の冷却器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the above configuration, even if the condenser and the plurality of coolers are inclined such that the condenser becomes lower or the condenser becomes higher, the convex piping connects each cooler or condenser A liquid storage portion is formed in the internal space of the main body, and the liquid phase refrigerant is stored in the liquid storage portion. Therefore, the movement of the liquid-phase refrigerant from the high order cooler to the low order cooler is suppressed, and the temperature adjustment of the target device can be realized more stably.

なお、凸部配管は、該凸部配管により形成される液通路の少なくとも一部が循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面以上の高さとなるよう配置されるのが好ましい。   In addition, in the convex portion pipe, at least a part of the liquid passage formed by the convex portion pipe is at a height equal to or higher than the target liquid level of the working fluid in the plurality of coolers when the working circuit is filled with the working fluid. Preferably it is arranged.

(第6実施形態)
第6実施形態に係る機器温調装置について図14を用いて説明する。本実施形態の機器温調装置は、3つの冷却器14A〜14Cが往路配管21により直列に接続されている。各冷却器14は、それぞれ液相冷媒を本体143の内部空間に導入する流入口141および本体143に導入された液相冷媒を流出させる流出口144を有している。
Sixth Embodiment
An apparatus temperature control apparatus according to the sixth embodiment will be described with reference to FIG. In the device temperature control apparatus of the present embodiment, three coolers 14A to 14C are connected in series by the forward pipe 21. Each cooler 14 has an inlet 141 for introducing the liquid phase refrigerant into the internal space of the main body 143 and an outlet 144 for discharging the liquid phase refrigerant introduced to the main body 143.

冷却器14Aの流入口141は、往路配管21を介して凝縮器16の凝縮器出口162と接続されている。また、往路配管21は、複数の冷却器14の1つの第1冷却器14の流出口144と複数の冷却器14のうちの第1冷却器14と異なる第2冷却器14の流入口141との間を接続する凸部配管216を有している。凸部配管216は、該凸部配管216により形成される液通路216aの少なくとも一部が第1冷却器14の流出口144および第2冷却器14の流入口141よりも上下方向上側に突出している。   The inlet 141 of the cooler 14A is connected to the condenser outlet 162 of the condenser 16 via the forward pipe 21. Also, the forward piping 21 has an outlet 144 of one first cooler 14 of the plurality of coolers 14 and an inlet 141 of the second cooler 14 different from the first cooler 14 of the plurality of coolers 14. And a convex portion pipe 216 connecting the two. In the convex portion pipe 216, at least a part of the liquid passage 216a formed by the convex portion pipe 216 protrudes upward in the vertical direction from the outlet port 144 of the first cooler 14 and the inlet port 141 of the second cooler 14. There is.

具体的には、凸部配管216は、冷却器14Aの流出口144と冷却器14Bの流入口141との間と、冷却器14Bの流出口144と冷却器14Cの流入口141との間に配置されている。凸部配管216は、冷却器14Aの流出口144と冷却器14Bの流入口141との間を接続するとともに、冷却器14Bの流出口144と冷却器14Cの流入口141との間を接続している。   Specifically, the projection piping 216 is between the outlet 144 of the cooler 14A and the inlet 141 of the cooler 14B, and between the outlet 144 of the cooler 14B and the inlet 141 of the cooler 14C. It is arranged. The convex portion pipe 216 connects between the outlet 144 of the cooler 14A and the inlet 141 of the cooler 14B, and connects between the outlet 144 of the cooler 14B and the inlet 141 of the cooler 14C. ing.

凸部配管216は、各冷却器14A〜14Bの流出口144および各冷却器14B〜14Cの流入口141よりも上下方向上側に突出する液通路216aを形成している。   The convex portion pipe 216 forms a liquid passage 216a which protrudes upward in the vertical direction with respect to the outlet 144 of each of the coolers 14A to 14B and the inlet 141 of each of the coolers 14B to 14C.

したがって、車両が上り坂を走行して冷却器14Aの位置がより高くなるように各冷却器14A〜14Cが傾斜した場合でも、各冷却器14A〜14Cの本体143の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。これにより、高位の冷却器14から低位の冷却器14への液相冷媒の移動が抑制される。   Therefore, even if each cooler 14A-14C inclines so that the vehicle travels uphill and the position of the cooler 14A becomes higher, the liquid storage portion is in the internal space of the main body 143 of each cooler 14A-14C. The liquid phase refrigerant is stored in the liquid storage portion. Thereby, the movement of the liquid phase refrigerant from the high order cooler 14 to the low order cooler 14 is suppressed.

また、車両が下り坂を走行して冷却器14Aの位置がより低くなるように各冷却器14A〜14Cが傾斜した場合には、各冷却器14B〜14Cの本体143の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。これにより、高位の冷却器14から低位の冷却器14への液相冷媒の移動が抑制される。   In addition, when the coolers 14A to 14C are inclined such that the vehicle travels downhill and the position of the cooler 14A becomes lower, the liquid storage portion in the internal space of the main body 143 of each cooler 14B to 14C The liquid phase refrigerant is stored in the liquid storage portion. Thereby, the movement of the liquid phase refrigerant from the high order cooler 14 to the low order cooler 14 is suppressed.

以上、説明したように、本実施形態の機器温調装置10では、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体143の内部空間に導入する流入口141および本体に導入された作動流体を流出させる流出口144を有している。   As described above, in the device temperature control apparatus 10 according to the present embodiment, the plurality of coolers are the inlet 141 for introducing the working fluid flowing in the forward piping into the internal space of the main body 143 and the operation introduced into the main body It has an outlet 144 through which the fluid flows out.

また、往路配管21は、複数の冷却器14の1つの第1冷却器の流出口144と複数の冷却器14のうちの第1冷却器と異なる第2冷却器の流入口141との間を接続する凸部配管216を有している。   In addition, the forward piping 21 connects between the outlet 144 of one first cooler of the plurality of coolers 14 and the inlet 141 of the second cooler different from the first cooler of the plurality of coolers 14. It has a convex portion pipe 216 to be connected.

また、凸部配管216は、該凸部配管により形成される液通路216aの少なくとも一部が第1冷却器の流出口144および第2冷却器の流入口141よりも上下方向上側に突出している。   Further, in the convex portion pipe 216, at least a part of the liquid passage 216a formed by the convex portion pipe protrudes vertically above the outlet port 144 of the first cooler and the inlet port 141 of the second cooler. .

上記した構成によれば、複数の冷却器が傾斜した場合でも、凸部配管により各冷却器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の冷却器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the above configuration, even when the plurality of coolers are inclined, the liquid storage portion is formed in the internal space of the main body of each cooler by the convex piping, and the liquid phase refrigerant is stored in the liquid storage portion . Therefore, the movement of the liquid-phase refrigerant from the high order cooler to the low order cooler is suppressed, and the temperature adjustment of the target device can be realized more stably.

なお、凸部配管は、該凸部配管により形成される液通路の少なくとも一部が循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面以上の高さとなるよう配置されるのが好ましい。   In addition, in the convex portion pipe, at least a part of the liquid passage formed by the convex portion pipe is at a height equal to or higher than the target liquid level of the working fluid in the plurality of coolers when the working circuit is filled with the working fluid. Preferably it is arranged.

(第7実施形態)
第7実施形態に係る機器温調装置について図15を用いて説明する。本実施形態の機器温調装置は、3つの冷却器14A〜14Cが往路配管21により直列に接続されている。各冷却器14は、それぞれ液相冷媒を本体143の内部空間に導入する流入口141および本体143に導入された液相冷媒を流出させる流出口144を有している。
Seventh Embodiment
An apparatus temperature control apparatus according to a seventh embodiment will be described with reference to FIG. In the device temperature control apparatus of the present embodiment, three coolers 14A to 14C are connected in series by the forward pipe 21. Each cooler 14 has an inlet 141 for introducing the liquid phase refrigerant into the internal space of the main body 143 and an outlet 144 for discharging the liquid phase refrigerant introduced to the main body 143.

冷却器14Aの流入口141は、往路配管21を介して凝縮器16の凝縮器出口162と接続されている。   The inlet 141 of the cooler 14A is connected to the condenser outlet 162 of the condenser 16 via the forward pipe 21.

また、往路配管21は、該往路配管21により形成される液通路21aの少なくとも一部が、各冷却器14A〜14Dの本体143の内部空間の最下端よりも高さの高い位置に配置されている。   Further, at least a part of the liquid passage 21a formed by the forward piping 21 is disposed at a position higher in height than the lowermost end of the internal space of the main body 143 of each of the coolers 14A to 14D. There is.

具体的には、往路配管21は、前後方向に延びる液通路211aを形成する液相連接配管211を有している。   Specifically, the forward piping 21 has a liquid phase connecting piping 211 that forms a liquid passage 211 a extending in the front-rear direction.

また、液相連接配管211は、各冷却器14A〜14Dの流入口141とほぼ同じ高さに配置されている。具体的には、液相連接配管211は、該液相連接配管211により形成される液通路211aが、サーモサイフォン回路26に冷媒が充填される際の各冷却器14A〜14Dにおける冷媒の目標液面である適正液面以上の高さとなるよう配置されている。   Further, the liquid phase connection pipe 211 is disposed at substantially the same height as the inlets 141 of the respective coolers 14A to 14D. Specifically, the liquid phase connecting pipe 211 is a target liquid of the refrigerant in each of the coolers 14A to 14D when the thermosiphon circuit 26 is filled with the liquid path 211a formed by the liquid phase connecting pipe 211. It is arranged to be higher than the appropriate liquid level, which is the surface.

以上、説明したように、本実施形態の機器温調装置10では、複数の冷却器は、それぞれ往路配管21を流れる作動流体を本体143の内部空間に導入する流入口141および本体143に導入された作動流体を流出させる流出口144を有している。そして、複数の冷却器の流入口141および流出口144の少なくとも1つは、本体143の内部空間の最下端よりも高さの高い位置に配置されている。   As described above, in the device temperature control device 10 of the present embodiment, the plurality of coolers are introduced into the inlet 141 and the main body 143 that introduce the working fluid flowing through the forward piping 21 into the internal space of the main body 143. It has an outlet 144 through which the working fluid flows out. And, at least one of the inlet 141 and the outlet 144 of the plurality of coolers is disposed at a position higher than the lowermost end of the internal space of the main body 143.

上記した構成によれば、複数の冷却器が傾斜した場合でも、各冷却器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の冷却器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the above configuration, even when the plurality of coolers are inclined, the liquid storage portion is formed in the internal space of the main body of each cooler, and the liquid phase refrigerant is stored in the liquid storage portion. Therefore, the movement of the liquid-phase refrigerant from the high order cooler to the low order cooler is suppressed, and the temperature adjustment of the target device can be realized more stably.

なお、複数の冷却器の流入口141および流出口144の少なくとも1つは、循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面である適正液面以上の高さに配置されるのが好ましい。   Note that at least one of the inlets 141 and the outlets 144 of the plurality of coolers is higher than the appropriate liquid level, which is the target fluid level of the working fluid in the plurality of coolers when the circulation circuit is filled with the working fluid. It is preferred that the

具体的には、往路配管は、前後方向に延びる液通路を形成する液相連接配管211を有している。そして、液相連接配管は、該液相連接配管により形成される液通路が循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面である適正液面以上の高さとなるよう配置されるのが好ましい。   Specifically, the forward piping has a liquid phase connection piping 211 that forms a liquid passage extending in the front-rear direction. The liquid phase connecting pipe is higher than the appropriate liquid level which is the target liquid level of the working fluid in the plurality of coolers when the liquid passage formed by the liquid phase linking pipe is filled with the working fluid in the circulation circuit. Preferably, they are arranged to

(第8実施形態)
第8実施形態に係る機器温調装置について図16〜図17を用いて説明する。本実施形態の機器温調装置は、図16に示すように、第1高さ位置に配置された低段冷却器14B〜14Cと、第1高さ位置より高い第2高さ位置に配置された高段冷却器14Aと、を有している。本実施形態の機器温調装置は、複数の冷却器14A〜14Cが往路配管21および復路配管22によって直列に接続されている。
Eighth Embodiment
The apparatus temperature control apparatus which concerns on 8th Embodiment is demonstrated using FIGS. 16-17. As shown in FIG. 16, the device temperature control device of the present embodiment is disposed at the second height position higher than the first height position and the low-stage coolers 14B to 14C disposed at the first height position. And a high-stage cooler 14A. In the device temperature control apparatus of the present embodiment, a plurality of coolers 14A to 14C are connected in series by the forward pipe 21 and the return pipe 22.

往路配管21は、低段冷却器14Bの流入口141と高段冷却器14Aの流出口144との間を接続する高低接続配管217と、低段冷却器14Bの流出口144と低段冷却器14Cの流入口141との間を接続する凸部配管216と、を有している。   Outgoing piping 21 connects high-low connection piping 217 connecting between the inlet 141 of low-stage cooler 14B and the outlet 144 of high-stage cooler 14A, the outlet 144 of low-stage cooler 14B, and the low-stage cooler And a convex portion pipe 216 connected to the inflow port 141 of 14 C.

高低接続配管217は、低段冷却器14Bの流入口141と高段冷却器14Aの流出口144との間で、低段冷却器14Bの流入口141と高段冷却器14Aの流出口144よりも上下方向上側に突出する液通路217aを形成している。   The high / low connection piping 217 is between the inlet 141 of the low-stage cooler 14B and the outlet 144 of the high-stage cooler 14A between the inlet 141 of the low-stage cooler 14B and the outlet 144 of the high-stage cooler 14A. Also, a liquid passage 217a that protrudes upward in the vertical direction is formed.

また、凸部配管216は、低段冷却器14Bの流出口144と低段冷却器14Cの流入口141との間で、低段冷却器14Bの流出口144と低段冷却器14Cの流入口141よりも上下方向上側に突出する液通路216aを形成している。   In addition, the convex portion piping 216 is between the outlet 144 of the low-stage cooler 14B and the inlet of the low-stage cooler 14C between the outlet 144 of the low-stage cooler 14B and the inlet 141 of the low-stage cooler 14C. A liquid passage 216 a is formed to project upward in the vertical direction more than 141.

上記したように、往路配管21は、低段冷却器14Bの流入口141と高段冷却器14Aの流出口144との間を接続する高低接続配管として高低接続配管217を有している。そして、高低接続配管により形成される液通路217aの少なくとも一部が低段冷却器14Bの流入口141と高段冷却器14Aの流出口144よりも上下方向上側に突出している。   As described above, the forward piping 21 has high-low connection piping 217 as high-low connection piping that connects between the inflow port 141 of the low-stage cooler 14B and the outflow port 144 of the high-stage cooler 14A. Then, at least a part of the liquid passage 217a formed by the high and low connection piping protrudes vertically above the inflow port 141 of the low stage cooler 14B and the outflow port 144 of the high stage cooler 14A.

したがって、このように低段冷却器14B〜14Cよりも高い第2高さ位置に高段冷却器14Aが配置された場合でも、高低接続配管217により高段冷却器14Aの本体143の内部に液相冷媒を貯液する貯液部が形成され、高段冷却器14Aから低段冷却器14B〜14Cへの液相冷媒の流出が防止される。   Therefore, even when the high-stage cooler 14A is disposed at the second height position higher than the low-stage coolers 14B to 14C in this manner, the liquid in the main body 143 of the high-stage cooler 14A by the high and low connection piping 217 A liquid storage portion for storing the phase refrigerant is formed, and the outflow of the liquid phase refrigerant from the high stage cooler 14A to the low stage coolers 14B to 14C is prevented.

図17は、低段冷却器14Bの流入口141と高段冷却器14Aの流出口144との間に高低接続配管217が設けられていない比較例を示している。このような構成では、高段冷却器14Aの本体143に貯液されるべく液相冷媒が、重力の影響を受けて、往路配管21を通って低段冷却器14Bに流入してしまう。すなわち、第1高さ位置より高い第2高さ位置に配置された高段冷却器14Aには、十分な液相冷媒が供給されなくなる。   FIG. 17 shows a comparative example in which the high / low connection pipe 217 is not provided between the inlet 141 of the low-stage cooler 14B and the outlet 144 of the high-stage cooler 14A. In such a configuration, the liquid phase refrigerant to be stored in the main body 143 of the high stage cooler 14A flows into the low stage cooler 14B through the forward pipe 21 under the influence of gravity. That is, sufficient liquid phase refrigerant is not supplied to the high-stage cooler 14A disposed at the second height position higher than the first height position.

しかし、本実施形態の機器温調装置は、図16に示したように、低段冷却器14Bの流入口141と高段冷却器14Aの流出口144との間に、高低接続配管217が配置されている。この高低接続配管217は、低段冷却器14Bの流入口141と高段冷却器14Aの流出口144よりも上下方向上側に突出する液通路217aを形成する。   However, as shown in FIG. 16, in the device temperature control apparatus of the present embodiment, the high and low connection piping 217 is disposed between the inlet 141 of the low stage cooler 14B and the outlet 144 of the high stage cooler 14A. It is done. The high-low connection piping 217 forms a liquid passage 217a which protrudes upward in the vertical direction with respect to the inflow port 141 of the low-stage cooler 14B and the outflow port 144 of the high-stage cooler 14A.

したがって、低段冷却器14Bよりも高い第2高さ位置に高段冷却器14Aが配置されたような場合でも、高低接続配管217により高段冷却器14Aの本体の内部に液相冷媒を貯液する貯液部が形成され、高段冷却器14Aから低段冷却器14Bへの液相冷媒の流出を防止することができる。   Therefore, even when the high-stage cooler 14A is disposed at a second height position higher than the low-stage cooler 14B, the high-low connection piping 217 stores the liquid phase refrigerant inside the main body of the high-stage cooler 14A. A liquid storage portion to be liquid is formed, and the outflow of the liquid phase refrigerant from the high stage cooler 14A to the low stage cooler 14B can be prevented.

また、車両が上り坂あるいは下り坂を走行して低段冷却器14Bと低段冷却器14Cが傾斜した場合でも、凸部配管216により、低段冷却器14Bおよび低段冷却器14Cの本体143の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。これにより、低段冷却器14Bと低段冷却器14Cとの間の液相冷媒の移動が抑制される。   Further, even if the low-stage cooler 14B and the low-stage cooler 14C are inclined due to the vehicle traveling uphill or downhill, the main pipe 143 for the low-stage cooler 14B and the low-stage cooler 14C by the convex portion pipe 216 A liquid storage portion is formed in the inner space of the liquid crystal, and the liquid phase refrigerant is stored in the liquid storage portion. Thereby, the movement of the liquid phase refrigerant between the low-stage cooler 14B and the low-stage cooler 14C is suppressed.

以上、説明したように、本実施形態の機器温調装置10は、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体143の内部空間に導入する流入口141および本体にて蒸発した作動流体を復路配管へ排出する排出口142を有している。   As described above, in the device temperature control apparatus 10 according to the present embodiment, the plurality of coolers are operated by introducing the working fluid flowing in the forward piping into the internal space of the main body 143 and the evaporation of the fluid at the main body It has an outlet 142 for discharging the fluid to the return pipe.

また、複数の冷却器は、第1高さ位置に配置された低段冷却器と、第1高さ位置より高い第2高さ位置に配置された高段冷却器と、を含んできる。また、往路配管は、低段冷却器の流入口と高段冷却器の流出口との間を接続する高低接続配管217を有している。また、高低接続配管217により形成される液通路の少なくとも一部が低段冷却器の流入口と高段冷却器の流出口よりも上下方向上側に突出している。   Also, the plurality of coolers may include a low stage cooler disposed at a first height position and a high stage cooler disposed at a second height position higher than the first height position. In addition, the forward piping has high and low connection piping 217 that connects between the inlet of the low stage cooler and the outlet of the high stage cooler. In addition, at least a part of the liquid passage formed by the high and low connection piping 217 protrudes vertically above the inlet of the low stage cooler and the outlet of the high stage cooler.

