JP5891349B2 - COOLING DEVICE AND ELECTRONIC DEVICE AND ELECTRIC CAR HAVING THE SAME - Google Patents

COOLING DEVICE AND ELECTRONIC DEVICE AND ELECTRIC CAR HAVING THE SAME Download PDF

Info

Publication number
JP5891349B2
JP5891349B2 JP2011224658A JP2011224658A JP5891349B2 JP 5891349 B2 JP5891349 B2 JP 5891349B2 JP 2011224658 A JP2011224658 A JP 2011224658A JP 2011224658 A JP2011224658 A JP 2011224658A JP 5891349 B2 JP5891349 B2 JP 5891349B2
Authority
JP
Japan
Prior art keywords
heat
working fluid
heat receiving
cooling device
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011224658A
Other languages
Japanese (ja)
Other versions
JP2013083413A (en
Inventor
俊司 三宅
俊司 三宅
郁 佐藤
郁 佐藤
杉山 誠
誠 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2011224658A priority Critical patent/JP5891349B2/en
Publication of JP2013083413A publication Critical patent/JP2013083413A/en
Application granted granted Critical
Publication of JP5891349B2 publication Critical patent/JP5891349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電力半導体を搭載した電子機器、および電気自動車の冷却装置に関するものである。   The present invention relates to an electronic device equipped with a power semiconductor and an electric vehicle cooling device.

従来この種の冷却装置は、電子機器および電気自動車の電力変換回路に搭載されたものが知られている。電気自動車では、駆動動力源となる電動モータを電力変換回路であるインバータ回路でスイッチング駆動していた。インバータ回路には、パワートランジスタを代表とする半導体スイッチング素子が複数個使われていて、それぞれの素子に数十アンペアの大電流が流れていた。そのため、大きな熱が発生し、冷却することが必要であった。   Conventionally, this type of cooling device is known to be mounted on a power conversion circuit of an electronic device or an electric vehicle. In an electric vehicle, an electric motor serving as a driving power source is switched by an inverter circuit that is a power conversion circuit. A plurality of semiconductor switching elements represented by power transistors are used in the inverter circuit, and a large current of several tens of amperes flows through each element. Therefore, great heat was generated and it was necessary to cool.

そこで、従来は、例えば特許文献1のように、加熱部101と冷却器102と上昇管103と下降管104とで構成するループ型ヒートパイプにより半導体スイッチング素子などの発熱体の冷却を行っていた。   Therefore, conventionally, as in Patent Document 1, for example, a heating element such as a semiconductor switching element is cooled by a loop heat pipe including a heating unit 101, a cooler 102, a rising pipe 103, and a lowering pipe 104. .

以下、特許文献1に示すループ型ヒートパイプについて、図8を参照しながら説明する。   Hereinafter, the loop heat pipe shown in Patent Document 1 will be described with reference to FIG.

図8に示すようにループ型ヒートパイプは上昇管103と下降管104とを別個に含むループ回路105、ループ回路105に真空化において封入された作動流体である熱媒体106、ループ回路105の一部を構成し、かつループ回路105の上方に位置する冷却器102、上昇管103の下部に位置する加熱部101、ループ回路105内の下部に介装しループ回路105内の熱媒体106の循環方向を限定する逆止弁107とを備えている。   As shown in FIG. 8, the loop heat pipe includes a loop circuit 105 that includes an ascending pipe 103 and a descending pipe 104, a heat medium 106 that is a working fluid sealed in the loop circuit 105 in a vacuum, and a loop circuit 105. The cooling unit 102 is located above the loop circuit 105, the heating unit 101 is located below the riser pipe 103, and the heat medium 106 in the loop circuit 105 is circulated through the lower part in the loop circuit 105. And a check valve 107 for limiting the direction.

ここで、加熱部101に接触させた半導体スイッチング素子に熱が発生すると、発生した熱は加熱部101へ伝わり、加熱部101を循環する熱媒体106に熱が加えられ気化する。逆止弁107によりその循環方向が制限され、気化した熱媒体106は上昇管103を上昇し冷却器102に導かれて冷却され、ここで、加熱部101で加えられた熱を放出する。冷却器102で熱を放出した熱媒体106は下降管104を下降し、逆止弁107を介して再び加熱部101へと循環する。   Here, when heat is generated in the semiconductor switching element brought into contact with the heating unit 101, the generated heat is transmitted to the heating unit 101, and heat is applied to the heat medium 106 circulating in the heating unit 101 to be vaporized. The circulation direction is limited by the check valve 107, and the vaporized heat medium 106 rises up the ascending pipe 103 and is led to the cooler 102 to be cooled. Here, the heat applied by the heating unit 101 is released. The heat medium 106 that has released heat from the cooler 102 descends the downcomer 104 and circulates again to the heating unit 101 via the check valve 107.