上記した構成によれば、低段冷却器よりも高い第2高さ位置に高段冷却器が配置されたような場合でも、高低接続配管により高段冷却器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の冷却器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the configuration described above, even when the high-stage cooler is disposed at the second height position higher than the low-stage cooler, the liquid storage portion in the internal space of the main body of the high-stage cooler by the high / low connection piping The liquid phase refrigerant is stored in the liquid storage portion. Therefore, the movement of the liquid-phase refrigerant from the high order cooler to the low order cooler is suppressed, and the temperature adjustment of the target device can be realized more stably.

(第9実施形態)
第9実施形態に係る機器温調装置について図18を用いて説明する。本実施形態の機器温調装置は、第1高さ位置に配置された低段冷却器14B〜14Cと、第1高さ位置より高い第2高さ位置に配置された高段冷却器14Aと、を有している。本実施形態の機器温調装置は、複数の冷却器14A〜14Cが往路配管21および復路配管22によって直列に接続されている。
The ninth embodiment
An apparatus temperature control apparatus according to a ninth embodiment will be described with reference to FIG. The apparatus temperature control apparatus of this embodiment includes low-stage coolers 14B to 14C disposed at a first height position, and a high-stage cooler 14A disposed at a second height position higher than the first height position. ,have. In the device temperature control apparatus of the present embodiment, a plurality of coolers 14A to 14C are connected in series by the forward pipe 21 and the return pipe 22.

各冷却器14A〜14Cは、それぞれ液相冷媒を本体143の内部空間に導入する流入口141および本体143に導入された液相冷媒を流出させる流出口144を有している。   Each of the coolers 14A to 14C has an inlet 141 for introducing the liquid phase refrigerant into the internal space of the main body 143 and an outlet 144 for discharging the liquid phase refrigerant introduced to the main body 143.

往路配管21は、低段冷却器14B〜14Cの流入口141と高段冷却器14Aの流出口144との間を接続する高低接続配管217を有している。そして、高低接続配管217により形成される液通路217aの少なくとも一部は高段冷却器14Aの本体143の内部空間の最下端よりも高さの高い位置に配置されている。   The forward piping 21 has high-low connection piping 217 that connects between the inlets 141 of the low-stage coolers 14B to 14C and the outlet 144 of the high-stage cooler 14A. Then, at least a part of the liquid passage 217a formed by the high-low connection piping 217 is disposed at a position higher than the lowermost end of the internal space of the main body 143 of the high-stage cooler 14A.

具体的には、高低接続配管217により形成される液通路217aの少なくとも一部は循環回路に作動流体が充填される際の複数の冷却器14における作動流体の目標液面である適正液面以上の高さに配置されている。   Specifically, at least a portion of the fluid passage 217a formed by the high and low connection piping 217 is a target fluid surface or more of the working fluid in the plurality of coolers 14 when the working fluid is filled in the circulation circuit. Is located at the height of the

上記したように、高低接続配管217により形成される液通路217aの少なくとも一部は高段冷却器14Aの本体143の内部空間の最下端よりも高さの高い位置に配置されている。   As described above, at least a part of the liquid passage 217a formed by the high and low connection piping 217 is disposed at a position higher in height than the lowermost end of the internal space of the main body 143 of the high stage cooler 14A.

したがって、このように低段冷却器14B〜14Cよりも高い第2高さ位置に高段冷却器14Aが配置された場合でも、高低接続配管217により高段冷却器14Aの本体143の内部に液相冷媒を貯液する貯液部が形成され、高段冷却器14Aから低段冷却器14B〜14Cへの液相冷媒の流出が防止される。   Therefore, even when the high-stage cooler 14A is disposed at the second height position higher than the low-stage coolers 14B to 14C in this manner, the liquid in the main body 143 of the high-stage cooler 14A by the high and low connection piping 217 A liquid storage portion for storing the phase refrigerant is formed, and the outflow of the liquid phase refrigerant from the high stage cooler 14A to the low stage coolers 14B to 14C is prevented.

以上、説明したように、本実施形態の機器温調装置10では、複数の冷却器は、第1高さ位置に配置された低段冷却器と、第1高さ位置より高い第2高さ位置に配置された高段冷却器と、を含んでいる。また、往路配管21は、低段冷却器の流入口と高段冷却器の流出口との間を接続する高低接続配管217を有している。そして、高低接続配管217により形成される液通路217aの少なくとも一部は高段冷却器の本体の内部空間の最下端よりも高さの高い位置に配置されている。   As described above, in the device temperature control device 10 according to the present embodiment, the plurality of coolers includes the low-stage cooler disposed at the first height position, and the second height higher than the first height position. And a high stage cooler disposed at a position. In addition, the forward piping 21 has high-low connection piping 217 that connects between the inlet of the low-stage cooler and the outlet of the high-stage cooler. And, at least a part of the liquid passage 217a formed by the high and low connection piping 217 is disposed at a position higher in height than the lowermost end of the internal space of the main body of the high stage cooler.

上記した構成によれば、低段冷却器よりも高い第2高さ位置に高段冷却器が配置されたような場合でも、高低接続配管により高段冷却器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の冷却器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the configuration described above, even when the high-stage cooler is disposed at the second height position higher than the low-stage cooler, the liquid storage portion in the internal space of the main body of the high-stage cooler by the high / low connection piping The liquid phase refrigerant is stored in the liquid storage portion. Therefore, the movement of the liquid-phase refrigerant from the high order cooler to the low order cooler is suppressed, and the temperature adjustment of the target device can be realized more stably.

なお、高低接続配管により形成される液通路の少なくとも一部は循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面である適正液面以上の高さに配置されるのが好ましい。   In addition, at least a part of the liquid passage formed by the high and low connection piping is disposed at a height higher than the appropriate liquid level which is the target liquid level of the working fluid in the plurality of coolers when the working circuit is filled in the circulation circuit. Is preferred.

(第10実施形態)
第10実施形態に係る機器温調装置について図19を用いて説明する。上記第9実施形態の機器温調装置は、複数の冷却器14A〜14Cが往路配管21および復路配管22によって直列に接続されている。これに対し、本実施形態の機器温調装置は、複数の冷却器14A〜14Dが往路配管21および復路配管22によって並列に接続されている。
Tenth Embodiment
An apparatus temperature control apparatus according to a tenth embodiment will be described with reference to FIG. In the device temperature control apparatus of the ninth embodiment, a plurality of coolers 14A to 14C are connected in series by the forward pipe 21 and the return pipe 22. On the other hand, in the device temperature control apparatus of the present embodiment, a plurality of coolers 14A to 14D are connected in parallel by the forward pipe 21 and the return pipe 22.

本実施形態の機器温調装置は、第1高さ位置に配置された低段冷却器14C〜14Dと、第1高さ位置より高い第2高さ位置に配置された高段冷却器14A〜14Bと、を有している。   The device temperature control device of the present embodiment includes the low-stage coolers 14C to 14D disposed at the first height position, and the high-stage coolers 14A to 14 disposed at the second height position higher than the first height position. And 14B.

第1高さ位置に配置された低段冷却器14Cと、第1高さ位置より高い第2高さ位置に配置された高段冷却器14Bとの間には、高低接続配管217が配置されている。   High-low connection piping 217 is disposed between low-stage cooler 14C disposed at the first height position and high-stage cooler 14B disposed at the second height position higher than the first height position. ing.

高低接続配管217は、低段冷却器14Cの流入口141と、高段冷却器14Bの流入口141との間を接続するとともに、低段冷却器14Cの流入口141と高段冷却器14Bの流入口141よりも上下方向上側に突出する液通路217aを形成している。   The high-low connection piping 217 connects the inlet 141 of the low-stage cooler 14C and the inlet 141 of the high-stage cooler 14B, and also connects the inlet 141 of the low-stage cooler 14C and the high-stage cooler 14B. A liquid passage 217 a that protrudes upward in the vertical direction with respect to the inflow port 141 is formed.

すなわち、往路配管21は、低段冷却器14Cの流入口141と高段冷却器14Bの流入口141との間を接続する高低接続配管として高低接続配管217を有している。そして、高低接続配管217により形成される液通路217aの少なくとも一部が低段冷却器14Cの流入口141と高段冷却器14Bの流入口141よりも上下方向上側に突出している。   That is, the forward piping 21 has high-low connection piping 217 as high-low connection piping that connects between the inflow port 141 of the low-stage cooler 14C and the inflow port 141 of the high-stage cooler 14B. Then, at least a part of the liquid passage 217a formed by the high-low connection piping 217 protrudes vertically above the inflow port 141 of the low-stage cooler 14C and the inflow port 141 of the high-stage cooler 14B.

したがって、低段冷却器14Cよりも高い第2高さ位置に高段冷却器14Bが配置されたような場合でも、高低接続配管217により高段冷却器14Bおよび高段冷却器14Aの本体の内部空間に液相冷媒を貯液する貯液部が形成され、高段冷却器14A〜14Bから低段冷却器14C〜14Dへの液相冷媒の流出が防止される。   Therefore, even when the high stage cooler 14B is disposed at the second height position higher than the low stage cooler 14C, the interior of the main body of the high stage cooler 14B and the high stage cooler 14A by the high and low connection piping 217 A liquid storage portion for storing liquid phase refrigerant is formed in the space, and the outflow of liquid phase refrigerant from the high stage coolers 14A to 14B to the low stage coolers 14C to 14D is prevented.

また、高低接続配管217は、該高低接続配管217により形成される液通路217aの少なくとも一部がサーモサイフォン回路26に冷媒が充填される際の複数の冷却器14における液相冷媒の目標液面以上の高さとなるよう配置されている。   Further, the high and low connection piping 217 is a target liquid surface of the liquid phase refrigerant in the plurality of coolers 14 when the thermosiphon circuit 26 is filled with the refrigerant at least a part of the liquid passage 217a formed by the high and low connection piping 217 It is arranged to have the above height.

以上、説明したように、本実施形態の機器温調装置10では、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体143の内部空間に導入する流入口141および本体にて蒸発した作動流体を復路配管へ排出する排出口142を有している。   As described above, in the device temperature control apparatus 10 according to the present embodiment, the plurality of coolers are operated by introducing the working fluid flowing in the forward piping into the internal space of the main body 143 and the evaporation of the working fluid at the main body It has an outlet 142 for discharging the fluid to the return pipe.

また、複数の冷却器は、第1高さ位置に配置された低段冷却器と、第1高さ位置より高い第2高さ位置に配置された高段冷却器と、を含んでいる。また、往路配管は、低段冷却器の流入口と高段冷却器の流入口との間を接続する高低接続配管217を有している。また、高低接続配管217により形成される液通路の少なくとも一部が低段冷却器の流入口と高段冷却器の流入口よりも上下方向上側に突出している。   The plurality of coolers also include a low stage cooler disposed at a first height position and a high stage cooler disposed at a second height position higher than the first height position. In addition, the forward piping has high-low connection piping 217 that connects between the inlet of the low-stage cooler and the inlet of the high-stage cooler. In addition, at least a part of the liquid passage formed by the high and low connection piping 217 protrudes vertically above the inlet of the low-stage cooler and the inlet of the high-stage cooler.

上記した構成によれば、低段冷却器よりも高い第2高さ位置に高段冷却器が配置されたような場合でも、高低接続配管により高段冷却器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の冷却器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the configuration described above, even when the high-stage cooler is disposed at the second height position higher than the low-stage cooler, the liquid storage portion in the internal space of the main body of the high-stage cooler by the high / low connection piping The liquid phase refrigerant is stored in the liquid storage portion. Therefore, the movement of the liquid-phase refrigerant from the high order cooler to the low order cooler is suppressed, and the temperature adjustment of the target device can be realized more stably.

(第11実施形態)
第11実施形態に係る機器温調装置について図20を用いて説明する。上記第10実施形態の機器温調装置は、第1高さ位置に配置された低段冷却器14Cと第1高さ位置より高い第2高さ位置に配置された高段冷却器14Bとの間に高低接続配管217を配置した。
Eleventh Embodiment
An apparatus temperature control apparatus according to an eleventh embodiment will be described with reference to FIG. The apparatus temperature control apparatus according to the tenth embodiment includes the low stage cooler 14C disposed at the first height position and the high stage cooler 14B disposed at the second height position higher than the first height position. High-low connection piping 217 was disposed between them.

これに対し、本実施形態の機器温調装置の往路配管21は、低段冷却器14C〜14Dの各流入口141の間を接続する低所配管219と、高段冷却器14A〜14Bの各流入口141の間を接続する高低接続配管218と、を有している。   On the other hand, the forward piping 21 of the device temperature control apparatus of the present embodiment includes the lower pipe 219 connecting between the respective inlets 141 of the low stage coolers 14C to 14D, and the high stage coolers 14A to 14B. High and low connection pipes 218 connecting between the inflow ports 141;

本実施形態の機器温調装置10は、第1高さ位置に配置された低段冷却器14C〜14Dと、第1高さ位置より高い第2高さ位置に配置された高段冷却器14A〜14Bと、を有している。高段冷却器14A〜14Bの各流入口141は、本体143の下部に配置されている。   The device temperature control apparatus 10 according to the present embodiment includes the low-stage coolers 14C to 14D disposed at the first height position, and the high-stage cooler 14A disposed at the second height position higher than the first height position. And 14B. Each inflow port 141 of high stage coolers 14A-14B is arranged at the lower part of body 143.

低所配管219は、低段冷却器14C〜14Dの各流入口141の間を接続する液通路219aを形成する。高低接続配管218は、高段冷却器14A〜14Bの各流入口141の間を接続するとともに高段冷却器14A〜14Bの各流入口141と低所配管219との間を接続する液通路218aを形成する。   The low point piping 219 forms a liquid passage 219a connecting between the respective inlets 141 of the low stage coolers 14C to 14D. The high / low connection piping 218 connects between the respective inlets 141 of the high stage coolers 14A to 14B, and connects between the respective inlets 141 of the high stage coolers 14A to 14B and the low place piping 219. Form

高低接続配管218は、該高低接続配管218により形成される液通路218aの一部が、高段冷却器14の流入口141と低段冷却器14Cの流入口141よりも高さが高くなる液通路218aを形成する。   In the high-low connection piping 218, a portion of the liquid passage 218a formed by the high-low connection piping 218 is higher in height than the inlet 141 of the high-stage cooler 14 and the inlet 141 of the low-stage cooler 14C. The passage 218a is formed.

すなわち、往路配管21は、低段冷却器14Cの流入口141と高段冷却器14Bの流入口141との間を接続する高低接続配管として高低接続配管218を有している。そして、高低接続配管218により形成される液通路218aの一部が低段冷却器14Cの流入口141と高段冷却器14Bの流入口141よりも高さが高くなるよう構成されている。   That is, the forward piping 21 has high-low connection piping 218 as high-low connection piping that connects between the inflow port 141 of the low-stage cooler 14C and the inflow port 141 of the high-stage cooler 14B. Further, a part of the liquid passage 218a formed by the high and low connection piping 218 is configured to be higher in height than the inflow port 141 of the low-stage cooler 14C and the inflow port 141 of the high-stage cooler 14B.

したがって、このように低段冷却器14C〜14Dよりも高い第2高さ位置に高段冷却器14A〜14Bが配置された場合でも、高低接続配管218により高段冷却器14A〜14Bの本体143の内部に液相冷媒を貯液する貯液部が形成され、高段冷却器14A〜14Bから低段冷却器14C〜14Dへの液相冷媒の流出が防止される。   Therefore, even if the high stage coolers 14A to 14B are arranged at the second height position higher than the low stage coolers 14C to 14D in this manner, the high / low connection piping 218 causes the main body 143 of the high stage coolers 14A to 14B. The liquid storage part which stores liquid phase refrigerant is formed in the inside of, and the outflow of the liquid phase refrigerant from high stage coolers 14A-14B to low stage coolers 14C-14D is prevented.

以上、説明したように、本実施形態の機器温調装置10では、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体143の内部空間に導入する流入口141および本体にて蒸発した作動流体を復路配管へ排出する排出口142を有している。   As described above, in the device temperature control apparatus 10 according to the present embodiment, the plurality of coolers are operated by introducing the working fluid flowing in the forward piping into the internal space of the main body 143 and the evaporation of the working fluid at the main body It has an outlet 142 for discharging the fluid to the return pipe.

また、複数の冷却器は、第1高さ位置に配置された低段冷却器と、第1高さ位置より高い第2高さ位置に配置された高段冷却器と、を含んでいる。また、往路配管は、低段冷却器の流入口と高段冷却器の流入口との間を接続する高低接続配管218を有している。また、高低接続配管218により形成される液通路の少なくとも一部が低段冷却器の流入口と高段冷却器の流入口よりも上下方向上側に突出している。   The plurality of coolers also include a low stage cooler disposed at a first height position and a high stage cooler disposed at a second height position higher than the first height position. In addition, the forward piping has high-low connection piping 218 that connects between the inlet of the low-stage cooler and the inlet of the high-stage cooler. In addition, at least a part of the liquid passage formed by the high and low connection piping 218 protrudes vertically above the inlet of the low stage cooler and the inlet of the high stage cooler.

上記した構成によれば、低段冷却器よりも高い第2高さ位置に高段冷却器が配置されたような場合でも、高低接続配管により高段冷却器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の冷却器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   According to the configuration described above, even when the high-stage cooler is disposed at the second height position higher than the low-stage cooler, the liquid storage portion in the internal space of the main body of the high-stage cooler by the high / low connection piping The liquid phase refrigerant is stored in the liquid storage portion. Therefore, the movement of the liquid-phase refrigerant from the high order cooler to the low order cooler is suppressed, and the temperature adjustment of the target device can be realized more stably.

(第12実施形態)
第12実施形態に係る機器温調装置について図21を用いて説明する。上記第2実施形態では、液相連接配管211は、各冷却器14A〜14Dの流入口141とほぼ同じ高さに配置されており、接続配管213は、各冷却器14A〜14Dの流入口141から水平方向に延びるように液相連接配管211と接続されている。
(Twelfth embodiment)
An apparatus temperature control apparatus according to a twelfth embodiment will be described with reference to FIG. In the second embodiment, the liquid phase connection pipe 211 is disposed at substantially the same height as the inlets 141 of the coolers 14A to 14D, and the connection pipe 213 is the inlet 141 of the coolers 14A to 14D. Is connected to the liquid phase connecting pipe 211 so as to extend in the horizontal direction.

これに対し、本実施形態の接続配管213は、各冷却器14A〜14Dの流入口141と液相連接配管211との中間部が下方に下がるように曲がっている。   On the other hand, the connection piping 213 of the present embodiment is bent such that the intermediate portion between the inlets 141 of the coolers 14A to 14D and the liquid phase connection piping 211 is lowered downward.

これにより、液相連接配管211により形成される液通路211aを流れる液冷媒の流れが下方を向くようになり、各冷却器14A〜14Dの流入口141から本体143内に流入しやすくすることが可能となる。   As a result, the flow of the liquid refrigerant flowing in the liquid passage 211a formed by the liquid phase connection pipe 211 is directed downward, and it is easy to flow into the main body 143 from the inlets 141 of the respective coolers 14A to 14D. It becomes possible.

(第13実施形態)
第13実施形態に係る機器温調装置について図24〜図27を用いて説明する。本実施形態の機器温調装置は、上記第1実施形態の機器温調装置と比較して、対象機器を暖機する機能を有している点が異なる。
(13th Embodiment)
An apparatus temperature control apparatus according to a thirteenth embodiment will be described with reference to FIGS. 24 to 27. The device temperature control device of the present embodiment differs from the device temperature control device of the first embodiment in that it has a function of warming up a target device.