特開昭61−038396号公報JP 61-038396 A

このような従来の冷却装置においては、半導体スイッチング素子に発生する熱が大きくなると、冷却には多くの量の作動流体である熱媒体106を加熱部101へ供給する必要がある。   In such a conventional cooling device, when the heat generated in the semiconductor switching element becomes large, it is necessary to supply the heating medium 101 to the heating unit 101 with a large amount of working fluid for cooling.

そのような場合において、多くの量の作動流体を封入しても、上昇管103の循環抵抗値が増加してしまうため、多くの量の作動流体を循環させることができなかった。そのため、冷却に必要な量の熱媒体106を加熱部101に供給することができず、冷却能力が低下するという課題を有していた。   In such a case, even if a large amount of working fluid is sealed, the circulation resistance value of the ascending pipe 103 increases, and therefore a large amount of working fluid cannot be circulated. For this reason, the amount of the heat medium 106 required for cooling cannot be supplied to the heating unit 101, and there is a problem that the cooling capacity is reduced.

そこで本発明は、上記の従来の課題を解決するものであり、半導体スイッチング素子に発生する熱が大きくなり、多くの量の作動流体を加熱部へ供給する必要がある場合でも、冷却に必要な量の作動流体を供給することができ、冷却能力の低下を抑制した冷却装置を提供することを目的とする。   Therefore, the present invention solves the above-described conventional problems, and the heat generated in the semiconductor switching element is increased, so that it is necessary for cooling even when a large amount of working fluid needs to be supplied to the heating unit. An object of the present invention is to provide a cooling device capable of supplying an amount of working fluid and suppressing a decrease in cooling capacity.

そして、この目的を達成するために、本発明の冷却装置は、作動流体を循環し液相と気相との相変化により冷却する冷却装置であって、発熱体からの熱を受熱板に接触させて作動流体に伝える受熱部と、前記作動流体の熱を放出する放熱部と、前記受熱部の排出口と前記放熱部とを連通する放熱経路と、前記放熱部と前記受熱部の流入口を連通する帰還経路とで構成し、前記帰還経路には逆流防止弁を備えるとともに、複数個の前記排出口設け、前記排出口の数に対応した複数個の前記放熱経路を設け、前記逆流防止弁の上流側の圧力が下流側の圧力より高くなった時に前記作動流体は前記逆流防止弁を通過し、前記作動流体は、前記受熱板上に液滴となって滴下され、滴下した前記作動流体は、前記帰還経路の前記流入口と前記受熱板の隙間から外周部へ拡散され、前記受熱板の表面では、前記作動流体が薄い膜として広がり気化することを特徴とする冷却装置あり、これにより所期の目的を達成するものである。 In order to achieve this object, the cooling device of the present invention is a cooling device that circulates a working fluid and cools it by a phase change between a liquid phase and a gas phase, and contacts the heat receiving plate with heat from a heating element. A heat receiving portion that transmits the heat to the working fluid; a heat radiating portion that releases heat of the working fluid; a heat radiating path that communicates the discharge port of the heat receiving portion and the heat radiating portion; The return path is provided with a backflow prevention valve, provided with a plurality of the discharge ports, and provided with a plurality of heat radiation paths corresponding to the number of the discharge ports, to prevent the backflow. When the pressure on the upstream side of the valve becomes higher than the pressure on the downstream side, the working fluid passes through the check valve, and the working fluid is dropped as droplets on the heat receiving plate, and the dropped operation The fluid flows between the inlet of the return path and the heat receiving plate. Is diffused into the outer peripheral portion from the surface of the heat-receiving plate, there cooler, characterized in that the working fluid is spread vaporized as a thin film, thereby is to achieve the intended purpose.

本発明の冷却装置によれば、作動流体を循環し液相と気相との相変化により冷却する冷却装置であって、発熱体からの熱を受熱板に接触させて作動流体に伝える受熱部と、前記作動流体の熱を放出する放熱部と、前記受熱部の排出口と前記放熱部とを連通する放熱経路と、前記放熱部と前記受熱部の流入口を連通する帰還経路とで構成し、前記帰還経路には逆流防止弁を備えるとともに、複数個の前記排出口設け、前記排出口の数に対応した複数個の前記放熱経路を設け、前記逆流防止弁の上流側の圧力が下流側の圧力より高くなった時に前記作動流体は前記逆流防止弁を通過し、前記作動流体は、前記受熱板上に液滴となって滴下され、滴下した前記作動流体は、前記帰還経路の前記流入口と前記受熱板の隙間から外周部へ拡散され、前記受熱板の表面では、前記作動流体が薄い膜として広がり気化するという構成を有する。 According to the cooling device of the present invention, the cooling device circulates the working fluid and cools it by the phase change between the liquid phase and the gas phase, and the heat receiving unit transmits heat from the heating element to the heat receiving plate to contact the working fluid. And a heat radiating part that releases heat of the working fluid, a heat radiating path that communicates the discharge port of the heat receiving part and the heat radiating part, and a feedback path that communicates the inlet of the heat radiating part and the heat receiving part. The return path includes a backflow prevention valve, a plurality of the discharge ports, a plurality of heat radiation paths corresponding to the number of the discharge ports, and a pressure upstream of the backflow prevention valve. When the pressure becomes higher than the pressure on the side, the working fluid passes through the backflow prevention valve, the working fluid is dropped on the heat receiving plate as droplets, and the dropped working fluid is dropped in the return path Diffused from the gap between the inlet and the heat receiving plate to the outer periphery, The surface of the hot plate has a structure that the working fluid is spread vaporized as a thin film.

これにより、作動流体が高温の受熱板の熱を加えられ一瞬にして気化することとなり、発熱体からの熱は作動流体に気化潜熱として除去され、効率的な冷却が可能となる。また、単一個の排出口と単一個の放熱経路とを設けた時と比較して、放熱経路での作動流体の循環抵抗を低減させることができるため、作動流体の循環量を増加させることができる。 As a result, the working fluid is heated by the heat receiving plate at a high temperature and is instantly vaporized, and the heat from the heating element is removed as latent heat of vaporization by the working fluid, thereby enabling efficient cooling. In addition, since the circulation resistance of the working fluid in the heat dissipation path can be reduced compared to the case where a single discharge port and a single heat dissipation path are provided, the circulation amount of the working fluid can be increased. it can.

その結果、発熱体に発生した熱が大きくなり、多くの量の作動流体を加熱部へ供給する必要がある場合でも、冷却に必要な量の作動流体を供給することができ、冷却能力の低下を抑制することができるという効果を得ることができる。   As a result, the heat generated in the heating element increases, and even when a large amount of working fluid needs to be supplied to the heating unit, the amount of working fluid necessary for cooling can be supplied, resulting in a decrease in cooling capacity. The effect that it can suppress can be acquired.

本発明の実施の形態の電気自動車の概略図Schematic of an electric vehicle according to an embodiment of the present invention 2個の排出口と2個の放熱経路とを設けた冷却装置を示す概略図Schematic showing a cooling device provided with two outlets and two heat dissipation paths 単一個の排出口と単一個の放熱経路とを設けた冷却装置を示す概略図Schematic showing a cooling device with a single outlet and a single heat dissipation path (a)2個の排出口と2個の放熱経路とを設けた受熱部を示す概略斜視図、(b)2個の排出口と2個の放熱経路とを設けた受熱部を示す概略上面図(A) The schematic perspective view which shows the heat receiving part which provided two discharge ports and two heat radiation paths, (b) The schematic upper surface which shows the heat receiving part which provided two discharge ports and two heat radiation paths Figure 2個の放熱経路が合流した後に放熱部に連通する構成とした冷却装置を示す概略図Schematic showing a cooling device configured to communicate with the heat dissipation part after the two heat dissipation paths merge. (a)3個の排出口と3個の放熱経路とを設けた受熱部を示す概略斜視図、(b)3個の排出口と3個の放熱経路とを設けた受熱部を示す概略上面図(A) Schematic perspective view showing a heat receiving part provided with three discharge ports and three heat dissipation paths, (b) Schematic upper surface showing a heat receiving part provided with three discharge ports and three heat dissipation paths Figure (a)2個の排出口を流入口の中心を通過する中心線に対して同一角度かつ対象の位置に配置した受熱部を示す概略斜視図、(b)2個の排出口を流入口の中心を通過する中心線に対して同一角度かつ対象の位置に配置した受熱部を示す概略上面図(A) The schematic perspective view which shows the heat receiving part which has arrange | positioned two discharge ports at the same angle and target position with respect to the centerline which passes the center of an inflow port, (b) Two discharge ports of an inflow port Schematic top view showing a heat receiving part arranged at the same angle and target position with respect to a center line passing through the center 従来の冷却装置を示す概略図Schematic showing a conventional cooling device