本実施形態の各冷却器14A〜14Dは、それぞれ本体143の内部空間に導入された冷媒を加熱するために流出させる加熱用流出口145と、加熱用流出口145から流出した冷媒を本体143の内部空間に導入する加熱用流入口146と、を有している。加熱用流入口146は、加熱用流出口145より上下方向上側に配置されている。   Each of the coolers 14A to 14D of the present embodiment includes a heating outlet 145 for flowing out to heat the refrigerant introduced into the internal space of the main body 143, and a refrigerant flowing out of the heating outlet 145 for the main body 143. And a heating inlet 146 introduced into the internal space. The heating inlet 146 is disposed above the heating outlet 145 in the vertical direction.

なお、加熱用流出口145および加熱用流入口146は、本体143における流入口141と排出口142とが形成されている面と対向する面に形成されている。   The heating outlet 145 and the heating inlet 146 are formed on the surface of the main body 143 opposite to the surface on which the inlet 141 and the outlet 142 are formed.

また、加熱用流出口145と加熱用流入口146との間には、加熱用流出口145と加熱用流入口146との間を接続する暖機用配管40が設けられている。暖機用配管40は、加熱用流出口145から流出した冷媒を加熱用流入口146へ導入する。   Further, between the heating outlet 145 and the heating inlet 146, a warming-up pipe 40 for connecting the heating outlet 145 and the heating inlet 146 is provided. The warming-up pipe 40 introduces the refrigerant flowing out of the heating outlet 145 into the heating inlet 146.

また、暖機用配管40には、該暖機用配管40の内部に導入された液相の冷媒を加熱する加熱源30が設けられている。加熱源30は、PTC(Positive Temperature Coefficient)ヒータによって構成されている。   Further, the heating pipe 30 is provided with a heating source 30 for heating the liquid-phase refrigerant introduced into the warming pipe 40. The heating source 30 is constituted by a PTC (Positive Temperature Coefficient) heater.

加熱源30は、本体143から離れた位置に配置されている。加熱源30は、冷却器14の本体143内の液冷媒の液面よりも上下方向下側に位置するよう配置されている。なお、暖機用配管40の内部に導入された液相の冷媒を効率的に加熱するためには、加熱源30の少なくとも一部が、冷却器14の本体143内の液冷媒の液面よりも上下方向下側に位置するよう加熱源30を配置するのが好ましい。   The heating source 30 is disposed at a position away from the main body 143. The heating source 30 is disposed below the liquid surface of the liquid refrigerant in the main body 143 of the cooler 14 in the vertical direction. In order to efficiently heat the liquid-phase refrigerant introduced into the warming-up pipe 40, at least a portion of the heating source 30 is from the liquid surface of the liquid refrigerant in the main body 143 of the cooler 14. It is preferable to arrange the heating source 30 so as to be located on the lower side in the vertical direction.

また、本実施形態の機器温調装置は、図24に示すように往路配管21により形成される液通路21aを開閉するバルブ50を備えている。   Moreover, the device temperature control apparatus of this embodiment is equipped with the valve | bulb 50 which opens and closes the liquid path 21a formed of the outgoing path piping 21 as shown in FIG.

対象機器の冷却時には、加熱源30はオフするよう制御され、バルブ50は往路配管21により形成される液通路を開くよう制御される。そして、図26に示すように、凝縮器16から供給された液冷媒が往路配管21、接続配管212、を通って本体143の内部空間に流入する。   When the target device is cooled, the heating source 30 is controlled to be turned off, and the valve 50 is controlled to open the liquid passage formed by the forward pipe 21. Then, as shown in FIG. 26, the liquid refrigerant supplied from the condenser 16 flows into the internal space of the main body 143 through the forward pipe 21 and the connection pipe 212.

ここで、本体143の内部空間に流入した液冷媒は高温の電池12a、12bから受熱し、蒸発・気化しながら上下方向上側に移動する。この過程において、電池12a、12bが冷却される。気化した気相冷媒は復路配管22を通り、凝縮器16に流入する。この際、暖機用配管40にも液冷媒が流入するが、加熱源30はオフしているため暖機用配管40の内部で液冷媒の蒸発は行われないことから、暖機用配管40の冷媒流れはほとんど生じない。   Here, the liquid refrigerant that has flowed into the internal space of the main body 143 receives heat from the high temperature batteries 12a and 12b, and moves upward in the vertical direction while being evaporated and vaporized. In this process, the batteries 12a, 12b are cooled. The vaporized gas phase refrigerant passes through the return pipe 22 and flows into the condenser 16. At this time, the liquid refrigerant also flows into the warming-up pipe 40, but the evaporation of the liquid refrigerant is not performed inside the warming-up pipe 40 because the heating source 30 is off. There is almost no refrigerant flow.

一方、対象機器の暖機時には、加熱源30はオンするよう制御され、バルブ50は往路配管21により形成される液通路を閉じるよう制御される。図27に示すように、暖機用配管40に導入された液冷媒は、加熱源30により加熱され蒸発・気化し上下方向上側に移動して加熱用流入口146から本体143の内部空間に導入される。この過程において、電池が加熱される。   On the other hand, when the target device is warmed up, the heating source 30 is controlled to be turned on, and the valve 50 is controlled to close the liquid passage formed by the forward piping 21. As shown in FIG. 27, the liquid refrigerant introduced into the warming-up pipe 40 is heated by the heating source 30, evaporated and vaporized, moves upward in the vertical direction, and is introduced into the internal space of the main body 143 from the heating inlet 146 Be done. In this process, the battery is heated.

本体143内で放熱した冷媒は下方へ移動し、液冷媒となって、再度、暖機用配管40へ流入する。この際、バルブ50は往路配管21により形成される液通路を閉じるよう制御されているので、往路配管21および復路配管22の冷媒流れはほとんど生じない。   The refrigerant that has dissipated heat in the main body 143 moves downward, turns into liquid refrigerant, and flows into the warming up pipe 40 again. At this time, since the valve 50 is controlled to close the liquid passage formed by the forward pipe 21, the refrigerant flow in the forward pipe 21 and the return pipe 22 hardly occurs.

以上、説明したように、複数の冷却器14A〜14Dは、それぞれ本体143の内部空間に導入された冷媒を加熱するために流出させる加熱用流出口145と、加熱用流出口145より上下方向上側に配置され、加熱用流出口から流出した冷媒を本体143の内部空間に導入する加熱用流入口146と、を有している。   As described above, each of the plurality of coolers 14A to 14D has the heating outlet 145 for flowing out to heat the refrigerant introduced into the internal space of the main body 143, and the heating outlet 145 above the heating outlet. And a heating inlet 146 for introducing the refrigerant flowing out from the heating outlet into the internal space of the main body 143.

また、加熱用流出口145と加熱用流入口146との間には、加熱用流出口145から流出した冷媒を加熱用流入口146へ導入する暖機用配管40が設けられている。さらに、暖機用配管40には、該暖機用配管40の内部に導入された液相の冷媒を加熱する加熱源30が設けられている。そして、加熱源30により加熱された冷媒が暖機用配管40を通って加熱用流入口146から本体143の内部空間に導入される。このように、加熱源30によって冷媒を加熱し、対象機器を暖機することができる。   Further, between the heating outlet 145 and the heating inlet 146, a warming-up pipe 40 for introducing the refrigerant flowing out from the heating outlet 145 to the heating inlet 146 is provided. Furthermore, the heating pipe 30 is provided with a heating source 30 for heating the liquid-phase refrigerant introduced into the heating pipe 40. Then, the refrigerant heated by the heating source 30 is introduced into the internal space of the main body 143 from the heating inlet 146 through the warming up pipe 40. Thus, the refrigerant can be heated by the heat source 30 to warm up the target device.

なお、本実施形態では、PTCヒータによって加熱源30を構成したが、例えば、PTCヒータ以外の電気ヒータ、温水熱交換器、冷凍サイクルの放熱器、ペルチェ素子等の熱電素子、SMR(System Main Relay)等によって加熱源30を構成することもできる。   In the present embodiment, the PTC heater constitutes the heating source 30. However, for example, an electric heater other than a PTC heater, a hot water heat exchanger, a radiator of a refrigeration cycle, a thermoelectric element such as a Peltier element, SMR (System Main Relay) The heating source 30 can also be configured by a method such as

(第14実施形態)
第14実施形態に係る機器温調装置について図28〜図31を用いて説明する。本実施形態では、図2に示した機器温調装置と比較して、対象機器を暖機する機能を有している点が異なる。
Fourteenth Embodiment
An apparatus temperature control apparatus according to a fourteenth embodiment will be described with reference to FIGS. 28 to 31. The present embodiment differs from the device temperature control apparatus shown in FIG. 2 in that it has a function of warming up the target device.

本実施形態の機器温調装置は、往路配管21と復路配管22との間を接続する暖機用配管41と、この暖機用配管41の内部に導入された液相の冷媒を加熱する加熱源30と、を備えている。加熱源30は、その少なくとも一部が冷却器14の本体143内の液冷媒の液面よりも上下方向下側に位置するよう配置されている。   The device temperature control apparatus according to the present embodiment heats the liquid phase refrigerant introduced into the interior of the warm-up pipe 41 and the warm-up pipe 41 connecting the forward pipe 21 and the return pipe 22. And a source 30. The heating source 30 is disposed such that at least a portion thereof is positioned vertically below the liquid surface of the liquid refrigerant in the main body 143 of the cooler 14.

また、本実施形態の機器温調装置は、図24に示したように往路配管21により形成される液通路を開閉するバルブ50を備えている。   Moreover, the device temperature control apparatus of this embodiment is equipped with the valve | bulb 50 which opens and closes the liquid passage formed of the outgoing path piping 21 as shown in FIG.

対象機器の冷却時には、加熱源30はオフするよう制御され、図24に示したバルブ50は往路配管21により形成される液通路を開くよう制御される。図30に示すように、凝縮器16から供給された液冷媒は、往路配管21、接続配管212を通り本体143の内部空間に流入する。ここで、本体143の内部空間に流入した液冷媒は高温の電池12a、12bから受熱し、蒸発・気化しながら上下方向上側に移動する。この過程において、電池12a、12bが冷却される。気相冷媒は復路配管22を通り、凝縮器16に流入する。   When the target device is cooled, the heating source 30 is controlled to be turned off, and the valve 50 shown in FIG. 24 is controlled to open the liquid passage formed by the forward piping 21. As shown in FIG. 30, the liquid refrigerant supplied from the condenser 16 flows into the internal space of the main body 143 through the forward pipe 21 and the connection pipe 212. Here, the liquid refrigerant that has flowed into the internal space of the main body 143 receives heat from the high temperature batteries 12a and 12b, and moves upward in the vertical direction while being evaporated and vaporized. In this process, the batteries 12a, 12b are cooled. The gas phase refrigerant flows into the condenser 16 through the return pipe 22.

一方、対象機器の暖機時には、加熱源30はオンするよう制御され、バルブ50は往路配管21により形成される液通路を閉じるよう制御される。そして、図31に示すように、暖機用配管41に導入された液冷媒が加熱源30により加熱され、蒸発・気化しながら上下方向上側に移動して排出口142から本体143の内部空間に導入される。この過程において、電池12a、12bが加熱される。本体143内で放熱した冷媒は下方へ移動し、液冷媒となって、再度、流入口141から往路配管21に流出する。この際、バルブ50は往路配管21により形成される液通路を閉じるよう制御されているので、往路配管21および復路配管22の冷媒流れはほとんど生じない。   On the other hand, when the target device is warmed up, the heating source 30 is controlled to be turned on, and the valve 50 is controlled to close the liquid passage formed by the forward piping 21. Then, as shown in FIG. 31, the liquid refrigerant introduced into the warming-up pipe 41 is heated by the heating source 30 and moves upward in the vertical direction while being evaporated and vaporized, and is discharged from the discharge port 142 to the internal space of the main body 143 be introduced. In this process, the batteries 12a, 12b are heated. The refrigerant that has dissipated heat in the main body 143 moves downward, becomes liquid refrigerant, and again flows out from the inflow port 141 to the forward pipe 21. At this time, since the valve 50 is controlled to close the liquid passage formed by the forward pipe 21, the refrigerant flow in the forward pipe 21 and the return pipe 22 hardly occurs.

以上、説明したよう、加熱源30によって冷媒を加熱し、対象機器を暖機することができる。   As described above, the refrigerant can be heated by the heating source 30 to warm up the target device.

(第15実施形態)
第15実施形態に係る機器温調装置について図32を用いて説明する。本実施形態の機器温調装置は、図14に示した機器温調装置に対して対象機器を暖機する機能を有している点が異なる。
(Fifteenth embodiment)
An apparatus temperature control apparatus according to a fifteenth embodiment will be described with reference to FIG. The apparatus temperature control apparatus of this embodiment differs in that the apparatus temperature control apparatus shown in FIG. 14 has a function of warming up the target apparatus.

本実施形態の機器温調装置は、3つの冷却器14A〜14Cが往路配管21により直列に接続されている。また、3つの冷却器14A〜14Cのうち、凝縮器16から最も離れた位置に配置された冷却器14Cは、本体143の内部空間に導入された冷媒を加熱するために流出させる加熱用流出口145と、加熱用流出口145から流出した冷媒を本体143の内部空間に導入する加熱用流入口146と、を有している。加熱用流入口146は、加熱用流出口145より上下方向上側に配置されている。   In the device temperature control apparatus of the present embodiment, three coolers 14A to 14C are connected in series by the forward pipe 21. Further, among the three coolers 14A to 14C, the cooler 14C disposed at a position farthest from the condenser 16 is a heating outlet for causing the refrigerant introduced into the internal space of the main body 143 to flow out in order to heat it. And a heating inlet 146 for introducing the refrigerant flowing out of the heating outlet 145 into the internal space of the main body 143. The heating inlet 146 is disposed above the heating outlet 145 in the vertical direction.

また、冷却器14Cにおける加熱用流出口145と加熱用流入口146との間には、加熱用流出口145から流出した冷媒を加熱用流入口146へ導入する暖機用配管40が設けられている。また、暖機用配管40には、該暖機用配管40の内部に導入された液相の冷媒を加熱する加熱源30が設けられている。   In addition, between the heating outlet 145 and the heating inlet 146 in the cooler 14C, a warming-up pipe 40 for introducing the refrigerant flowing out from the heating outlet 145 to the heating inlet 146 is provided. There is. Further, the heating pipe 30 is provided with a heating source 30 for heating the liquid-phase refrigerant introduced into the warming pipe 40.

また、本実施形態の機器温調装置は、図24に示したように往路配管21により形成される液通路を開閉するバルブ50を備えている。   Moreover, the device temperature control apparatus of this embodiment is equipped with the valve | bulb 50 which opens and closes the liquid passage formed of the outgoing path piping 21 as shown in FIG.

対象機器の暖機時には、加熱源30はオンするよう制御され、図24に示したバルブ50は往路配管21により形成される液通路を閉じるよう制御される。冷却器14Cの本体143の内部空間から加熱用流出口145を通って暖機用配管40に導入された液冷媒は、加熱源30により加熱され、蒸発・気化しながら上下方向上側に移動して加熱用流入口146から冷却器14Cの本体143の内部空間に導入される。この過程において、冷却器14Cの両側に配置された電池12a、12bが加熱される。   When the target device is warmed up, the heating source 30 is controlled to be turned on, and the valve 50 shown in FIG. 24 is controlled to close the liquid passage formed by the forward piping 21. The liquid refrigerant introduced from the internal space of the main body 143 of the cooler 14C through the heating outlet 145 into the warming-up pipe 40 is heated by the heating source 30, and moves upward in the vertical direction while being vaporized and vaporized. It is introduced from the heating inlet 146 into the internal space of the main body 143 of the cooler 14C. In this process, the batteries 12a and 12b disposed on both sides of the cooler 14C are heated.

また、冷却器14Cの本体143の内部空間に導入された冷媒は、下方へ移動し、液冷媒となって加熱用流出口145から暖機用配管40に導入される。また、冷却器14Cの本体143の内部空間に導入された冷媒の一部は、復路配管22を通って冷却器14Bの本体143の内部空間に導入される。これにより、冷却器14Bの両側に配置された電池12a、12bが加熱される。   Further, the refrigerant introduced into the internal space of the main body 143 of the cooler 14C moves downward and becomes a liquid refrigerant and is introduced from the heating outlet 145 into the warming up pipe 40. Further, part of the refrigerant introduced into the internal space of the main body 143 of the cooler 14C is introduced into the internal space of the main body 143 of the cooler 14B through the return pipe 22. As a result, the batteries 12a and 12b disposed on both sides of the cooler 14B are heated.

さらに、冷却器14Bの本体143の内部空間に導入された冷媒の一部は、復路配管22を通って冷却器14Aの本体143の内部空間に導入される。これにより、冷却器14Aの両側に配置された電池12a、12bが加熱される。   Furthermore, a part of the refrigerant introduced into the internal space of the main body 143 of the cooler 14B is introduced into the internal space of the main body 143 of the cooler 14A through the return pipe 22. As a result, the batteries 12a and 12b disposed on both sides of the cooler 14A are heated.

この際、バルブ50は往路配管21により形成される液通路を閉じるよう制御されているので、往路配管21および復路配管22の冷媒流れはほとんど生じない。   At this time, since the valve 50 is controlled to close the liquid passage formed by the forward pipe 21, the refrigerant flow in the forward pipe 21 and the return pipe 22 hardly occurs.

以上、説明したよう、加熱源30によって冷媒を加熱し、対象機器を暖機することができる。   As described above, the refrigerant can be heated by the heating source 30 to warm up the target device.

(第16実施形態)
第16実施形態に係る機器温調装置について図33を用いて説明する。上記第15実施形態の機器温調装置では、冷却器14A〜14Cの間が凸部配管216により接続されている。これに対し、本実施形態の機器温調装置は、冷却器14A〜14Cの間が液相連接配管211により接続されている。
Sixteenth Embodiment
An apparatus temperature control apparatus according to a sixteenth embodiment will be described with reference to FIG. In the device temperature control apparatus of the fifteenth embodiment, the coolers 14A to 14C are connected by the convex portion pipe 216. On the other hand, in the device temperature control apparatus of the present embodiment, the coolers 14A to 14C are connected by the liquid phase connecting pipe 211.

なお、冷却器14Cの熱用流出口145と加熱用流入口146との間に暖機用配管40が配置され、暖機用配管40に、該暖機用配管40の内部に導入された液相の冷媒を加熱する加熱源30が設けられている点については、上記第15実施形態と同様である。   The warming pipe 40 is disposed between the heat outlet 145 of the cooler 14 C and the heating inlet 146, and the liquid introduced into the warming pipe 40 into the warming pipe 40. The heat source 30 for heating the phase refrigerant is provided as in the fifteenth embodiment.

このように、冷却器14A〜14Cの間に液相連接配管211を配置した構成においても、対象機器を暖機する機能を有することができる。   As described above, even in the configuration in which the liquid phase connection pipe 211 is disposed between the coolers 14A to 14C, the function of warming up the target device can be provided.

(第17実施形態)
第17実施形態に係る機器温調装置について図34を用いて説明する。本実施形態の機器温調装置は、図34に示すように、第1高さ位置に配置された低段冷却器14B〜14Cと、第1高さ位置より高い第2高さ位置に配置された高段冷却器14Aと、を有している。また、低段冷却器14Bの流入口141と高段冷却器14Aの流出口144との間に、高低接続配管217が配置されている。
(Seventeenth embodiment)
An apparatus temperature control apparatus according to a seventeenth embodiment will be described with reference to FIG. As shown in FIG. 34, the device temperature control device of the present embodiment is disposed at the second height position higher than the first height position and the low-stage coolers 14B to 14C disposed at the first height position. And a high-stage cooler 14A. Further, high and low connection pipes 217 are disposed between the inlet 141 of the low-stage cooler 14B and the outlet 144 of the high-stage cooler 14A.

なお、冷却器14Cの熱用流出口145と加熱用流入口146との間に暖機用配管40が配置され、暖機用配管40に、該暖機用配管40の内部に導入された液相の冷媒を加熱する加熱源30が設けられている点については、上記第15実施形態と同様である。   The warming pipe 40 is disposed between the heat outlet 145 of the cooler 14 C and the heating inlet 146, and the liquid introduced into the warming pipe 40 into the warming pipe 40. The heat source 30 for heating the phase refrigerant is provided as in the fifteenth embodiment.

また、本実施形態の機器温調装置は、図24に示したように往路配管21により形成される液通路を開閉するバルブ50を備えている。   Moreover, the device temperature control apparatus of this embodiment is equipped with the valve | bulb 50 which opens and closes the liquid passage formed of the outgoing path piping 21 as shown in FIG.

このように、第1高さ位置に配置された低段冷却器14B〜14Cと、第1高さ位置より高い第2高さ位置に配置された高段冷却器14Aと、を有している構成においても、対象機器を暖機する機能を有することができる。   Thus, the low stage coolers 14B to 14C disposed at the first height position and the high stage cooler 14A disposed at the second height position higher than the first height position are provided. The configuration can also have a function of warming up the target device.

(第18実施形態)
第18実施形態に係る機器温調装置について図35を用いて説明する。本実施形態の機器温調装置は、図35に示すように、第1高さ位置に配置された低段冷却器14B〜14Cと、第1高さ位置より高い第2高さ位置に配置された高段冷却器14Aと、を有している。また、往路配管21は、低段冷却器14B〜14Cの流入口141と高段冷却器14Aの流出口144との間を接続する高低接続配管217を有している。そして、高低接続配管217により形成される液通路217aの少なくとも一部は高段冷却器14Aの本体143の内部空間の最下端よりも高さの高い位置に配置されている。
Eighteenth Embodiment
An apparatus temperature control apparatus according to an eighteenth embodiment will be described with reference to FIG. As shown in FIG. 35, the device temperature control device of the present embodiment is disposed at the second height position higher than the first height position and the low-stage coolers 14B to 14C disposed at the first height position. And a high-stage cooler 14A. In addition, the forward piping 21 has high-low connection piping 217 that connects between the inflow ports 141 of the low-stage coolers 14B to 14C and the outflow port 144 of the high-stage cooler 14A. Then, at least a part of the liquid passage 217a formed by the high-low connection piping 217 is disposed at a position higher than the lowermost end of the internal space of the main body 143 of the high-stage cooler 14A.

なお、冷却器14Cの加熱用流出口145と加熱用流入口146との間に暖機用配管40が配置され、暖機用配管40に、該暖機用配管40の内部に導入された液相の冷媒を加熱する加熱源30が設けられている点については、上記第15実施形態と同様である。   The warming pipe 40 is disposed between the heating outlet 145 and the heating inlet 146 of the cooler 14C, and the liquid introduced into the warming pipe 40 into the warming pipe 40. The heat source 30 for heating the phase refrigerant is provided as in the fifteenth embodiment.

また、本実施形態の機器温調装置は、図24に示したように往路配管21により形成される液通路を開閉するバルブ50を備えている。   Moreover, the device temperature control apparatus of this embodiment is equipped with the valve | bulb 50 which opens and closes the liquid passage formed of the outgoing path piping 21 as shown in FIG.

このように、第1高さ位置に配置された低段冷却器14B〜14Cと、第1高さ位置より高い第2高さ位置に配置された高段冷却器14Aと、を有している構成においても、対象機器を暖機する機能を有することができる。   Thus, the low stage coolers 14B to 14C disposed at the first height position and the high stage cooler 14A disposed at the second height position higher than the first height position are provided. The configuration can also have a function of warming up the target device.

(第19実施形態)
第19実施形態に係る機器温調装置について図36を用いて説明する。本実施形態の機器温調装置は、図4に示した機器温調装置と同様に、各冷却器14A〜14Dが、凝縮器16に対して並列に接続されている。すなわち、往路配管21は、凝縮器16の凝縮器出口162と各冷却器14A〜14Dの流入口141との間を接続している。
Nineteenth Embodiment
An apparatus temperature control apparatus according to a nineteenth embodiment will be described with reference to FIG. In the device temperature control apparatus of the present embodiment, the respective coolers 14A to 14D are connected in parallel to the condenser 16 similarly to the device temperature control apparatus shown in FIG. 4. That is, the forward pipe 21 connects between the condenser outlet 162 of the condenser 16 and the inlet 141 of each of the coolers 14A to 14D.

また、往路配管21は、該往路配管21により形成される液通路の少なくとも一部が各冷却器14A〜14Dの流入口141よりも高い位置となるよう配置されている。より具体的には、往路配管21は、液相連接配管211により形成される液通路211aが各冷却器14A〜14Dの流入口141よりも高い位置となるよう配置されている。   In addition, the forward pipe 21 is disposed such that at least a part of the liquid passage formed by the forward pipe 21 is at a position higher than the inflow ports 141 of the coolers 14A to 14D. More specifically, the forward piping 21 is disposed such that the liquid passage 211a formed by the liquid phase connecting piping 211 is at a higher position than the inflow ports 141 of the coolers 14A to 14D.

また、凝縮器16と冷却器14Aとの間の往路配管21に、該往路配管21に導入された冷媒を加熱する加熱源30が設けられている。加熱源30は、冷却器14の本体143内の液冷媒の液面よりも上下方向下側に位置するよう配置されている。具体的には、加熱源30の一部が、冷却器14の本体143内の液冷媒の液面よりも上下方向下側に位置するよう加熱源30が配置されている。   Further, a heating source 30 for heating the refrigerant introduced into the forward pipe 21 is provided in the forward pipe 21 between the condenser 16 and the cooler 14A. The heating source 30 is disposed below the liquid surface of the liquid refrigerant in the main body 143 of the cooler 14 in the vertical direction. Specifically, the heating source 30 is disposed such that a part of the heating source 30 is positioned below the liquid surface of the liquid refrigerant in the main body 143 of the cooler 14 in the vertical direction.

また、本実施形態の機器温調装置は、バルブ50と冷却器14Aとの間の往路配管21と、凝縮器16と冷却器14Dとの間を接続する気相液相連通配管42を備えている。   Further, the device temperature control apparatus of the present embodiment includes the forward pipe 21 between the valve 50 and the cooler 14A, and the vapor-phase liquid phase communication pipe 42 for connecting the condenser 16 and the cooler 14D. There is.

また、本実施形態の機器温調装置は、往路配管21により形成される液通路を開閉するバルブ50を備えている。   Moreover, the device temperature control apparatus of this embodiment is equipped with the valve | bulb 50 which opens and closes the liquid passage formed of the outgoing path piping 21. As shown in FIG.

対象機器の冷却時には、加熱源30はオフするよう制御され、バルブ50は往路配管21により形成される液通路を開くよう制御される。凝縮器16から供給された液冷媒は、往路配管21を通り冷却器14A〜14Dの内部空間に流入する。なお、復路配管22の内部圧力の方が往路配管21の内部圧力よりも高くなっているので、凝縮器16から供給された液冷媒は、ほとんど復路配管22側へ流れない。ここで、本体143の内部空間に流入した液冷媒は高温の電池12a、12bから受熱し、蒸発・気化しながら上下方向上側に移動する。この過程において、電池12a、12bが冷却される。気相冷媒は復路配管22を通り、凝縮器16に流入する。   When the target device is cooled, the heating source 30 is controlled to be turned off, and the valve 50 is controlled to open the liquid passage formed by the forward pipe 21. The liquid refrigerant supplied from the condenser 16 passes through the forward pipe 21 and flows into the internal space of the coolers 14A to 14D. Since the internal pressure of the return pipe 22 is higher than the internal pressure of the forward pipe 21, the liquid refrigerant supplied from the condenser 16 hardly flows to the return pipe 22 side. Here, the liquid refrigerant that has flowed into the internal space of the main body 143 receives heat from the high temperature batteries 12a and 12b, and moves upward in the vertical direction while being evaporated and vaporized. In this process, the batteries 12a, 12b are cooled. The gas phase refrigerant flows into the condenser 16 through the return pipe 22.

一方、対象機器の暖機時には、加熱源30はオンするよう制御され、バルブ50は往路配管21により形成される液通路を閉じるよう制御される。凝縮器16から往路配管21に導入された液冷媒は、加熱源30により加熱され、蒸発・気化しながら上下方向上側に移動し、気相液相連通配管42および復路配管22を通って冷却器14A〜14Dの排出口142から各本体143の内部空間に導入される。この過程において、電池12a、12bが加熱される。本体143内で放熱した冷媒は下方へ移動し、液冷媒となって、再度、流入口141から往路配管21に流出する。そして、往路配管21に導入された液冷媒は、加熱源30によって、再度、加熱される。   On the other hand, when the target device is warmed up, the heating source 30 is controlled to be turned on, and the valve 50 is controlled to close the liquid passage formed by the forward piping 21. The liquid refrigerant introduced from the condenser 16 to the forward pipe 21 is heated by the heating source 30, moves upward and downward while being evaporated and vaporized, and passes through the vapor phase liquid phase communication pipe 42 and the return pipe 22 to be a cooler It introduce | transduces into the interior space of each main body 143 from the discharge port 142 of 14A-14D. In this process, the batteries 12a, 12b are heated. The refrigerant that has dissipated heat in the main body 143 moves downward, becomes liquid refrigerant, and again flows out from the inflow port 141 to the forward pipe 21. Then, the liquid refrigerant introduced into the forward piping 21 is again heated by the heating source 30.

(第20実施形態)
第20実施形態に係る機器温調装置について図37を用いて説明する。上記第19実施形態の機器温調装置は、バルブ50と冷却器14Aとの間の往路配管21と、凝縮器16と冷却器14Dとの間を接続する気相液相連通配管42を備えている。これに対し、本実施形態の機器温調装置は、バルブ50と冷却器14Dとの間の往路配管21と、凝縮器16と冷却器14Aとの間を接続する気相液相連通配管42を備えている。
(Twentieth embodiment)
An apparatus temperature control system according to the twentieth embodiment will be described with reference to FIG. The apparatus temperature control apparatus of the nineteenth embodiment includes the forward pipe 21 between the valve 50 and the cooler 14A, and the vapor-phase liquid phase communication pipe 42 for connecting the condenser 16 and the cooler 14D. There is. On the other hand, in the device temperature control apparatus of the present embodiment, the forward pipe 21 between the valve 50 and the cooler 14D, and the vapor phase liquid phase communication pipe 42 connecting between the condenser 16 and the cooler 14A. Have.

なお、凝縮器16と冷却器14Aとの間の往路配管21に加熱源30が設けられている点、バルブ50と冷却器14Aとの間の往路配管21と、凝縮器16と冷却器14Dとの間を接続する気相液相連通配管42を備えている点は、上記第19実施形態と同様である。   Note that the heat source 30 is provided in the forward piping 21 between the condenser 16 and the cooler 14A, the outward piping 21 between the valve 50 and the cooler 14A, the condenser 16 and the cooler 14D, and the like. The third embodiment is the same as the nineteenth embodiment in that a vapor phase liquid phase communication pipe 42 for connecting the two is provided.

このように、バルブ50と冷却器14Dとの間の往路配管21と、凝縮器16と冷却器14Aとの間を接続する気相液相連通配管42を備えた構成においても、対象機器を暖機する機能を有することができる。   As described above, even in the configuration provided with the forward path piping 21 between the valve 50 and the cooler 14D, and the vapor phase liquid phase communication piping 42 connecting the condenser 16 and the cooler 14A, the target device is warmed up. You can have the ability to play.

(第21実施形態)
第21実施形態に係る機器温調装置について図38を用いて説明する。上記第20実施形態では、往路配管21は、液相連接配管211により形成される液通路211aが各冷却器14A〜14Dの流入口141よりも高い位置となるよう配置され、かつ、液相連接配管211が車両前後方向に直線状に延びるように配置されている。
(Twenty-first embodiment)
An apparatus temperature control apparatus according to a twenty first embodiment will be described with reference to FIG. In the twentieth embodiment, the forward piping 21 is disposed such that the liquid passage 211a formed by the liquid phase connection piping 211 is at a higher position than the inflow ports 141 of the coolers 14A to 14D, and the liquid phase connection is performed. The pipe 211 is arranged to extend linearly in the longitudinal direction of the vehicle.

これに対し、本実施形態の機器温調装置では、往路配管21は、液相連接配管211により形成される液通路211aが各冷却器14A〜14Dの流入口141よりも高い位置となるよう配置され、かつ、往路配管21一部が上下方向下側に凹むように配置されている。   On the other hand, in the device temperature control apparatus of the present embodiment, the forward piping 21 is disposed such that the liquid passage 211a formed by the liquid phase connecting piping 211 is at a higher position than the inflow ports 141 of the coolers 14A to 14D. And the forward pipe 21 is partially arranged to be recessed downward in the vertical direction.

なお、凝縮器16と冷却器14Aとの間の往路配管21に加熱源30が設けられている点、バルブ50と冷却器14Aとの間の往路配管21と、凝縮器16と冷却器14Dとの間を接続する気相液相連通配管42を備えている点は、上記第20実施形態と同様である。   Note that the heat source 30 is provided in the forward piping 21 between the condenser 16 and the cooler 14A, the outward piping 21 between the valve 50 and the cooler 14A, the condenser 16 and the cooler 14D, and the like. Is the same as the twentieth embodiment in that a vapor phase liquid phase communication pipe 42 for connecting the two is provided.

このように、往路配管21が、液相連接配管211により形成される液通路211aが各冷却器14A〜14Dの流入口141よりも高い位置となるよう配置され、かつ、往路配管21一部が上下方向下側に凹むように配置された構成においても、対象機器を暖機する機能を有することができる。   Thus, the forward piping 21 is disposed such that the liquid passage 211a formed by the liquid phase connecting piping 211 is at a higher position than the inflow ports 141 of the respective coolers 14A to 14D, and part of the forward piping 21 is Even in the configuration arranged to be recessed downward in the vertical direction, it is possible to have the function of warming up the target device.

(第22実施形態)
第22実施形態に係る機器温調装置について図39を用いて説明する。本実施形態の機器温調装置は、冷却器14Dの流入口141と復路配管22との間を接続する気相液相連通配管43を備えている。さらに、気相液相連通配管43には、この気相液相連通配管43に導入された冷媒を加熱する加熱源30が設けられている。
(Twenty-second embodiment)
An apparatus temperature control apparatus according to a twenty-second embodiment will be described with reference to FIG. The apparatus temperature control apparatus of this embodiment is provided with a vapor phase liquid phase communication pipe 43 connecting the inflow port 141 of the cooler 14D and the return path pipe 22. Further, the vapor phase liquid phase communication pipe 43 is provided with a heating source 30 for heating the refrigerant introduced into the vapor phase liquid phase communication pipe 43.

このように、冷却器14Dの流入口141と復路配管22との間を接続する気相液相連通配管43に加熱源30を設けるようにすることもできる。   As described above, the heating source 30 may be provided in the vapor-phase liquid phase communication pipe 43 connecting between the inflow port 141 of the cooler 14D and the return pipe 22.

(第23実施形態)
第23実施形態に係る機器温調装置について図40を用いて説明する。本実施形態の機器温調装置は、冷却器14Aの流入口141と復路配管22との間を接続する気相液相連通配管44を備えている。さらに、気相液相連通配管44には、この気相液相連通配管44に導入された冷媒を加熱する加熱源30が設けられている。
(Twenty-third embodiment)
An apparatus temperature control apparatus according to a twenty-third embodiment will be described with reference to FIG. The device temperature control apparatus of the present embodiment includes a vapor-phase liquid phase communication pipe 44 connecting between the inflow port 141 of the cooler 14A and the return path pipe 22. Further, the vapor phase liquid phase communication pipe 44 is provided with a heating source 30 for heating the refrigerant introduced into the vapor phase liquid phase communication pipe 44.

このように、冷却器14Aの流入口141と復路配管22との間を接続する気相液相連通配管44に加熱源30を設けるようにすることもできる。   As described above, the heating source 30 may be provided in the vapor-phase liquid phase communication pipe 44 connecting between the inflow port 141 of the cooler 14A and the return pipe 22.

(第24実施形態)
第24実施形態に係る機器温調装置について図41〜図43を用いて説明する。本実施形態の機器温調装置は、1つの加熱源30により冷却器14Aに設けられた暖機用配管40と冷却器14Bに設けられた暖機用配管40の内部の冷媒を加熱する。また、1つの加熱源30により冷却器14Cに設けられた暖機用配管40と冷却器14Dに設けられた暖機用配管40の内部の冷媒を加熱する。
(Twenty-fourth embodiment)
An apparatus temperature control unit according to a twenty-fourth embodiment will be described with reference to FIGS. The device temperature control apparatus according to the present embodiment heats the refrigerant inside the warming-up pipe 40 provided in the cooler 14A and the warming-up pipe 40 provided in the cooler 14B by one heating source 30. Further, the refrigerant in the warm-up pipe 40 provided in the cooler 14C and the warm-up pipe 40 provided in the cooler 14D are heated by one heating source 30.

暖機用配管40は、加熱用流出口145から水平方向に延びる第1配管40aと、この第1配管40aの端部から上下方向に延びる第2配管40bと、この第2配管40bの上端部から加熱用流入口146へと水平方向に延びる第3配管40cを有している。   The warming-up pipe 40 includes a first pipe 40a extending in the horizontal direction from the heating outlet 145, a second pipe 40b extending in the vertical direction from an end of the first pipe 40a, and an upper end of the second pipe 40b. And a third pipe 40 c extending horizontally from the heating inlet 146 to the heating inlet 146.

図42〜図43に示すように、加熱源30は、アルミニウム等の金属により構成されたブロック部材31と、板状の熱伝導材33と、面状を成すヒータ32と、を有している。ブロック部材31には、暖機用配管40を挿通させる2つの貫通孔31aが形成されており、これらの貫通孔31aに各暖機用配管40が配置されるようになっている。ヒータ32は、熱伝導材33と断熱材34に挟まれるように配置されている。また、熱伝導材33と断熱材34は、支持部材35により固定されている。   As shown in FIGS. 42 to 43, the heat source 30 has a block member 31 made of a metal such as aluminum, a plate-like heat transfer member 33, and a heater 32 forming a planar shape. . The block member 31 is formed with two through holes 31a through which the warming-up pipe 40 is inserted, and the warming-up pipes 40 are arranged in the through holes 31a. The heater 32 is disposed so as to be sandwiched between the heat conductive material 33 and the heat insulating material 34. Further, the heat conductive material 33 and the heat insulating material 34 are fixed by the support member 35.

ブロック部材31に形成された2つの貫通孔31aは、その断面がL字形状となっている。このL字形状となっている貫通孔31aに暖機用配管40の第1配管40aおよび第2配管40bが配置される。したがって、暖機用配管40の第1配管40aおよび第2配管40bに貯液された冷媒をヒータ32によって効率的に加熱することができる。   The two through holes 31 a formed in the block member 31 have an L-shaped cross section. The first pipe 40a and the second pipe 40b of the warming-up pipe 40 are disposed in the L-shaped through holes 31a. Therefore, the refrigerant stored in the first pipe 40 a and the second pipe 40 b of the warming-up pipe 40 can be efficiently heated by the heater 32.

なお、本実施形態では、図42〜図43に示したようにブロック部材31を構成したが、図44〜図45に示すように、2つの熱伝導材33に挟まれるように配置されたヒータ32を、2つの貫通孔31aの間に配置するようブロック部材31を構成することもできる。   In the present embodiment, the block member 31 is configured as shown in FIGS. 42 to 43. However, as shown in FIGS. 44 to 45, a heater disposed so as to be sandwiched between two heat transfer members 33 The block member 31 can also be configured to be disposed between the two through holes 31a.