本発明の請求項1記載の冷却装置は、作動流体を循環し液相と気相との相変化により冷却する冷却装置であって、発熱体からの熱を受熱板に接触させて作動流体に伝える受熱部と、前記作動流体の熱を放出する放熱部と、前記受熱部の排出口と前記放熱部とを連通する放熱経路と、前記放熱部と前記受熱部の流入口を連通する帰還経路とで構成し、前記帰還経路には逆流防止弁を備えるとともに、複数個の前記排出口設け、前記排出口の数に対応した複数個の前記放熱経路を設け、前記逆流防止弁の上流側の圧力が下流側の圧力より高くなった時に前記作動流体は前記逆流防止弁を通過し、前記作動流体は、前記受熱板上に液滴となって滴下され、滴下した前記作動流体は、前記帰還経路の前記流入口と前記受熱板の隙間から外周部へ拡散され、前記受熱板の表面では、前記作動流体が薄い膜として広がり気化するという構成を有する。 The cooling device according to claim 1 of the present invention is a cooling device that circulates a working fluid and cools it by a phase change between a liquid phase and a gas phase, and contacts the heat receiving plate with heat from a heating element to form the working fluid. A heat receiving portion for transmitting, a heat radiating portion for releasing the heat of the working fluid, a heat radiating path communicating the discharge port of the heat receiving portion and the heat radiating portion, and a feedback path communicating the inlet of the heat radiating portion and the heat receiving portion The return path is provided with a backflow prevention valve, a plurality of the discharge ports, a plurality of heat radiation paths corresponding to the number of the discharge ports, and an upstream side of the backflow prevention valve. When the pressure becomes higher than the pressure on the downstream side, the working fluid passes through the backflow prevention valve, and the working fluid is dropped as droplets on the heat receiving plate, and the dropped working fluid is returned to the feedback Diffusion from the gap between the inlet of the path and the heat receiving plate to the outer periphery In the surface of the heat-receiving plate has a structure that the working fluid is spread vaporized as a thin film.

これにより、単一の排出口と単一の放熱経路とを設けた時と比較して、放熱経路での作動流体の循環抵抗値を低減させることができるため、作動流体の循環量を増加させることができる。   Thereby, compared with the case where a single discharge port and a single heat dissipation path are provided, the circulation resistance value of the working fluid in the heat dissipation path can be reduced, thereby increasing the circulation amount of the working fluid. be able to.

その結果、発熱体に発生した熱が大きくなり、多くの量の作動流体を加熱部へ供給する必要がある場合でも、冷却に必要な量の作動流体を供給することができ、冷却能力の低下を抑制することができるという効果を得ることができる。   As a result, the heat generated in the heating element increases, and even when a large amount of working fluid needs to be supplied to the heating unit, the amount of working fluid necessary for cooling can be supplied, resulting in a decrease in cooling capacity. The effect that it can suppress can be acquired.

また、請求項2記載の冷却装置は、複数個の前記放熱経路の前記作動流体循環方向に対する垂直断面積はすべて同じ面積としたという構成にしてもよい。   The cooling device according to claim 2 may be configured such that a plurality of the heat radiation paths have the same vertical cross-sectional area with respect to the working fluid circulation direction.

これにより、複数個の放熱経路での作動流体の循環抵抗値を同じ値にすることができるため、複数個の放熱経路における作動流体の量を同じ量にすることができる。すなわち、受熱部から複数個の排出口へと排出される作動流体の量も同じ量にすることができることとなる。そのため、受熱部での作動流体の循環状態の偏りを抑制することができ、作動流体を効率よく循環させることができるため、作動流体の循環量を増加させることができる。   Thereby, since the circulating resistance value of the working fluid in the plurality of heat radiation paths can be made the same value, the amount of the working fluid in the plurality of heat radiation paths can be made the same amount. That is, the amount of the working fluid discharged from the heat receiving portion to the plurality of discharge ports can be made the same amount. Therefore, the bias of the circulating state of the working fluid in the heat receiving part can be suppressed and the working fluid can be circulated efficiently, so that the amount of circulating working fluid can be increased.