(第25実施形態)
第25実施形態に係る機器温調装置について図46を用いて説明する。上記第24実施形態では、加熱源30のブロック部材31に形成された2つの貫通孔31aの断面がL字形状となっている。これに対し、本実施形態の加熱源30のブロック部材31に形成された2つの貫通孔31aの断面がI字形状となっている。
(Twenty-fifth embodiment)
An apparatus temperature control apparatus according to a twenty-fifth embodiment will be described with reference to FIG. In the twenty-fourth embodiment, two through holes 31 a formed in the block member 31 of the heat source 30 have an L-shaped cross section. On the other hand, the cross section of the two through holes 31 a formed in the block member 31 of the heat source 30 of the present embodiment is I-shaped.

このI字形状となっている貫通孔31aに暖機用配管40の第2配管40bが配置される。これにより、加熱源30の小型化、軽量化が可能である。   The second pipe 40b of the warming-up pipe 40 is disposed in the I-shaped through hole 31a. Thereby, size reduction and weight reduction of the heating source 30 are possible.

(第26実施形態)
第26実施形態に係る機器温調装置について図47を用いて説明する。本実施形態の機器温調装置は、冷却器14Aの加熱用流出口145と加熱用流入口146との間を接続する暖機用配管40と、冷却器14Bの加熱用流出口145と加熱用流入口146との間を接続する暖機用配管40と、冷却器14Cの加熱用流出口145と加熱用流入口146との間を接続する暖機用配管40と、冷却器14Dの加熱用流出口145と加熱用流入口146との間を接続する暖機用配管40と、を1つの加熱源30で加熱するよう構成されている。このように、4つ以上の暖機用配管40を1つの加熱源30で加熱することもできる。
(Twenty-sixth embodiment)
An apparatus temperature control apparatus according to a twenty-sixth embodiment will be described with reference to FIG. The apparatus temperature control apparatus of the present embodiment includes a warming-up pipe 40 connecting between the heating outlet 145 of the cooler 14A and the heating inlet 146, a heating outlet 145 of the cooler 14B, and a heating A warming-up pipe 40 connecting to the inlet 146, a warming-up pipe 40 connecting the heating outlet 145 for the cooler 14C and the heating inlet 146, and a heater for the cooler 14D The heating pipe 40 connecting between the outlet 145 and the heating inlet 146 is configured to be heated by one heating source 30. Thus, four or more warm-up pipes 40 can also be heated by one heating source 30.

(他の実施形態)
(1)上記各実施形態では、機器温調装置10が温度を調整する対象機器として二次電池12a、12bを例にして説明した。これに対し、機器温調装置10が温度を調整する対象機器としては、例えばモータ、インバータ、充電器、半導体素子、情報機器など、冷却または暖機が必要な他の機器でもよい。
(Other embodiments)
(1) In the above embodiments, the secondary battery 12a, 12b has been described as an example of the target device whose temperature is adjusted by the device temperature adjustment device 10. On the other hand, as an object apparatus with which the apparatus temperature control apparatus 10 adjusts temperature, other apparatuses, such as a motor, an inverter, a charger, a semiconductor element, an information apparatus, etc. which require cooling or warming-up may be sufficient.

(2)上記各実施形態では、本機器温調装置10を自動車に搭載した例を示したが、例えば、電車、飛行機、電動バイク、船舶等、自動車以外の各種移動体に本機器温調装置10を搭載してもよい。   (2) In each of the above embodiments, an example in which the device temperature control apparatus 10 is mounted on a car has been described. However, for example, the device temperature control device is used for various moving objects other than cars such as trains, airplanes, electric bikes, and ships. You may mount ten.

(3)上記各実施形態では、作動流体としてフロン系冷媒を採用する例について説明したが、この限りでは無い。作動流体は、例えばプロパン、二酸化炭素、水、アンモニア等の他の流体を採用してもよい。   (3) In each of the above embodiments, an example in which a fluorocarbon refrigerant is employed as the working fluid has been described, but the present invention is not limited to this. The working fluid may employ other fluids such as propane, carbon dioxide, water, ammonia and the like.

(4)上記第5実施形態では、凝縮器16の凝縮器出口162と複数の冷却器14のうち凝縮器16に接続された冷却器14の流入口141との間に凸部配管215を設けるようにした。これに対し、第1〜第4、第6〜第12実施形態の機器温調装置に、上記第5実施形態の機器温調装置に設けた凸部配管215を配置することもできる。   (4) In the fifth embodiment, the convex portion piping 215 is provided between the condenser outlet 162 of the condenser 16 and the inlet 141 of the cooler 14 connected to the condenser 16 among the plurality of coolers 14. I did it. On the other hand, the convex part piping 215 provided in the apparatus temperature control apparatus of the said 5th embodiment can also be arrange | positioned at the apparatus temperature control apparatus of 1st-4th, 6th-12th embodiment.

(5)上記第1実施形態では、往路配管21は、液相連接配管211により形成される液通路211aが複数の冷却器14の流入口141よりも高い位置となるよう配置したが、このような構成に限定されるものではない。往路配管21は、該往路配管21により形成される液通路21aの少なくとも一部が複数の冷却器14の流入口141よりも高い位置となるよう配置することもできる。   (5) In the first embodiment, the forward piping 21 is disposed such that the liquid passage 211 a formed by the liquid phase connecting piping 211 is at a higher position than the inflow ports 141 of the plurality of coolers 14. It is not limited to the following configuration. The forward piping 21 may be arranged such that at least a part of the liquid passage 21 a formed by the forward piping 21 is at a higher position than the inflow ports 141 of the plurality of coolers 14.

(6)上記第3〜第10実施形態では、凸部配管により形成される液流路が冷却器14の流入口141よりも高くなるよう凸部配管を配置したが、凸部配管の形状は、上記第3〜第10実施形態に示した形状のものに限定されるものではない。例えば、液流路内に上下方向上側に延びる遮蔽板を設けたり、液流路を逆V字形状に形成するなどして、往路配管21の途中に堰を形成して冷却器14の本体143内に貯液部を形成することもできる。   (6) In the third to tenth embodiments, the projection piping is disposed such that the liquid flow path formed by the projection piping is higher than the inflow port 141 of the cooler 14. However, the shape of the projection piping is The present invention is not limited to the shapes shown in the third to tenth embodiments. For example, a shielding plate extending upward in the vertical direction is provided in the liquid flow path, or the liquid flow path is formed in an inverted V-shape to form a weir in the middle of the forward flow pipe 21 to form the main body 143 of the cooler 14 It is also possible to form a reservoir within.

(7)上記第10実施形態では、高段冷却器14Aと高段冷却器14Bとの間および低段冷却器14Cと低段冷却器14Dの間に各冷却器間の液相冷媒の移動が抑制される構成を有してない。これに対し、図22〜図23に示すように、高段冷却器14Aと高段冷却器14Bとの間および低段冷却器14Cと低段冷却器14Dの間に各冷却器間の液相冷媒の移動が抑制される各種構造を組み合わせて設けることもできる。これにより、各冷却器14A〜14Dが傾斜した場合でも、各冷却器14A〜14Dの本体143の内部空間に貯液部が形成され、高位の冷却器14から低位の冷却器14への液相冷媒の移動を抑制することができる。   (7) In the tenth embodiment, the movement of the liquid phase refrigerant between the respective coolers between the high stage cooler 14A and the high stage cooler 14B and between the low stage cooler 14C and the low stage cooler 14D There is no configuration to be suppressed. On the other hand, as shown in FIGS. 22-23, the liquid phase between the high-stage cooler 14A and the high-stage cooler 14B and between the low-stage cooler 14C and the low-stage cooler 14D. It can also be provided in combination with various structures in which the movement of the refrigerant is suppressed. Thereby, even when each cooler 14A-14D inclines, a liquid storage part is formed in the internal space of the main body 143 of each cooler 14A-14D, and the liquid phase from the high order cooler 14 to the low order cooler 14 The movement of the refrigerant can be suppressed.

なお、本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。   In addition, this invention is not limited to above-described embodiment, In the range described in the claim, it can change suitably. Moreover, said each embodiment is not mutually irrelevant and can be combined suitably, unless the combination is clearly impossible. Further, in each of the above-described embodiments, it is needless to say that the elements constituting the embodiment are not necessarily essential except when clearly indicated as being essential and when it is considered to be obviously essential in principle. Yes. Further, in the above embodiments, when numerical values such as the number, numerical value, amount, range, etc. of constituent elements of the embodiment are mentioned, it is clearly indicated that they are particularly essential and clearly limited to a specific number in principle. It is not limited to the specific number except when it is done. Further, in the above embodiments, when referring to materials, shapes, positional relationships, etc. of constituent elements etc., unless specifically stated otherwise or in principle when limited to a specific material, shape, positional relationship, etc., etc. It is not limited to the material, the shape, the positional relationship, etc.

(まとめ)
上記各実施形態の一部または全部で示された第1の観点によれば、作動流体を循環させる循環回路を有し、作動流体の液相と気相との相変化によって対象機器の温度を調整する機器温調装置である。また、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器と、を備える。また、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路を形成する往路配管を備える。また、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路を形成する復路配管を備える。また、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体の内部空間に導入する流入口と、本体にて蒸発した作動流体を復路配管へ排出する排出口と、を有している。そして、往路配管は、該往路配管により形成される液通路の少なくとも一部が複数の冷却器の流入口よりも高い位置となるよう配置されている。
(Summary)
According to the first aspect shown in part or all of each of the above embodiments, it has a circulation circuit for circulating the working fluid, and the temperature of the target device is determined by the phase change between the liquid phase and the gas phase of the working fluid. It is an equipment temperature control device to adjust. In addition, a plurality of coolers included in the circulation circuit that cools the target device by heat exchange between the heat of the target device and the heat of the working fluid, and the heat of the working fluid contained in the circulation circuit and evaporated by the cooler And a condenser for releasing heat to condense the working fluid. In addition, it includes forward piping which is included in the circulation circuit and which forms a liquid passage for supplying the working fluid condensed in the condenser to the plurality of coolers. In addition, return circuit piping is included in the circulation circuit and forms a gas passage for supplying the working fluid evaporated in the plurality of coolers to the condenser. Each of the plurality of coolers has an inlet for introducing the working fluid flowing in the forward piping into the internal space of the main body, and an outlet for discharging the working fluid evaporated in the main body to the return piping. The forward piping is arranged such that at least a part of the liquid passage formed by the forward piping is at a higher position than the inlets of the plurality of coolers.

また、第2の観点によれば、往路配管は、液通路を形成する液相連接配管と、複数の冷却器の流入口と液相連接配管との間を接続する接続配管と、を有している。そして、液相連接配管により形成される液通路が複数の冷却器の流入口よりも高い位置となるよう配置されている。   Further, according to the second aspect, the forward piping has a liquid phase connection piping that forms a liquid passage, and a connection piping that connects between the inflow ports of the plurality of coolers and the liquid phase connection piping. ing. The liquid passage formed by the liquid phase connecting pipe is disposed at a position higher than the inlets of the plurality of coolers.

このように、液相連接配管により形成される液通路が複数の冷却器の流入口よりも高い位置となるよう構成することができる。   As described above, the liquid passage formed by the liquid phase connection piping can be configured to be at a higher position than the inlets of the plurality of coolers.

また、第3の観点によれば、液相連接配管は、該液相連接配管により形成される液通路が循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面以上の高さとなるよう配置されている。   Further, according to the third aspect, the liquid phase connecting pipe is a target liquid surface of the working fluid in the plurality of coolers when the liquid passage formed by the liquid phase connecting pipe is filled with the working fluid in the circulation circuit. It is arranged to have the above height.

このように、液相連接配管は、該液相連接配管により形成される液通路が循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面以上の高さとなるよう配置されるのが好ましい。   In this manner, the liquid phase connecting pipe is such that the liquid passage formed by the liquid phase connecting pipe is at a height higher than the target liquid level of the working fluid in the plurality of coolers when the circulating circuit is filled with the working fluid. Preferably it is arranged.

また、第4の観点によれば、作動流体を循環させる循環回路を有し、作動流体の液相と気相との相変化によって対象機器の温度を調整する機器温調装置である。また、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器と、を備える。また、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路を形成する往路配管を備える。また、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路を形成する復路配管を備える。また、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体の内部空間に導入する流入口と、本体にて蒸発した作動流体を復路配管へ排出する排出口と、を有している。そして、複数の冷却器の流入口の少なくとも1つは、本体の内部空間の最下端よりも高さの高い位置に配置されている。   Further, according to a fourth aspect, the device temperature control device includes a circulation circuit that circulates the working fluid, and adjusts the temperature of the target device by phase change between the liquid phase and the gas phase of the working fluid. In addition, a plurality of coolers included in the circulation circuit that cools the target device by heat exchange between the heat of the target device and the heat of the working fluid, and the heat of the working fluid contained in the circulation circuit and evaporated by the cooler And a condenser for releasing heat to condense the working fluid. In addition, it includes forward piping which is included in the circulation circuit and which forms a liquid passage for supplying the working fluid condensed in the condenser to the plurality of coolers. In addition, return circuit piping is included in the circulation circuit and forms a gas passage for supplying the working fluid evaporated in the plurality of coolers to the condenser. Each of the plurality of coolers has an inlet for introducing the working fluid flowing in the forward piping into the internal space of the main body, and an outlet for discharging the working fluid evaporated in the main body to the return piping. And, at least one of the inlets of the plurality of coolers is disposed at a height higher than the lowermost end of the internal space of the main body.

また、第5の観点によれば、複数の冷却器の流入口の少なくとも1つは、循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面である適正液面以上の高さに配置されている。   Further, according to the fifth aspect, at least one of the inlets of the plurality of coolers is an appropriate liquid surface which is a target fluid level of the working fluid in the plurality of coolers when the circulation circuit is filled with the working fluid. It is arranged at the height above.

このように、複数の冷却器の流入口の少なくとも1つは、循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面である適正液面以上の高さに配置されるのが好ましい。   Thus, at least one of the inlets of the plurality of coolers is disposed at a height above the appropriate liquid level, which is the target level of the working fluid in the plurality of coolers when the circulation circuit is filled with the working fluid. Is preferred.

また、第6の観点によれば、往路配管は、液通路を形成する液相連接配管を有している、そして、液相連接配管は、該液相連接配管により形成される液通路が循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面である適正液面以上の高さとなるよう配置されている。   Further, according to the sixth aspect, the forward piping has a liquid phase connecting piping that forms a liquid passage, and the liquid phase connecting piping is a circulation of a liquid passage formed by the liquid phase connecting piping. The circuit is disposed at a height higher than the appropriate liquid level which is a target liquid level of the working fluid in the plurality of coolers when the circuit is filled with the working fluid.

このように、液相連接配管は、該液相連接配管により形成される液通路が循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面である適正液面以上の高さとなるよう配置されるのが好ましい。   As described above, the liquid phase connecting pipe is a target liquid level or more of the working fluid in the plurality of coolers when the liquid passage formed by the liquid phase connecting pipe is filled with the working fluid in the circulation circuit. It is preferable to arrange so that it may become high.

また、第7の観点によれば、作動流体を循環させる循環回路を有し、作動流体の液相と気相との相変化によって対象機器の温度を調整する機器温調装置である。また、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器と、を備える。また、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路を形成する往路配管を備える。また、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路を形成する復路配管を備える。また、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体の内部空間に導入する流入口と、本体にて蒸発した作動流体を復路配管へ排出する排出口と、を有している。また、往路配管は、複数の冷却器のうちの1つの第1冷却器の流入口と複数の冷却器のうちの第1冷却器と異なる第2冷却器の流入口との間に配置された凸部配管を有している。そして、凸部配管により形成される液通路の少なくとも一部が第1冷却器の流入口および第2冷却器の流入口よりも上下方向上側に突出している。   Further, according to a seventh aspect, there is provided a device temperature control apparatus having a circulation circuit for circulating a working fluid, and adjusting a temperature of a target device by a phase change between a liquid phase and a gas phase of the working fluid. In addition, a plurality of coolers included in the circulation circuit that cools the target device by heat exchange between the heat of the target device and the heat of the working fluid, and the heat of the working fluid contained in the circulation circuit and evaporated by the cooler And a condenser for releasing heat to condense the working fluid. In addition, it includes forward piping which is included in the circulation circuit and which forms a liquid passage for supplying the working fluid condensed in the condenser to the plurality of coolers. In addition, return circuit piping is included in the circulation circuit and forms a gas passage for supplying the working fluid evaporated in the plurality of coolers to the condenser. Each of the plurality of coolers has an inlet for introducing the working fluid flowing in the forward piping into the internal space of the main body, and an outlet for discharging the working fluid evaporated in the main body to the return piping. Also, the forward piping is disposed between the inlet of the first cooler of one of the plurality of coolers and the inlet of the second cooler different from the first cooler of the plurality of coolers. Has a convex piping. Then, at least a part of the liquid passage formed by the convex portion pipe protrudes vertically upward from the inflow port of the first cooler and the inflow port of the second cooler.

また、第8の観点によれば、第1冷却器の流入口および第2冷却器の流入口は、循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面よりも低い位置に配置されている。   Further, according to the eighth aspect, the inlet of the first cooler and the inlet of the second cooler are not the target level of the working fluid in the plurality of coolers when the circulating circuit is filled with the working fluid. It is also located at a low position.

このように、第1冷却器の流入口および第2冷却器の流入口は、循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面よりも低い位置に配置されるのが好ましい。   Thus, the inlet of the first cooler and the inlet of the second cooler are disposed at a position lower than the target fluid level of the working fluid in the plurality of coolers when the working circuit is filled with the working fluid. Is preferred.

また、第9の観点によれば、凸部配管は、該凸部配管により形成される液通路の少なくとも一部が循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面以上の高さとなるよう配置されている。   Further, according to the ninth aspect, in the convex portion pipe, at least a part of the liquid passage formed by the convex portion pipe is a target of the working fluid in the plurality of coolers when the working circuit is filled with the working fluid. It is arranged to be higher than the liquid level.

このように、凸部配管は、該凸部配管により形成される液通路の少なくとも一部が循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面以上の高さとなるよう配置されるのが好ましい。   Thus, the projection piping has a height above the target fluid level of the working fluid in the plurality of coolers when the working circuit is filled with the working fluid in at least a part of the liquid passage formed by the projection piping. It is preferable to arrange so that

また、第10の観点によれば、往路配管は、液通路を形成するとともに第1冷却器の流入口に接続された第1液相連接配管と、前後方向に延びる液通路を形成する第2冷却器の流入口に接続された第2液相連接配管を有している。そして、凸部配管は、第1液相連接配管と第2液相連接配管の間に配置されている。   Further, according to the tenth aspect, the forward piping forms a liquid passage and forms a first liquid phase connecting piping connected to the inflow port of the first cooler and a second liquid passage extending in the front-rear direction. It has a second liquid phase connecting pipe connected to the inlet of the cooler. And convex part piping is arranged between the 1st liquid phase connecting piping and the 2nd liquid phase connecting piping.

このように、凸部配管は、第1冷却器の流入口に接続された第1液相連接配管と、第2冷却器の流入口に接続された第2液相連接配管との間に配置することができる。   Thus, the convex portion piping is disposed between the first liquid phase connecting piping connected to the inlet of the first cooler and the second liquid phase connecting piping connected to the inlet of the second cooler. can do.

また、第11の観点によれば、凸部配管は、第1冷却器の流入口と第2冷却器の流入口の中央よりも液相連接配管の内部を流れる作動流体の流体流れ上流側に配置されている。   Further, according to the eleventh aspect, the convex portion pipe is located upstream of the fluid flow of the working fluid flowing inside the liquid phase connecting pipe than the center of the inlet of the first cooler and the inlet of the second cooler. It is arranged.

このような構成とすることで、第1冷却器の流入口と第2冷却器の流入口の中央よりも液相配管の内部を流れる作動流体の流体流れ下流側に凸部配管を配置した場合と比較して、凸部配管より作動流体の流体流れ上流側の冷却器に貯液される作動流体の流量を多くすることができる。   With such a configuration, when the convex portion piping is disposed on the downstream side of the fluid flow of the working fluid flowing inside the liquid phase piping than the center of the inlet of the first cooler and the inlet of the second cooler Compared to the above, it is possible to increase the flow rate of the working fluid stored in the cooler upstream of the fluid flow of the working fluid from the projection piping.

また、第12の観点によれば、凸部配管は、第1凸部配管であり、往路配管は、凝縮器の凝縮器出口と複数の冷却器のうち凝縮器に接続された冷却器の流入口との間を接続する第2凸部配管を有している。そして、第2凸部配管は、該第2凸部配管により形成される液通路の少なくとも一部が凝縮器の凝縮器出口と凝縮器に接続された冷却器の流入口よりも上下方向上側に突出している。   Further, according to the twelfth aspect, the convex portion piping is the first convex portion piping, and the forward piping is the flow of the condenser outlet connected to the condenser outlet and the cooler connected to the condenser among the plurality of coolers It has the 2nd convex part piping connected between inlets. And, in the second convex portion piping, at least a part of the liquid passage formed by the second convex portion piping is vertically above the inlet of the cooler connected to the condenser outlet of the condenser and the condenser It protrudes.

したがって、凝縮器がより低位となるよう凝縮器および複数の冷却器が傾斜した場合でも、凸部配管により各冷却器の本体の内部空間に貯液部が形成され、この貯液部に液相冷媒が貯液される。したがって、高位の冷却器から低位の凝縮器への液相冷媒の移動が抑制され、より安定的に対象機器の温度調整を実現することができる。   Therefore, even if the condenser and the plurality of coolers are inclined such that the condenser is at a lower position, a liquid storage portion is formed in the internal space of the main body of each cooler by the convex piping, and the liquid phase is formed in this liquid storage portion The refrigerant is stored. Therefore, the movement of the liquid-phase refrigerant from the high-level cooler to the low-level condenser is suppressed, and the temperature adjustment of the target device can be realized more stably.

また、第13の観点によれば、作動流体を循環させる循環回路を有し、作動流体の液相と気相との相変化によって対象機器の温度を調整する機器温調装置である。また、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器と、を備える。また、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路を形成する往路配管を備える。また、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路を形成する復路配管を備える。また、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体の内部空間に導入する流入口と、本体にて蒸発した作動流体を復路配管へ排出する排出口と、を有している。また、往路配管は、凝縮器の凝縮器出口と複数の冷却器のうち凝縮器に接続された冷却器の流入口との間を接続する凸部配管を有している。そして、凸部配管により形成される液通路の少なくとも一部が凝縮器の凝縮器出口と凝縮器に接続された冷却器の流入口よりも上下方向上側に突出している。   Further, according to a thirteenth aspect of the present invention, there is provided a device temperature control apparatus having a circulation circuit for circulating a working fluid, and adjusting a temperature of a target device by a phase change between a liquid phase and a gas phase of the working fluid. In addition, a plurality of coolers included in the circulation circuit that cools the target device by heat exchange between the heat of the target device and the heat of the working fluid, and the heat of the working fluid contained in the circulation circuit and evaporated by the cooler And a condenser for releasing heat to condense the working fluid. In addition, it includes forward piping which is included in the circulation circuit and which forms a liquid passage for supplying the working fluid condensed in the condenser to the plurality of coolers. In addition, return circuit piping is included in the circulation circuit and forms a gas passage for supplying the working fluid evaporated in the plurality of coolers to the condenser. Each of the plurality of coolers has an inlet for introducing the working fluid flowing in the forward piping into the internal space of the main body, and an outlet for discharging the working fluid evaporated in the main body to the return piping. Also, the forward piping has a convex piping that connects between the condenser outlet of the condenser and the inlet of the cooler connected to the condenser among the plurality of coolers. And, at least a part of the liquid passage formed by the convex portion piping protrudes vertically upward from the condenser outlet of the condenser and the inlet of the cooler connected to the condenser.

また、第14の観点によれば、凸部配管は、該凸部配管により形成される液通路の少なくとも一部が循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面以上の高さとなるよう配置されている。   Further, according to a fourteenth aspect, in the convex portion pipe, at least a part of the liquid passage formed by the convex portion pipe is the target of the working fluid in the plurality of coolers when the working circuit is filled with the working fluid. It is arranged to be higher than the liquid level.

このように、凸部配管は、該凸部配管により形成される液通路の少なくとも一部が循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面以上の高さとなるよう配置されるのが好ましい。   Thus, the projection piping has a height above the target fluid level of the working fluid in the plurality of coolers when the working circuit is filled with the working fluid in at least a part of the liquid passage formed by the projection piping. It is preferable to arrange so that

また、第15の観点によれば、作動流体を循環させる循環回路を有し、作動流体の液相と気相との相変化によって対象機器の温度を調整する機器温調装置である。また、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器と、を備える。また、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路を形成する往路配管を備える。また、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路を形成する復路配管を備える。また、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体の内部空間に導入する流入口および本体に導入された作動流体を流出させる流出口を有している。また、往路配管は、複数の冷却器の1つの第1冷却器の流出口と複数の冷却器のうちの第1冷却器と異なる第2冷却器の流入口との間を接続する凸部配管を有している、そして、凸部配管は、該凸部配管により形成される液通路の少なくとも一部が第1冷却器の流出口および第2冷却器の流入口よりも上下方向上側に突出する凸部配管を有している。   According to a fifteenth aspect of the present invention, there is provided a device temperature control apparatus having a circulation circuit for circulating a working fluid, and adjusting a temperature of a target device by a phase change between a liquid phase and a gas phase of the working fluid. In addition, a plurality of coolers included in the circulation circuit that cools the target device by heat exchange between the heat of the target device and the heat of the working fluid, and the heat of the working fluid contained in the circulation circuit and evaporated by the cooler And a condenser for releasing heat to condense the working fluid. In addition, it includes forward piping which is included in the circulation circuit and which forms a liquid passage for supplying the working fluid condensed in the condenser to the plurality of coolers. In addition, return circuit piping is included in the circulation circuit and forms a gas passage for supplying the working fluid evaporated in the plurality of coolers to the condenser. Further, each of the plurality of coolers has an inlet for introducing the working fluid flowing in the forward piping into the inner space of the main body and an outlet for discharging the working fluid introduced to the main body. Also, the forward piping is a convex piping that connects between the outlet of one first cooler of the plurality of coolers and the inlet of the second cooler different from the first cooler of the plurality of coolers. And the projection piping projects at least a part of the liquid passage formed by the projection piping in the upper and lower direction above the outlet of the first cooler and the inlet of the second cooler. Has a convex piping.

また、第16の観点によれば、凸部配管は、該凸部配管により形成される液通路の少なくとも一部が循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面以上の高さとなるよう配置されている。   Further, according to a sixteenth aspect, in the convex portion pipe, at least a part of the liquid passage formed by the convex portion pipe is a target of the working fluid in the plurality of coolers when the working circuit is filled with the working fluid. It is arranged to be higher than the liquid level.

このように、凸部配管は、該凸部配管により形成される液通路の少なくとも一部が循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面以上の高さとなるよう配置されるのが好ましい。   Thus, the projection piping has a height above the target fluid level of the working fluid in the plurality of coolers when the working circuit is filled with the working fluid in at least a part of the liquid passage formed by the projection piping. It is preferable to arrange so that

また、第17の観点によれば、作動流体を循環させる循環回路を有し、作動流体の液相と気相との相変化によって対象機器の温度を調整する機器温調装置である。また、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器と、を備える。また、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路を形成する往路配管を備える。また、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路を形成する復路配管と、を備える。また、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体の内部空間に導入する流入口および本体に導入された作動流体を流出させる流出口を有している。そして、複数の冷却器の流入口および流出口の少なくとも1つは、本体の内部空間の最下端よりも高さの高い位置に配置されている。   Further, according to a seventeenth aspect, the apparatus temperature control apparatus includes a circulation circuit that circulates the working fluid, and adjusts the temperature of the target device by a phase change between the liquid phase and the gas phase of the working fluid. In addition, a plurality of coolers included in the circulation circuit that cools the target device by heat exchange between the heat of the target device and the heat of the working fluid, and the heat of the working fluid contained in the circulation circuit and evaporated by the cooler And a condenser for releasing heat to condense the working fluid. In addition, it includes forward piping which is included in the circulation circuit and which forms a liquid passage for supplying the working fluid condensed in the condenser to the plurality of coolers. And a return pipe, which is included in the circulation circuit and forms a gas passage for supplying the working fluid evaporated by the plurality of coolers to the condenser. Further, each of the plurality of coolers has an inlet for introducing the working fluid flowing in the forward piping into the inner space of the main body and an outlet for discharging the working fluid introduced to the main body. And, at least one of the inlet and the outlet of the plurality of coolers is arranged at a position higher than the lowermost end of the internal space of the main body.

また、第18の観点によれば、複数の冷却器の流入口および流出口の少なくとも1つは、循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面である適正液面以上の高さに配置されている。   Further, according to an eighteenth aspect, at least one of the inlet and the outlet of the plurality of coolers is a target level of the working fluid in the plurality of coolers when the circulation circuit is filled with the working fluid. It is arranged at the height above the appropriate liquid level.

このように、複数の冷却器の流入口および流出口の少なくとも1つは、循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面である適正液面以上の高さに配置されるのが好ましい。   Thus, at least one of the inlet and the outlet of the plurality of coolers is higher than the appropriate liquid level which is the target level of the working fluid in the plurality of coolers when the circulation circuit is filled with the working fluid. It is preferred that the

また、第19の観点によれば、往路配管は、液通路を形成する液相連接配管(211)を有している。そして、液相連接配管は、該液相連接配管により形成される液通路が循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面である適正液面以上の高さとなるよう配置されている。   Further, according to the nineteenth aspect, the forward piping has a liquid phase connection piping (211) forming a liquid passage. The liquid phase connecting pipe is higher than the appropriate liquid level which is the target liquid level of the working fluid in the plurality of coolers when the liquid passage formed by the liquid phase linking pipe is filled with the working fluid in the circulation circuit. It is arranged to be

このように、液相連接配管は、該液相連接配管により形成される液通路が循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面である適正液面以上の高さとなるよう配置されるのが好ましい。   As described above, the liquid phase connecting pipe is a target liquid level or more of the working fluid in the plurality of coolers when the liquid passage formed by the liquid phase connecting pipe is filled with the working fluid in the circulation circuit. It is preferable to arrange so that it may become high.

また、第20の観点によれば、作動流体を循環させる循環回路を有し、作動流体の液相と気相との相変化によって対象機器の温度を調整する機器温調装置である。また、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器と、を備える。また、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路を形成する往路配管を備える。また、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路を形成する復路配管を備える。また、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体の内部空間に導入する流入口と、本体にて蒸発した作動流体を復路配管へ排出する排出口と、を有している。また、複数の冷却器は、第1高さ位置に配置された低段冷却器と、第1高さ位置より高い第2高さ位置に配置された高段冷却器と、を含んでいる。また、往路配管は、低段冷却器の流入口と高段冷却器の流入口との間を接続する高低接続配管を有している。そして、高低接続配管により形成される液通路の少なくとも一部が低段冷却器の流入口と高段冷却器の流入口よりも上下方向上側に突出している。   Further, according to a twentieth aspect, there is provided a device temperature control apparatus having a circulation circuit for circulating a working fluid, and adjusting a temperature of a target device by a phase change between a liquid phase and a gas phase of the working fluid. In addition, a plurality of coolers included in the circulation circuit that cools the target device by heat exchange between the heat of the target device and the heat of the working fluid, and the heat of the working fluid contained in the circulation circuit and evaporated by the cooler And a condenser for releasing heat to condense the working fluid. In addition, it includes forward piping which is included in the circulation circuit and which forms a liquid passage for supplying the working fluid condensed in the condenser to the plurality of coolers. In addition, return circuit piping is included in the circulation circuit and forms a gas passage for supplying the working fluid evaporated in the plurality of coolers to the condenser. Each of the plurality of coolers has an inlet for introducing the working fluid flowing in the forward piping into the internal space of the main body, and an outlet for discharging the working fluid evaporated in the main body to the return piping. The plurality of coolers also include a low stage cooler disposed at a first height position and a high stage cooler disposed at a second height position higher than the first height position. In addition, the forward piping has high and low connection piping that connects between the inlet of the low stage cooler and the inlet of the high stage cooler. Then, at least a part of the liquid passage formed by the high and low connection piping protrudes vertically above the inlet of the low stage cooler and the inlet of the high stage cooler.

また、第21の観点によれば、作動流体を循環させる循環回路を有し、作動流体の液相と気相との相変化によって対象機器の温度を調整する機器温調装置である。また、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器と、を備える。また、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路を形成する往路配管と、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路を形成する復路配管と、を備える。また、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体の内部空間に導入する流入口および本体に導入された作動流体を流出させる流出口を有している。また、複数の冷却器は、第1高さ位置に配置された低段冷却器と、第1高さ位置より高い第2高さ位置に配置された高段冷却器と、を含んでいる。また、往路配管は、低段冷却器の流入口と高段冷却器の流出口との間を接続する高低接続配管を有している。そして、高低接続配管により形成される液通路の少なくとも一部は高段冷却器の本体の内部空間の最下端よりも高さの高い位置に配置されている。   According to a twenty-first aspect, there is provided a device temperature control apparatus that has a circulation circuit that circulates a working fluid and that adjusts the temperature of a target device by a phase change between the liquid phase and the gas phase of the working fluid. In addition, a plurality of coolers included in the circulation circuit that cools the target device by heat exchange between the heat of the target device and the heat of the working fluid, and the heat of the working fluid contained in the circulation circuit and evaporated by the cooler And a condenser for releasing heat to condense the working fluid. In addition, it is included in the circulation circuit and forms forward flow piping that forms a liquid passage for supplying the working fluid condensed in the condenser to the plurality of coolers, and the working fluid included in the circulation circuit and vaporized in the plurality of coolers And a return pipe forming a gas passage to be supplied to the condenser. Further, each of the plurality of coolers has an inlet for introducing the working fluid flowing in the forward piping into the inner space of the main body and an outlet for discharging the working fluid introduced to the main body. The plurality of coolers also include a low stage cooler disposed at a first height position and a high stage cooler disposed at a second height position higher than the first height position. In addition, the forward piping has high and low connection piping that connects between the inlet of the low stage cooler and the outlet of the high stage cooler. And, at least a part of the liquid passage formed by the high and low connection piping is disposed at a position higher than the lowermost end of the internal space of the main body of the high stage cooler.

また、第22の観点によれば、高低接続配管により形成される液通路の少なくとも一部は循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面である適正液面以上の高さに配置されている。   Further, according to the twenty-second aspect, at least a part of the liquid passage formed by the high and low connection piping is a target liquid surface of the working fluid in the plurality of coolers when the working circuit is filled with the working fluid. It is arranged at the height more than a field.

このように、高低接続配管により形成される液通路の少なくとも一部は循環回路に作動流体が充填される際の複数の冷却器における作動流体の目標液面である適正液面以上の高さに配置されるのが好ましい。   Thus, at least a portion of the fluid passage formed by the high and low connection piping is at a height above the appropriate fluid level, which is the target fluid level of the working fluid in the plurality of coolers when the working circuit is filled with the working fluid. Preferably it is arranged.

また、第23の観点によれば、作動流体を循環させる循環回路(26)を有し、作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置である。また、循環回路に含まれ、対象機器の熱と作動流体の熱とを熱交換して対象機器を冷却する複数の冷却器(14)と、循環回路に含まれ、冷却器により蒸発した作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、を備える。また、循環回路に含まれ、凝縮器にて凝縮した作動流体を複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、循環回路に含まれ、複数の冷却器にて蒸発した作動流体を凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備える。また、複数の冷却器は、それぞれ往路配管を流れる作動流体を本体(143)の内部空間に導入する流入口(141)および本体に導入された作動流体を流出させる流出口(144)を有している。そして、複数の冷却器は、第1高さ位置に配置された低段冷却器と、第1高さ位置より高い第2高さ位置に配置された高段冷却器と、を含んでいる。また、往路配管は、低段冷却器の流入口と高段冷却器の流出口との間を接続する高低接続配管(217、218)を有している。また、高低接続配管により形成される液通路の少なくとも一部が低段冷却器の流入口と高段冷却器の流出口よりも上下方向上側に突出している。   Further, according to the twenty-third aspect, an apparatus having a circulation circuit (26) for circulating the working fluid, and adjusting the temperature of the target device (12a, 12b) by the phase change between the liquid phase and the gas phase of the working fluid. It is a temperature control device. In addition, a plurality of coolers (14) included in the circulation circuit that cools the target device by heat exchange between the heat of the target device and the heat of the working fluid, and the working fluid included in the circulation circuit and evaporated by the cooler And a condenser (16) for dissipating heat from the heat source to condense the working fluid. In addition, it is included in the circulation circuit, forms a liquid passage (21a) for supplying the working fluid condensed in the condenser to the plurality of coolers, and is included in the circulation circuit and includes the plurality of coolers And return line (22) forming a gas passage (22a) for supplying the working fluid thus evaporated to the condenser. Each of the plurality of coolers has an inlet (141) for introducing the working fluid flowing in the forward piping into the inner space of the main body (143) and an outlet (144) for discharging the working fluid introduced to the main body. ing. The plurality of coolers include a low stage cooler disposed at a first height position and a high stage cooler disposed at a second height position higher than the first height position. In addition, the forward piping has high-low connection piping (217, 218) that connects between the inlet of the low-stage cooler and the outlet of the high-stage cooler. Further, at least a part of the liquid passage formed by the high and low connection piping protrudes vertically above the inflow port of the low stage cooler and the outflow port of the high stage cooler.

また、第24の観点によれば、複数の冷却器の少なくとも1つは、本体の内部空間に導入された作動流体を加熱するために流出させる加熱用流出口と、加熱用流出口より上下方向上側に配置され、加熱用流出口から流出した作動流体を本体の内部空間に導入する加熱用流入口と、を有している。加熱用流出口と加熱用流入口との間には、加熱用流出口から流出した作動流体を加熱用流入口へ導入する暖機用配管が設けられており、暖機用配管には、該暖機用配管の内部に導入された液相の作動流体を加熱する加熱源が設けられている。そして、加熱源により加熱された作動流体が暖機用配管を通って加熱用流入口から本体の内部空間に導入される。このように、加熱源により作動流体を加熱し、対象機器を暖機することができる。   According to the twenty-fourth aspect, at least one of the plurality of coolers includes a heating outlet for heating the working fluid introduced into the internal space of the main body, and a vertical direction from the heating outlet. And a heating inlet disposed on the upper side for introducing the working fluid flowing out of the heating outlet into the internal space of the main body. Between the heating outlet and the heating inlet, a warming-up pipe for introducing the working fluid flowing out from the heating outlet to the heating inlet is provided, and the warming pipe is provided with the warming-up pipe. A heating source is provided to heat the working fluid in the liquid phase introduced into the interior of the warm-up pipe. Then, the working fluid heated by the heating source is introduced into the internal space of the main body from the heating inlet through the warming-up pipe. Thus, the working fluid can be heated by the heating source to warm up the target device.

また、第25の観点によれば、機器温調装置は、往路配管と復路配管との間を接続する暖機用配管と、往路配管および暖機用配管の少なくとも一方に配置され、往路配管および暖機用配管の少なくとも一方の内部に導入された液相の作動流体を加熱する加熱源と、を備えている。そして、加熱源により加熱された作動流体が復路配管を通って排出口から本体の内部空間に導入される。このように、加熱源により作動流体を加熱し、対象機器を暖機することができる。   Further, according to the twenty-fifth aspect, the device temperature control device is disposed in at least one of the warming-up piping connecting the forward piping and the return piping, and at least one of the outward piping and the warming piping. And a heating source for heating a working fluid in a liquid phase introduced into at least one of the warm-up pipes. Then, the working fluid heated by the heating source is introduced into the internal space of the main body from the discharge port through the return pipe. Thus, the working fluid can be heated by the heating source to warm up the target device.