その結果、発熱体に発生した熱が大きくなり、多くの量の作動流体を加熱部へ供給する必要がある場合でも、冷却に必要な量の作動流体を供給することができ、冷却能力の低下を抑制することができるという効果を得ることができる。   As a result, the heat generated in the heating element increases, and even when a large amount of working fluid needs to be supplied to the heating unit, the amount of working fluid necessary for cooling can be supplied, resulting in a decrease in cooling capacity. The effect that it can suppress can be acquired.

また、請求項3記載の冷却装置は、複数個の前記放熱経路の全長はすべて同じ長さとしたという構成にしてもよい。   Moreover, the cooling device according to claim 3 may be configured such that the entire length of the plurality of heat radiation paths is the same.

これにより、複数個の放熱経路での作動流体の循環抵抗値を同じ値にすることができるため、複数個の放熱経路における作動流体の量を同じ量にすることができる。すなわち、受熱部から複数個の排出口へと排出される作動流体の量も同じ量にすることができることとなる。そのため、受熱部での作動流体の循環状態の偏りを抑制することができ、作動流体を効率よく循環させることができるため、作動流体の循環量を増加させることができる。   Thereby, since the circulating resistance value of the working fluid in the plurality of heat radiation paths can be made the same value, the amount of the working fluid in the plurality of heat radiation paths can be made the same amount. That is, the amount of the working fluid discharged from the heat receiving portion to the plurality of discharge ports can be made the same amount. Therefore, the bias of the circulating state of the working fluid in the heat receiving part can be suppressed and the working fluid can be circulated efficiently, so that the amount of circulating working fluid can be increased.

その結果、発熱体に発生した熱が大きくなり、多くの量の作動流体を加熱部へ供給する必要がある場合でも、冷却に必要な量の作動流体を供給することができ、冷却能力の低下を抑制することができるという効果を得ることができる。   As a result, the heat generated in the heating element increases, and even when a large amount of working fluid needs to be supplied to the heating unit, the amount of working fluid necessary for cooling can be supplied, resulting in a decrease in cooling capacity. The effect that it can suppress can be acquired.

また、請求項4記載の冷却装置は、前記流入口は前記受熱部の中央に備え、複数個の前記排出口と前記流入口との距離はすべて同じ距離とするとともに、複数個の前記排出口は前記流入口を中心とした円周上に等間隔に配置したという構成にしてもよい。   The cooling device according to claim 4, wherein the inflow port is provided in the center of the heat receiving portion, and a plurality of the discharge ports and the inflow ports all have the same distance, and the plurality of the discharge ports. May be arranged at equal intervals on the circumference centered on the inlet.

これにより、受熱部内部において流入口から複数個の排出口までの作動流体の循環抵抗値を同じ値にすることができる。そのため、受熱部での作動流体の循環状態の偏りを抑制することができ、作動流体を効率よく循環させることができるため、作動流体の循環量を増加させることができる。   Thereby, the circulation resistance value of the working fluid from the inflow port to the plurality of discharge ports can be made the same value in the heat receiving part. Therefore, the bias of the circulating state of the working fluid in the heat receiving part can be suppressed and the working fluid can be circulated efficiently, so that the amount of circulating working fluid can be increased.

その結果、発熱体に発生した熱が大きくなり、多くの量の作動流体を加熱部へ供給する必要がある場合でも、冷却に必要な量の作動流体を供給することができ、冷却能力の低下を抑制することができるという効果を得ることができる。   As a result, the heat generated in the heating element increases, and even when a large amount of working fluid needs to be supplied to the heating unit, the amount of working fluid necessary for cooling can be supplied, resulting in a decrease in cooling capacity. The effect that it can suppress can be acquired.

また、請求項5記載の冷却装置は、請求項1から4いずれか一つに記載の冷却装置を備えた構成とした電子機器にしてもよい。   Further, the cooling device according to claim 5 may be an electronic device including the cooling device according to any one of claims 1 to 4.

これにより、電子機器は、発熱体に発生した熱が大きくなった場合でも、受熱部に作動流体を供給することができ、冷却能力の低下を抑制する効果を有した冷却装置を備えた構成となる。   Thus, the electronic device has a configuration including a cooling device that can supply the working fluid to the heat receiving portion even when the heat generated in the heating element becomes large, and has an effect of suppressing a decrease in cooling capacity. Become.

その結果、電子機器に発生した熱が大きくなり、冷却に必要な作動流体の量が多くなった場合でも、受熱部に作動流体を供給することができるため、冷却能力の低下を抑制することができるという効果を得ることができる。   As a result, even when the heat generated in the electronic device is increased and the amount of working fluid required for cooling is increased, the working fluid can be supplied to the heat receiving part, so that the reduction in cooling capacity can be suppressed. The effect that it is possible can be obtained.