また、第26の観点によれば、機器温調装置は、往路配管の内部に導入された液相の作動流体を加熱する加熱源と、加熱源より上下方向上側に配置され、往路配管と復路配管との間を接続する気相液相連通配管と、を備えている。そして、加熱源で加熱された作動流体が、往路配管、気相液相連通配管および復路配管を通って本体の内部空間に導入される。このように、加熱源により作動流体を加熱し、対象機器を暖機することができる。   Further, according to the twenty-sixth aspect, the device temperature control device is disposed above the heating source and a heating source for heating the working fluid in the liquid phase introduced into the inside of the forward piping, and the outward piping and the return path And a vapor phase liquid phase communication pipe connecting between the pipe and the pipe. Then, the working fluid heated by the heating source is introduced into the internal space of the main body through the forward pipe, the gas phase liquid phase communication pipe, and the return pipe. Thus, the working fluid can be heated by the heating source to warm up the target device.

また、第27の観点によれば、機器温調装置は、往路配管と復路配管との間を接続する気相液相連通配管と、気相液相連通配管に配置され、該気相液相連通配管に導入された液相の作動流体を加熱する加熱源と、を備えている。そして、加熱源により加熱された作動流体が往路配管を通って本体の内部空間に導入される。このように、加熱源により作動流体を加熱し、対象機器を暖機することができる。   Further, according to the twenty-seventh aspect, the device temperature control device is disposed in the vapor-liquid-phase communicating pipe connecting the forward pipe and the return pipe, and the vapor-liquid phase communicating pipe, and the vapor phase liquid phase And a heating source for heating the working fluid in the liquid phase introduced into the communication pipe. Then, the working fluid heated by the heating source is introduced into the internal space of the main body through the forward pipe. Thus, the working fluid can be heated by the heating source to warm up the target device.

また、第28の観点によれば、機器温調装置は、複数の暖機用配管用流路を備え、加熱源は、複数の暖機用配管を加熱する発熱体を有している。したがって、発熱体により複数の暖機用配管の内部の作動流体を加熱することができる。   Further, according to the twenty-eighth aspect, the device temperature control apparatus includes a plurality of warming-up pipe flow paths, and the heating source includes a heating element that heats the plurality of warming-up pipes. Therefore, the working fluid in the plurality of warming-up pipes can be heated by the heating element.

10 機器温調装置
12a、12b 二次電池
14 冷却器
141 流入口
142 排出口
143 本体
16 凝縮器
21 往路配管
21a 液通路
211 液相連接配管
212 接続配管
22 復路配管
26 サーモサイフォン回路
DESCRIPTION OF SYMBOLS 10 Equipment temperature control apparatus 12a, 12b Secondary battery 14 Cooler 141 Inlet 142 Exhaust port 143 Main body 16 Condenser 21 Forward piping 21a Liquid passage 211 Liquid phase connection piping 212 Connection piping 22 Return piping 26 Thermo siphon circuit

Claims (28)

作動流体を循環させる循環回路(26)を有し、前記作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置であって、
前記循環回路に含まれ、前記対象機器の熱と前記作動流体の熱とを熱交換して前記対象機器を冷却する複数の冷却器(14)と、
前記循環回路に含まれ、前記冷却器により蒸発した前記作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、
前記循環回路に含まれ、前記凝縮器にて凝縮した前記作動流体を前記複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、
前記循環回路に含まれ、前記複数の冷却器にて蒸発した前記作動流体を前記凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備え、
前記複数の冷却器は、それぞれ前記往路配管を流れる前記作動流体を本体(143)の内部空間に導入する流入口(141)と、前記本体にて蒸発した前記作動流体を前記復路配管へ排出する排出口(142)と、を有し、
前記往路配管は、該往路配管により形成される前記液通路の少なくとも一部が前記複数の冷却器の前記流入口よりも高い位置となるよう配置されている機器温調装置。
An apparatus temperature control apparatus, comprising: a circulation circuit (26) for circulating a working fluid, wherein the temperature of a target device (12a, 12b) is adjusted by a phase change between a liquid phase of the working fluid and a gas phase;
A plurality of coolers (14) which are included in the circulation circuit and perform heat exchange between the heat of the target device and the heat of the working fluid to cool the target device;
A condenser (16) which is included in the circulation circuit and dissipates the heat of the working fluid evaporated by the cooler to condense the working fluid;
A forward pipe (21) which is included in the circulation circuit and forms a liquid passage (21a) for supplying the working fluid condensed by the condenser to the plurality of coolers;
Return path piping (22) which is included in the circulation circuit and forms a gas passage (22a) for supplying the working fluid evaporated in the plurality of coolers to the condenser;
The plurality of coolers discharge the working fluid evaporated in the main body to the return pipe, an inlet (141) for introducing the working fluid flowing through the forward pipe into the internal space of the main body (143), and And an outlet (142),
The apparatus temperature control device, wherein the forward piping is arranged such that at least a part of the liquid passage formed by the forward piping is higher than the inflow ports of the plurality of coolers.
前記往路配管は、前記液通路を形成する液相連接配管(211)と、前記複数の冷却器の前記流入口と前記液相連接配管との間を接続する接続配管(212)と、を有し、前記液相連接配管により形成される前記液通路が前記複数の冷却器の前記流入口よりも高い位置となるよう配置されている請求項1に記載の機器温調装置。   The forward pipe has a liquid phase connecting pipe (211) forming the liquid channel, and a connecting pipe (212) connecting between the inlets of the plurality of coolers and the liquid phase connecting pipe. The apparatus temperature control device according to claim 1, wherein the liquid passage formed by the liquid phase connection pipe is positioned higher than the inlets of the plurality of coolers. 前記液相連接配管は、該液相連接配管により形成される前記液通路が前記循環回路に前記作動流体が充填される際の前記複数の冷却器における前記作動流体の目標液面である適正液面以上の高さとなるよう配置されている請求項2に記載の機器温調装置。   The liquid phase connecting pipe is a target liquid level of the working fluid in the plurality of coolers when the liquid passage formed by the liquid phase connecting pipe is filled with the working fluid in the circulation circuit. The device temperature control device according to claim 2, wherein the device temperature control device is arranged to have a height higher than a surface. 作動流体を循環させる循環回路(26)を有し、前記作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置であって、
前記循環回路に含まれ、前記対象機器の熱と前記作動流体の熱とを熱交換して前記対象機器を冷却する複数の冷却器(14)と、
前記循環回路に含まれ、前記冷却器により蒸発した前記作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、
前記循環回路に含まれ、前記凝縮器にて凝縮した前記作動流体を前記複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、
前記循環回路に含まれ、前記複数の冷却器にて蒸発した前記作動流体を前記凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備え、
前記複数の冷却器は、それぞれ前記往路配管を流れる前記作動流体を本体(143)の内部空間に導入する流入口(141)および前記本体にて蒸発した前記作動流体を前記復路配管へ排出する排出口(142)を有し、
前記複数の冷却器の前記流入口の少なくとも1つは、前記本体の内部空間の最下端よりも高さの高い位置に配置されている機器温調装置。
An apparatus temperature control apparatus, comprising: a circulation circuit (26) for circulating a working fluid, wherein the temperature of a target device (12a, 12b) is adjusted by a phase change between a liquid phase of the working fluid and a gas phase;
A plurality of coolers (14) which are included in the circulation circuit and perform heat exchange between the heat of the target device and the heat of the working fluid to cool the target device;
A condenser (16) which is included in the circulation circuit and dissipates the heat of the working fluid evaporated by the cooler to condense the working fluid;
A forward pipe (21) which is included in the circulation circuit and forms a liquid passage (21a) for supplying the working fluid condensed by the condenser to the plurality of coolers;
Return path piping (22) which is included in the circulation circuit and forms a gas passage (22a) for supplying the working fluid evaporated in the plurality of coolers to the condenser;
The plurality of coolers respectively have an inlet (141) for introducing the working fluid flowing through the forward pipe into the internal space of the main body (143) and an exhaust for discharging the working fluid evaporated in the main body to the return pipe. With an outlet (142)
An apparatus temperature control apparatus, wherein at least one of the inlets of the plurality of coolers is disposed at a height higher than the lowest end of the internal space of the main body.
前記複数の冷却器の前記流入口の少なくとも1つは、前記循環回路に前記作動流体が充填される際の前記複数の冷却器における前記作動流体の目標液面である適正液面以上の高さに配置されている請求項4に記載の機器温調装置。   At least one of the inlets of the plurality of coolers has a height above the appropriate liquid level, which is the target level of the working fluid in the plurality of coolers when the circulating circuit is filled with the working fluid. The apparatus temperature control apparatus of Claim 4 arrange | positioned at. 前記往路配管は、前記液通路を形成する液相連接配管(211)を有し、
前記液相連接配管は、該液相連接配管により形成される前記液通路が前記循環回路に前記作動流体が充填される際の前記複数の冷却器における前記作動流体の目標液面である適正液面以上の高さとなるよう配置されている請求項4または5に記載の機器温調装置。
The forward pipe has a liquid phase connecting pipe (211) forming the liquid passage,
The liquid phase connecting pipe is a target liquid level of the working fluid in the plurality of coolers when the liquid passage formed by the liquid phase connecting pipe is filled with the working fluid in the circulation circuit. The device temperature control device according to claim 4 or 5, wherein the device temperature control device is disposed to have a height greater than a surface.
作動流体を循環させる循環回路(26)を有し、前記作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置であって、
前記循環回路に含まれ、前記対象機器の熱と前記作動流体の熱とを熱交換して前記対象機器を冷却する複数の冷却器(14)と、
前記循環回路に含まれ、前記冷却器により蒸発した前記作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、
前記循環回路に含まれ、前記凝縮器にて凝縮した前記作動流体を前記複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、
前記循環回路に含まれ、前記複数の冷却器にて蒸発した前記作動流体を前記凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備え、
前記複数の冷却器は、それぞれ前記往路配管を流れる前記作動流体を本体(143)の内部空間に導入する流入口(141)および前記本体にて蒸発した前記作動流体を前記復路配管へ排出する排出口(142)を有し、
前記往路配管は、前記複数の冷却器のうちの1つの第1冷却器の前記流入口と前記複数の冷却器のうちの前記第1冷却器と異なる第2冷却器の前記流入口との間に配置された凸部配管(214)を有し、
前記凸部配管により形成される前記液通路の少なくとも一部が前記第1冷却器の前記流入口および前記第2冷却器の前記流入口よりも上下方向上側に突出している機器温調装置。
An apparatus temperature control apparatus, comprising: a circulation circuit (26) for circulating a working fluid, wherein the temperature of a target device (12a, 12b) is adjusted by a phase change between a liquid phase of the working fluid and a gas phase;
A plurality of coolers (14) which are included in the circulation circuit and perform heat exchange between the heat of the target device and the heat of the working fluid to cool the target device;
A condenser (16) which is included in the circulation circuit and dissipates the heat of the working fluid evaporated by the cooler to condense the working fluid;
A forward pipe (21) which is included in the circulation circuit and forms a liquid passage (21a) for supplying the working fluid condensed by the condenser to the plurality of coolers;
Return path piping (22) which is included in the circulation circuit and forms a gas passage (22a) for supplying the working fluid evaporated in the plurality of coolers to the condenser;
The plurality of coolers respectively have an inlet (141) for introducing the working fluid flowing through the forward pipe into the internal space of the main body (143) and an exhaust for discharging the working fluid evaporated in the main body to the return pipe. With an outlet (142)
The forward piping is between the inlet of a first cooler of one of the plurality of coolers and the inlet of a second cooler different from the first cooler of the plurality of coolers. Have a convex piping (214) arranged in the
The apparatus temperature control apparatus in which at least a part of the liquid passage formed by the convex portion piping protrudes vertically upward from the inflow port of the first cooler and the inflow port of the second cooler.
前記第1冷却器の前記流入口および前記第2冷却器の前記流入口は、前記循環回路に前記作動流体が充填される際の前記複数の冷却器における前記作動流体の目標液面よりも低い位置に配置されている請求項7に記載の機器温調装置。   The inlet of the first cooler and the inlet of the second cooler are lower than a target level of the working fluid in the plurality of coolers when the circulating circuit is filled with the working fluid. The device temperature control device according to claim 7, which is disposed at a position. 前記凸部配管は、該凸部配管により形成される前記液通路の少なくとも一部が前記循環回路に前記作動流体が充填される際の前記複数の冷却器における前記作動流体の目標液面以上の高さとなるよう配置されている請求項7または8に記載の機器温調装置。   The convex portion pipe is a target liquid level or more of the working fluid in the plurality of coolers when the working fluid is filled in the circulation circuit at least a part of the liquid passage formed by the convex portion pipe The apparatus temperature control apparatus of Claim 7 or 8 arrange | positioned so that it may become height. 前記往路配管は、前記液通路を形成するとともに前記第1冷却器の前記流入口に接続された第1液相連接配管と、前記液通路を形成する前記第2冷却器の前記流入口に接続された第2液相連接配管を有し、
前記凸部配管は、前記第1液相連接配管と前記第2液相連接配管の間に配置されている請求項7ないし9のいずれか1つに記載の機器温調装置。
The forward pipe forms the liquid passage and is connected to a first liquid phase connecting pipe connected to the inlet of the first cooler and to the inlet of the second cooler forming the liquid passage. Having a second liquid phase connecting pipe,
The apparatus temperature control device according to any one of claims 7 to 9, wherein the convex portion piping is disposed between the first liquid phase connecting piping and the second liquid phase connecting piping.
前記凸部配管は、前記第1冷却器の前記流入口と前記第2冷却器の前記流入口の中央よりも前記液相連接配管の内部を流れる前記作動流体の流体流れ上流側に配置されている請求項10に記載の機器温調装置。   The convex portion pipe is disposed upstream of the working fluid flow that flows inside the liquid phase connecting pipe than the center of the inlet of the first cooler and the inlet of the second cooler. The apparatus temperature control apparatus of Claim 10. 前記凸部配管は、第1凸部配管であり、
前記往路配管は、前記凝縮器の凝縮器出口(162)と前記複数の冷却器のうち前記凝縮器に接続された冷却器の前記流入口との間を接続する第2凸部配管(215)を有し、 前記第2凸部配管は、該第2凸部配管により形成される前記液通路の少なくとも一部が前記凝縮器の前記凝縮器出口と前記凝縮器に接続された冷却器の前記流入口よりも上下方向上側に突出している請求項7ないし11のいずれか1つに記載の機器温調装置。
The convex pipe is a first convex pipe,
The forward pipe is a second convex pipe (215) that connects the condenser outlet (162) of the condenser and the inlet of the cooler connected to the condenser among the plurality of coolers. The second convex portion pipe is a portion of the liquid passage formed by the second convex portion pipe at least a part of the liquid path is connected to the condenser outlet of the condenser and the condenser of the condenser The apparatus temperature control apparatus according to any one of claims 7 to 11, which protrudes upward in the vertical direction with respect to the inflow port.
作動流体を循環させる循環回路(26)を有し、前記作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置であって、
前記循環回路に含まれ、前記対象機器の熱と前記作動流体の熱とを熱交換して前記対象機器を冷却する複数の冷却器(14)と、
前記循環回路に含まれ、前記冷却器により蒸発した前記作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、
前記循環回路に含まれ、前記凝縮器にて凝縮した前記作動流体を前記複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、
前記循環回路に含まれ、前記複数の冷却器にて蒸発した前記作動流体を前記凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備え、
前記複数の冷却器は、それぞれ前記往路配管を流れる前記作動流体を本体(143)の内部空間に導入する流入口(141)および前記本体にて蒸発した前記作動流体を前記復路配管へ排出する排出口(142)を有し、
前記往路配管は、前記凝縮器の前記凝縮器出口と前記複数の冷却器のうち前記凝縮器に接続された冷却器の前記流入口との間を接続する凸部配管(215)を有し、
前記凸部配管により形成される前記液通路の少なくとも一部が前記凝縮器の前記凝縮器出口と前記凝縮器に接続された冷却器の前記流入口よりも上下方向上側に突出している機器温調装置。
An apparatus temperature control apparatus, comprising: a circulation circuit (26) for circulating a working fluid, wherein the temperature of a target device (12a, 12b) is adjusted by a phase change between a liquid phase of the working fluid and a gas phase;
A plurality of coolers (14) which are included in the circulation circuit and perform heat exchange between the heat of the target device and the heat of the working fluid to cool the target device;
A condenser (16) which is included in the circulation circuit and dissipates the heat of the working fluid evaporated by the cooler to condense the working fluid;
A forward pipe (21) which is included in the circulation circuit and forms a liquid passage (21a) for supplying the working fluid condensed by the condenser to the plurality of coolers;
Return path piping (22) which is included in the circulation circuit and forms a gas passage (22a) for supplying the working fluid evaporated in the plurality of coolers to the condenser;
The plurality of coolers respectively have an inlet (141) for introducing the working fluid flowing through the forward pipe into the internal space of the main body (143) and an exhaust for discharging the working fluid evaporated in the main body to the return pipe. With an outlet (142)
The forward pipe has a convex pipe (215) connecting between the condenser outlet of the condenser and the inlet of the cooler connected to the condenser among the plurality of coolers;
An apparatus temperature control in which at least a part of the liquid passage formed by the convex portion piping protrudes vertically above the condenser outlet of the condenser and the inlet of a cooler connected to the condenser. apparatus.
前記凸部配管は、該凸部配管により形成される前記液通路の少なくとも一部が前記循環回路に前記作動流体が充填される際の前記複数の冷却器における前記作動流体の目標液面以上の高さとなるよう配置されている請求項13に記載の機器温調装置。   The convex portion pipe is a target liquid level or more of the working fluid in the plurality of coolers when the working fluid is filled in the circulation circuit at least a part of the liquid passage formed by the convex portion pipe The apparatus temperature control device according to claim 13, which is disposed to have a height. 作動流体を循環させる循環回路(26)を有し、前記作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置であって、
前記循環回路に含まれ、前記対象機器の熱と前記作動流体の熱とを熱交換して前記対象機器を冷却する複数の冷却器(14)と、
前記循環回路に含まれ、前記冷却器により蒸発した前記作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、
前記循環回路に含まれ、前記凝縮器にて凝縮した前記作動流体を前記複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、
前記循環回路に含まれ、前記複数の冷却器にて蒸発した前記作動流体を前記凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備え、
前記複数の冷却器は、それぞれ前記往路配管を流れる前記作動流体を本体(143)の内部空間に導入する流入口(141)および前記本体に導入された前記作動流体を流出させる流出口(144)を有し、
前記往路配管は、前記複数の冷却器の1つの第1冷却器の前記流出口と前記複数の冷却器のうちの前記第1冷却器と異なる第2冷却器の前記流入口との間を接続する凸部配管(216)を有し、
前記凸部配管は、該凸部配管により形成される前記液通路の少なくとも一部が前記第1冷却器の前記流出口および前記第2冷却器の前記流入口よりも上下方向上側に突出している機器温調装置。
An apparatus temperature control apparatus, comprising: a circulation circuit (26) for circulating a working fluid, wherein the temperature of a target device (12a, 12b) is adjusted by a phase change between a liquid phase of the working fluid and a gas phase;
A plurality of coolers (14) which are included in the circulation circuit and perform heat exchange between the heat of the target device and the heat of the working fluid to cool the target device;
A condenser (16) which is included in the circulation circuit and dissipates the heat of the working fluid evaporated by the cooler to condense the working fluid;
A forward pipe (21) which is included in the circulation circuit and forms a liquid passage (21a) for supplying the working fluid condensed by the condenser to the plurality of coolers;
Return path piping (22) which is included in the circulation circuit and forms a gas passage (22a) for supplying the working fluid evaporated in the plurality of coolers to the condenser;
The plurality of coolers respectively have an inlet (141) for introducing the working fluid flowing through the forward pipe into the internal space of the main body (143) and an outlet (144) for discharging the working fluid introduced to the main body Have
The forward pipe is connected between the outlet of a first cooler of one of the plurality of coolers and the inlet of a second cooler different from the first cooler of the plurality of coolers. Have a convex piping (216)
In the projection piping, at least a part of the liquid passage formed by the projection piping protrudes upward in the vertical direction from the outlet of the first cooler and the inlet of the second cooler. Equipment temperature control device.
前記凸部配管は、該凸部配管により形成される前記液通路の少なくとも一部が前記循環回路に前記作動流体が充填される際の前記複数の冷却器における前記作動流体の目標液面以上の高さとなるよう配置されている請求項15に記載の機器温調装置。   The convex portion pipe is a target liquid level or more of the working fluid in the plurality of coolers when the working fluid is filled in the circulation circuit at least a part of the liquid passage formed by the convex portion pipe The device temperature control device according to claim 15, which is arranged to be at a height. 作動流体を循環させる循環回路(26)を有し、前記作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置であって、
前記循環回路に含まれ、前記対象機器の熱と前記作動流体の熱とを熱交換して前記対象機器を冷却する複数の冷却器(14)と、
前記循環回路に含まれ、前記冷却器により蒸発した前記作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、
前記循環回路に含まれ、前記凝縮器にて凝縮した前記作動流体を前記複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、
前記循環回路に含まれ、前記複数の冷却器にて蒸発した前記作動流体を前記凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備え、
前記複数の冷却器は、それぞれ前記往路配管を流れる前記作動流体を本体(143)の内部空間に導入する流入口(141)および前記本体に導入された前記作動流体を流出させる流出口(144)を有し、
前記複数の冷却器の前記流入口および前記流出口の少なくとも1つは、前記本体の内部空間の最下端よりも高さの高い位置に配置されている機器温調装置。
An apparatus temperature control apparatus, comprising: a circulation circuit (26) for circulating a working fluid, wherein the temperature of a target device (12a, 12b) is adjusted by a phase change between a liquid phase of the working fluid and a gas phase;
A plurality of coolers (14) which are included in the circulation circuit and perform heat exchange between the heat of the target device and the heat of the working fluid to cool the target device;
A condenser (16) which is included in the circulation circuit and dissipates the heat of the working fluid evaporated by the cooler to condense the working fluid;
A forward pipe (21) which is included in the circulation circuit and forms a liquid passage (21a) for supplying the working fluid condensed by the condenser to the plurality of coolers;
Return path piping (22) which is included in the circulation circuit and forms a gas passage (22a) for supplying the working fluid evaporated in the plurality of coolers to the condenser;
The plurality of coolers respectively have an inlet (141) for introducing the working fluid flowing through the forward pipe into the internal space of the main body (143) and an outlet (144) for discharging the working fluid introduced to the main body Have
The device temperature control device according to claim 1, wherein at least one of the inlet and the outlet of the plurality of coolers is disposed at a height higher than the lowermost end of the internal space of the main body.
前記複数の冷却器の前記流入口および前記流出口の少なくとも1つは、前記循環回路に前記作動流体が充填される際の前記複数の冷却器における前記作動流体の目標液面である適正液面以上の高さに配置されている請求項17に記載の機器温調装置。   At least one of the inlet and the outlet of the plurality of coolers is an appropriate liquid level which is a target level of the working fluid in the plurality of coolers when the circulating circuit is filled with the working fluid. The device temperature control device according to claim 17, which is disposed at the above height. 前記往路配管は、前記液通路を形成する液相連接配管(211)を有し、
前記液相連接配管は、該液相連接配管により形成される前記液通路が前記循環回路に前記作動流体が充填される際の前記複数の冷却器における前記作動流体の目標液面である適正液面以上の高さとなるよう配置されている請求項17または18に記載の機器温調装置。
The forward pipe has a liquid phase connecting pipe (211) forming the liquid passage,
The liquid phase connecting pipe is a target liquid level of the working fluid in the plurality of coolers when the liquid passage formed by the liquid phase connecting pipe is filled with the working fluid in the circulation circuit. The device temperature control device according to claim 17 or 18, wherein the device temperature control device is arranged to have a height higher than a surface.
作動流体を循環させる循環回路(26)を有し、前記作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置であって、
前記循環回路に含まれ、前記対象機器の熱と前記作動流体の熱とを熱交換して前記対象機器を冷却する複数の冷却器(14)と、
前記循環回路に含まれ、前記冷却器により蒸発した前記作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、
前記循環回路に含まれ、前記凝縮器にて凝縮した前記作動流体を前記複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、
前記循環回路に含まれ、前記複数の冷却器にて蒸発した前記作動流体を前記凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備え、
前記複数の冷却器は、それぞれ前記往路配管を流れる前記作動流体を本体(143)の内部空間に導入する流入口(141)および前記本体にて蒸発した前記作動流体を前記復路配管へ排出する排出口(142)を有し、
前記複数の冷却器は、第1高さ位置に配置された低段冷却器と、前記第1高さ位置より高い第2高さ位置に配置された高段冷却器と、を含み、
前記往路配管は、前記低段冷却器の前記流入口と前記高段冷却器の前記流入口との間を接続する高低接続配管(217)を有し、
前記高低接続配管により形成される前記液通路の少なくとも一部が前記低段冷却器の前記流入口と前記高段冷却器の前記流入口よりも上下方向上側に突出している機器温調装置。
An apparatus temperature control apparatus, comprising: a circulation circuit (26) for circulating a working fluid, wherein the temperature of a target device (12a, 12b) is adjusted by a phase change between a liquid phase of the working fluid and a gas phase;
A plurality of coolers (14) which are included in the circulation circuit and perform heat exchange between the heat of the target device and the heat of the working fluid to cool the target device;
A condenser (16) which is included in the circulation circuit and dissipates the heat of the working fluid evaporated by the cooler to condense the working fluid;
A forward pipe (21) which is included in the circulation circuit and forms a liquid passage (21a) for supplying the working fluid condensed by the condenser to the plurality of coolers;
Return path piping (22) which is included in the circulation circuit and forms a gas passage (22a) for supplying the working fluid evaporated in the plurality of coolers to the condenser;
The plurality of coolers respectively have an inlet (141) for introducing the working fluid flowing through the forward pipe into the internal space of the main body (143) and an exhaust for discharging the working fluid evaporated in the main body to the return pipe. With an outlet (142)
The plurality of coolers include a low stage cooler disposed at a first height position, and a high stage cooler disposed at a second height position higher than the first height position,
The forward piping has high-low connection piping (217) connecting between the inlet of the low-stage cooler and the inlet of the high-stage cooler;
An apparatus temperature control apparatus, wherein at least a part of the liquid passage formed by the high and low connection piping protrudes vertically upward from the inflow port of the low-stage cooler and the inflow port of the high-stage cooler.
作動流体を循環させる循環回路(26)を有し、前記作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置であって、
前記循環回路に含まれ、前記対象機器の熱と前記作動流体の熱とを熱交換して前記対象機器を冷却する複数の冷却器(14)と、
前記循環回路に含まれ、前記冷却器により蒸発した前記作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、
前記循環回路に含まれ、前記凝縮器にて凝縮した前記作動流体を前記複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、
前記循環回路に含まれ、前記複数の冷却器にて蒸発した前記作動流体を前記凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備え、
前記複数の冷却器は、それぞれ前記往路配管を流れる前記作動流体を本体(143)の内部空間に導入する流入口(141)および前記本体に導入された前記作動流体を流出させる流出口(144)を有し、
前記複数の冷却器は、第1高さ位置に配置された低段冷却器と、前記第1高さ位置より高い第2高さ位置に配置された高段冷却器と、を含み、
前記往路配管は、前記低段冷却器の前記流入口と前記高段冷却器の前記流出口との間を接続する高低接続配管(217)を有し、
前記高低接続配管により形成される前記液通路の少なくとも一部は前記高段冷却器の前記本体の内部空間の最下端よりも高さの高い位置に配置されている機器温調装置。
An apparatus temperature control apparatus, comprising: a circulation circuit (26) for circulating a working fluid, wherein the temperature of a target device (12a, 12b) is adjusted by a phase change between a liquid phase of the working fluid and a gas phase;
A plurality of coolers (14) which are included in the circulation circuit and perform heat exchange between the heat of the target device and the heat of the working fluid to cool the target device;
A condenser (16) which is included in the circulation circuit and dissipates the heat of the working fluid evaporated by the cooler to condense the working fluid;
A forward pipe (21) which is included in the circulation circuit and forms a liquid passage (21a) for supplying the working fluid condensed by the condenser to the plurality of coolers;
Return path piping (22) which is included in the circulation circuit and forms a gas passage (22a) for supplying the working fluid evaporated in the plurality of coolers to the condenser;
The plurality of coolers respectively have an inlet (141) for introducing the working fluid flowing through the forward pipe into the internal space of the main body (143) and an outlet (144) for discharging the working fluid introduced to the main body Have
The plurality of coolers include a low stage cooler disposed at a first height position, and a high stage cooler disposed at a second height position higher than the first height position,
The forward piping has high-low connection piping (217) connecting between the inlet of the low-stage cooler and the outlet of the high-stage cooler,
The apparatus temperature control device in which at least a part of the liquid passage formed by the high and low connection piping is disposed at a position higher in height than the lowermost end of the internal space of the main body of the high stage cooler.
前記高低接続配管により形成される前記液通路の少なくとも一部は前記循環回路に前記作動流体が充填される際の前記複数の冷却器における前記作動流体の目標液面である適正液面以上の高さに配置されている請求項21に記載の機器温調装置。   At least a part of the fluid passage formed by the high and low connection piping is higher than the appropriate fluid level which is the target fluid level of the working fluid in the plurality of coolers when the working circuit is filled in the circulation circuit. 22. The device temperature control device according to claim 21, wherein 作動流体を循環させる循環回路(26)を有し、前記作動流体の液相と気相との相変化によって対象機器(12a、12b)の温度を調整する機器温調装置であって、
前記循環回路に含まれ、前記対象機器の熱と前記作動流体の熱とを熱交換して前記対象機器を冷却する複数の冷却器(14)と、
前記循環回路に含まれ、前記冷却器により蒸発した前記作動流体の熱を放熱させて該作動流体を凝縮させる凝縮器(16)と、
前記循環回路に含まれ、前記凝縮器にて凝縮した前記作動流体を前記複数の冷却器へ供給する液通路(21a)を形成する往路配管(21)と、
前記循環回路に含まれ、前記複数の冷却器にて蒸発した前記作動流体を前記凝縮器へ供給するガス通路(22a)を形成する復路配管(22)と、を備え、
前記複数の冷却器は、それぞれ前記往路配管を流れる前記作動流体を本体(143)の内部空間に導入する流入口(141)および前記本体に導入された前記作動流体を流出させる流出口(144)を有し、
前記複数の冷却器は、第1高さ位置に配置された低段冷却器と、前記第1高さ位置より高い第2高さ位置に配置された高段冷却器と、を含み、
前記往路配管は、前記低段冷却器の前記流入口と前記高段冷却器の前記流出口との間を接続する高低接続配管(217、218)を有し、
前記高低接続配管により形成される前記液通路の少なくとも一部が前記低段冷却器の前記流入口と前記高段冷却器の前記流出口よりも上下方向上側に突出している機器温調装置。
An apparatus temperature control apparatus, comprising: a circulation circuit (26) for circulating a working fluid, wherein the temperature of a target device (12a, 12b) is adjusted by a phase change between a liquid phase of the working fluid and a gas phase;
A plurality of coolers (14) which are included in the circulation circuit and perform heat exchange between the heat of the target device and the heat of the working fluid to cool the target device;
A condenser (16) which is included in the circulation circuit and dissipates the heat of the working fluid evaporated by the cooler to condense the working fluid;
A forward pipe (21) which is included in the circulation circuit and forms a liquid passage (21a) for supplying the working fluid condensed by the condenser to the plurality of coolers;
Return path piping (22) which is included in the circulation circuit and forms a gas passage (22a) for supplying the working fluid evaporated in the plurality of coolers to the condenser;
The plurality of coolers respectively have an inlet (141) for introducing the working fluid flowing through the forward pipe into the internal space of the main body (143) and an outlet (144) for discharging the working fluid introduced to the main body Have
The plurality of coolers include a low stage cooler disposed at a first height position, and a high stage cooler disposed at a second height position higher than the first height position,
The forward piping has high-low connection piping (217, 218) connecting between the inlet of the low-stage cooler and the outlet of the high-stage cooler,
The apparatus temperature control apparatus in which at least a part of the liquid passage formed by the high and low connection piping protrudes vertically upward from the inflow port of the low-stage cooler and the outflow port of the high-stage cooler.
前記複数の冷却器の少なくとも1つは、前記本体の内部空間に導入された前記作動流体を加熱するために流出させる加熱用流出口(145)と、前記加熱用流出口より上下方向上側に配置され、前記加熱用流出口から流出した前記作動流体を前記本体の内部空間に導入する加熱用流入口(146)と、を有し、
前記加熱用流出口と前記加熱用流入口との間には、前記加熱用流出口から流出した前記作動流体を前記加熱用流入口へ導入する暖機用配管(40)が設けられており、
前記暖機用配管には、該暖機用配管の内部に導入された液相の前記作動流体を加熱する加熱源(30)が設けられており、
前記加熱源により加熱された前記作動流体が前記暖機用配管を通って前記加熱用流入口から前記本体の内部空間に導入される請求項1ないし23のいずれか1つに記載の機器温調装置。
At least one of the plurality of coolers is disposed at a heating outlet (145) for flowing out to heat the working fluid introduced into the internal space of the main body, and vertically above the heating outlet. And a heating inlet (146) for introducing the working fluid that has flowed out of the heating outlet into the internal space of the main body;
Between the heating outlet and the heating inlet, there is provided a warming pipe (40) for introducing the working fluid that has flowed out from the heating outlet to the heating inlet.
The heating pipe (30) is provided with a heating source (30) for heating the working fluid of the liquid phase introduced into the heating pipe.
The apparatus temperature control according to any one of claims 1 to 23, wherein the working fluid heated by the heating source is introduced into the internal space of the main body from the heating inlet through the warming pipe. apparatus.
前記往路配管と前記復路配管との間を接続する暖機用配管(41)と、
前記往路配管および前記暖機用配管の少なくとも一方に配置され、前記往路配管および前記暖機用配管の少なくとも一方の内部に導入された液相の前記作動流体を加熱する加熱源(30)と、を備え、
前記加熱源により加熱された前記作動流体が前記復路配管を通って前記排出口から前記本体の内部空間に導入される請求項1ないし23のいずれか1つに記載の機器温調装置。
A warming-up pipe (41) for connecting the forward pipe and the return pipe;
A heating source (30) disposed in at least one of the forward piping and the warming piping, for heating the working fluid in a liquid phase introduced into at least one of the outward piping and the warming piping; Equipped with
The apparatus temperature control apparatus according to any one of claims 1 to 23, wherein the working fluid heated by the heating source is introduced into the internal space of the main body from the outlet through the return pipe.
前記往路配管の内部に導入された液相の前記作動流体を加熱する加熱源(30)と、
前記加熱源より上下方向上側に配置され、前記往路配管と前記復路配管との間を接続する気相液相連通配管(42)と、を備え、
前記加熱源で加熱された前記作動流体が、前記往路配管、前記気相液相連通配管および前記復路配管を通って前記本体の内部空間に導入される請求項1ないし23のいずれか1つに記載の機器温調装置。
A heating source (30) for heating the working fluid of the liquid phase introduced into the inside of the forward piping;
A vapor-phase liquid-phase communicating pipe (42) which is disposed vertically above the heating source and connects the forward pipe and the return pipe;
The method according to any one of claims 1 to 23, wherein the working fluid heated by the heating source is introduced into the internal space of the main body through the forward pipe, the vapor-phase liquid phase communicating pipe, and the return pipe. Equipment temperature control device as described.
前記往路配管と前記復路配管との間を接続する気相液相連通配管(43、44)と、
前記気相液相連通配管に配置され、該気相液相連通配管に導入された液相の前記作動流体を加熱する加熱源(30)と、を備え、
前記加熱源により加熱された前記作動流体が前記往路配管を通って前記本体の内部空間に導入される請求項1ないし23のいずれか1つに記載の機器温調装置。
A gas phase liquid phase communication pipe (43, 44) connecting the forward pipe and the return pipe;
And a heating source (30) disposed in the vapor phase liquid phase communication pipe for heating the working fluid of the liquid phase introduced into the vapor phase liquid phase communication pipe;
The apparatus temperature control apparatus according to any one of claims 1 to 23, wherein the working fluid heated by the heating source is introduced into the internal space of the main body through the forward pipe.
複数の前記暖機用配管を備え、
前記加熱源は、複数の暖機用配管を加熱する発熱体(32)を有している請求項24または25に記載の機器温調装置。
Equipped with multiple warm-up pipes,
The device temperature control device according to claim 24 or 25, wherein the heating source has a heating element (32) for heating a plurality of warming pipes.
JP2018082432A 2017-11-07 2018-04-23 Equipment temperature controller Pending JP2019086275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/040774 WO2019093230A1 (en) 2017-11-07 2018-11-01 Device-temperature adjusting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017214857 2017-11-07
JP2017214857 2017-11-07

Publications (1)

Publication Number Publication Date
JP2019086275A true JP2019086275A (en) 2019-06-06

Family

ID=66762766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018082432A Pending JP2019086275A (en) 2017-11-07 2018-04-23 Equipment temperature controller

Country Status (1)

Country Link
JP (1) JP2019086275A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110570781A (en) * 2019-09-29 2019-12-13 广东德豪锐拓显示技术有限公司 LED display module and LED splicing display system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110570781A (en) * 2019-09-29 2019-12-13 广东德豪锐拓显示技术有限公司 LED display module and LED splicing display system

Similar Documents

Publication Publication Date Title
JP6604442B2 (en) Equipment temperature controller
JP6754352B2 (en) Battery temperature control device and battery temperature control system
JP6593544B2 (en) Equipment temperature controller
JP6579276B2 (en) Equipment temperature controller
JP6575690B2 (en) Equipment temperature controller
WO2018230349A1 (en) Cooler and thermosyphon
JP2019016584A (en) Device temperature adjusting apparatus
WO2018168276A1 (en) Device temperature adjusting apparatus
WO2018047533A1 (en) Device temperature adjusting apparatus
WO2019093230A1 (en) Device-temperature adjusting apparatus
JP6604441B2 (en) Method for manufacturing apparatus temperature control device and method for filling working fluid
WO2018047534A1 (en) Instrument temperature adjustment device
JP6601567B2 (en) Equipment temperature controller
JP2019052837A (en) Apparatus temperature adjustment device
WO2018047538A1 (en) Device temperature control system
WO2018055926A1 (en) Device temperature adjusting apparatus
CN106255861A (en) Heat exchanger
JP2019086275A (en) Equipment temperature controller
JP7159771B2 (en) Equipment temperature controller
WO2019123881A1 (en) Device temperature adjusting apparatus
WO2019054076A1 (en) Device temperature adjustment apparatus
JP2020165586A (en) Vehicular thermosiphon type cooling device
WO2018070182A1 (en) Appliance temperature regulating apparatus
WO2019097913A1 (en) Machine temperature adjustment device
US20150040603A1 (en) Assembly Including A Heat Exchanger And A Mounting On Which Said Exchanger Is Mounted