また、請求項6記載の冷却装置は、請求項1から4いずれか一つに記載の冷却装置を備えた構成とした電気自動車にしてもよい。   The cooling device according to a sixth aspect may be an electric vehicle including the cooling device according to any one of the first to fourth aspects.

これにより、電気自動車は、発熱体に発生した熱が大きくなった場合でも、受熱部に作動流体を供給することができ、冷却能力の低下を抑制する効果を有した冷却装置を備えた構成となる。   Thus, the electric vehicle has a configuration including a cooling device that can supply the working fluid to the heat receiving portion even when the heat generated in the heating element increases, and has an effect of suppressing a decrease in cooling capacity. Become.

その結果、電気自動車に発生した熱が大きくなり、冷却に必要な作動流体の量が多くなった場合でも、受熱部に作動流体を供給することができるため、冷却能力の低下を抑制することができるという効果を得ることができる。   As a result, even when the amount of heat generated in the electric vehicle increases and the amount of working fluid required for cooling increases, the working fluid can be supplied to the heat receiving part, so that it is possible to suppress a decrease in cooling capacity. The effect that it is possible can be obtained.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1に示すように、電気自動車1の車軸(図示せず)を駆動する電動モータ(図示せず)は、電気自動車1の内に配置した電力変換装置であるインバータ回路2に接続されている。
(Embodiment 1)
As shown in FIG. 1, an electric motor (not shown) that drives an axle (not shown) of the electric vehicle 1 is connected to an inverter circuit 2 that is a power conversion device arranged in the electric vehicle 1. .

インバータ回路2は、電動モータに電力を供給するもので、複数個の半導体スイッチング素子(図2の9)を備えおり、この半導体スイッチング素子(図2の9)が動作中に熱を発生する。   The inverter circuit 2 supplies electric power to the electric motor, and includes a plurality of semiconductor switching elements (9 in FIG. 2). The semiconductor switching elements (9 in FIG. 2) generate heat during operation.

このため、この半導体スイッチング素子(図2の9)を冷却するために、熱媒体となる作動流体(図2の11で、例えば水)を循環させることで冷却を行う冷却装置3を備えている。   For this reason, in order to cool this semiconductor switching element (9 in FIG. 2), a cooling device 3 is provided for cooling by circulating a working fluid (11 in FIG. 2, for example, water) serving as a heat medium. .

冷却装置3は、作動流体(図2の11で、例えば水)に熱を加える受熱部4と、加えた熱を放出する放熱部5を備え、受熱部4と放熱部5の間で熱媒体となる作動流体(図2の11で、例えば水)を循環させる複数個の放熱経路6と、帰還経路7とを設けることで、受熱部4、複数個の放熱経路6、放熱部5、帰還経路7、受熱部4となる循環経路を構成している。   The cooling device 3 includes a heat receiving portion 4 that applies heat to the working fluid (for example, water in 11 of FIG. 2) and a heat radiating portion 5 that releases the applied heat, and a heat medium between the heat receiving portion 4 and the heat radiating portion 5. By providing a plurality of heat radiation paths 6 for circulating the working fluid (11 in FIG. 2, for example, water) and a return path 7, the heat receiving part 4, the plurality of heat radiation paths 6, the heat radiation part 5, and feedback A circulation path serving as the path 7 and the heat receiving unit 4 is configured.

さらに、帰還経路7に逆流防止弁(図2の16)を備えることで、この帰還経路7においては、作動流体(図2の11、例えば水)が、気体状態(水の場合水蒸気)や液体状態及びその混合状態で、受熱部4、複数個の放熱経路6、放熱部5、帰還経路7、受熱部4と一方向に、循環するようになっている。   Further, by providing the return path 7 with a backflow prevention valve (16 in FIG. 2), in this return path 7, the working fluid (11 in FIG. 2, for example, water) is in a gaseous state (water vapor in the case of water) or liquid. In the state and the mixed state thereof, the heat receiving part 4, the plurality of heat radiation paths 6, the heat radiation part 5, the return path 7, and the heat reception part 4 circulate in one direction.

ここで、放熱部5は送風機8から外気が送風されることで、冷却され熱を放出している。   Here, the heat radiating unit 5 is cooled and releases heat when the outside air is blown from the blower 8.

なお、この放熱部5の表面から放出された熱は、電気自動車1の車内の暖房に活用することも出来る。   The heat released from the surface of the heat radiating part 5 can also be used for heating the inside of the electric vehicle 1.

図2に示すように受熱部4は、半導体スイッチング素子9に接触させて熱を吸収する受熱板10と、この受熱板10の表面を覆い、流れ込んだ作動流体11を蒸発させる受熱空間12を形成する受熱板カバー13とを備えている。   As shown in FIG. 2, the heat receiving unit 4 forms a heat receiving plate 10 that contacts the semiconductor switching element 9 and absorbs heat, and a heat receiving space 12 that covers the surface of the heat receiving plate 10 and evaporates the working fluid 11 that has flowed in. And a heat receiving plate cover 13.

さらに、受熱板カバー13には、受熱空間12に帰還経路7から作動流体11を流入させる流入口14と、受熱空間12から作動流体11を複数個の放熱経路6へ排出する放熱経路6の数に対応した複数個の排出口15が設けられている。   Further, the heat receiving plate cover 13 has an inlet 14 through which the working fluid 11 flows into the heat receiving space 12 from the return path 7, and the number of the heat radiating paths 6 through which the working fluid 11 is discharged from the heat receiving space 12 to the plurality of heat radiating paths 6. A plurality of discharge ports 15 corresponding to the above are provided.

ここで、帰還経路7には、流入口14近傍上部に逆流防止弁16を備えている。   Here, the return path 7 is provided with a backflow prevention valve 16 near the inlet 14.

このような構成による冷却装置3の作用について説明する。   The operation of the cooling device 3 having such a configuration will be described.

上記構成において、インバータ回路2の半導体スイッチング素子9が動作を開始すると電動モータに電力が供給されて、電気自動車1は、動きだすこととなる。   In the above configuration, when the semiconductor switching element 9 of the inverter circuit 2 starts operation, electric power is supplied to the electric motor, and the electric vehicle 1 starts to move.

このとき、半導体スイッチング素子9には大電流が流れることにより、大きな熱が発生する。   At this time, a large amount of heat is generated due to a large current flowing through the semiconductor switching element 9.

ここで、半導体スイッチング素子9で発生した熱は受熱板10へ伝わる。受熱板10へ伝わった熱は、受熱空間12の受熱板10上に供給された液体状態の作動流体11を瞬時に気化させ、気体状態へと変化させる。蒸発潜熱を与えられた気体状態の作動流体11は、複数個の排出口15から複数個の放熱経路6へと循環し、放熱部5で冷却され凝縮し液体状態になることで熱を外気に放出する。   Here, the heat generated in the semiconductor switching element 9 is transmitted to the heat receiving plate 10. The heat transmitted to the heat receiving plate 10 instantly vaporizes the liquid working fluid 11 supplied onto the heat receiving plate 10 in the heat receiving space 12 and changes it to a gas state. The working fluid 11 in a gaseous state given the latent heat of vaporization circulates from the plurality of outlets 15 to the plurality of heat radiation paths 6, is cooled by the heat radiation unit 5, is condensed, and becomes a liquid state by being converted into a liquid state. discharge.

続いて、凝縮潜熱を放出した液体状態の作動流体11は帰還経路7へと循環し、逆流防止弁16の上に溜まることとなる。液体状態の作動流体11は、徐々に帰還経路7で増加し、水頭圧力が高くなる。(水頭高さが高くなる。)一方、受熱空間12では作動流体11が供給されないため、徐々に気体状態の作動流体11が減少し、受熱空間12の圧力が低下する。   Subsequently, the liquid working fluid 11 that has released the latent heat of condensation circulates to the return path 7 and accumulates on the backflow prevention valve 16. The working fluid 11 in the liquid state gradually increases in the return path 7 and the head pressure increases. On the other hand, since the working fluid 11 is not supplied in the heat receiving space 12, the working fluid 11 in the gas state gradually decreases and the pressure in the heat receiving space 12 decreases.

逆流防止弁16の上流側の圧力(逆流防止弁16の上流側近傍の圧力と帰還経路7の液体状態の作動流体11の持つ水頭圧力との和)が逆流防止弁16の下流側の圧力(逆流防止弁16の下流側近傍の圧力)より高くなった時に、作動流体11は逆流防止弁16を通過し、再び受熱空間12の受熱板10上に作動流体11が供給される。   The pressure on the upstream side of the backflow prevention valve 16 (the sum of the pressure in the vicinity of the upstream side of the backflow prevention valve 16 and the head pressure of the working fluid 11 in the liquid state in the return path 7) is the pressure on the downstream side of the backflow prevention valve 16 ( When the pressure is higher than the pressure in the vicinity of the downstream side of the backflow prevention valve 16, the working fluid 11 passes through the backflow prevention valve 16 and is supplied again onto the heat receiving plate 10 of the heat receiving space 12.

このようにして作動流体11が冷却装置3を循環することで、半導体スイッチング素子9の冷却を行なうことになる。   In this way, the working fluid 11 circulates through the cooling device 3 to cool the semiconductor switching element 9.

ここで、受熱空間12の冷却のメカニズムについて図2を用いて説明を加える。   Here, the cooling mechanism of the heat receiving space 12 will be described with reference to FIG.

受熱空間12においては、帰還経路7からの作動流体11は、受熱板10上に液滴となって滴下される。滴下した作動流体11は、帰還経路7の流入口14と受熱板10の隙間から外周部へ拡散される。このとき、受熱板10の表面では、作動流体11が薄い膜として広がり、高温の受熱板10の熱を加えられ一瞬にして気化することとなる。   In the heat receiving space 12, the working fluid 11 from the return path 7 is dropped as droplets on the heat receiving plate 10. The dropped working fluid 11 is diffused from the gap between the inlet 14 of the return path 7 and the heat receiving plate 10 to the outer peripheral portion. At this time, the working fluid 11 spreads as a thin film on the surface of the heat receiving plate 10, and heat from the high temperature heat receiving plate 10 is applied to vaporize in an instant.

なお、受熱空間12を含む冷却装置3内部の気圧は、使用する作動流体11によって異なるが、例えば作動流体11として水を使用した場合、大気圧よりも低く設定することで、大気圧中の水の沸騰に比べて低い温度で気化させることができる。本実施の形態では、ほぼ真空に減圧した冷却装置3内に所望の水を封入し、外気温度に応じた飽和水蒸気状態にしておくことで、外気温度+数10度程度の気化温度で容易に水を気化させることができる。   Although the atmospheric pressure inside the cooling device 3 including the heat receiving space 12 varies depending on the working fluid 11 to be used, for example, when water is used as the working fluid 11, the water in the atmospheric pressure is set by setting it lower than the atmospheric pressure. It can be vaporized at a temperature lower than that of boiling. In the present embodiment, desired water is sealed in the cooling device 3 whose pressure is reduced to a substantially vacuum, and a saturated water vapor state corresponding to the outside air temperature is maintained, so that the outside temperature + a vaporization temperature of about several tens of degrees can be easily achieved. Water can be vaporized.

これにより、半導体スイッチング素子9からの熱は作動流体11に気化潜熱として除去され、効率的な冷却が可能となる。   Thereby, the heat from the semiconductor switching element 9 is removed to the working fluid 11 as latent heat of vaporization, and efficient cooling becomes possible.

また、作動流体11が気化するときに受熱空間12の圧力は増加するが、逆流防止弁16の作用により作動流体11は逆流して帰還経路7側へ戻ることはなく、確実に複数個の排出口15から複数個の放熱経路6へ放出させることができる。   Further, when the working fluid 11 is vaporized, the pressure in the heat receiving space 12 increases. However, the working fluid 11 does not flow back to the return path 7 due to the action of the backflow prevention valve 16, and a plurality of exhaust gases are reliably discharged. It can be discharged from the outlet 15 to the plurality of heat radiation paths 6.

このように冷却装置3を動作させることで、規則的な受熱と放熱のサイクルができ、連続して作動流体11を受熱空間12で気化させて半導体スイッチング素子9からの熱を効率的に除去し、大きな冷却効果を実現することができる。   By operating the cooling device 3 in this manner, a regular heat receiving and releasing cycle can be performed, and the working fluid 11 is continuously vaporized in the heat receiving space 12 to efficiently remove the heat from the semiconductor switching element 9. A great cooling effect can be realized.

次に、本実施形態における最も特徴的な部分について説明する。   Next, the most characteristic part in this embodiment will be described.

図2に2個の排出口15と2個の放熱経路6とを設けた冷却装置3を、図3に単一個の排出口15と単一個の放熱経路6とを設けた冷却装置3を示す。   FIG. 2 shows the cooling device 3 provided with two discharge ports 15 and two heat dissipation paths 6, and FIG. 3 shows the cooling device 3 provided with a single discharge port 15 and a single heat dissipation path 6. .

まず、図3を用いて、単一個の排出口15と単一個の放熱経路6とを設けた冷却装置3で半導体スイッチング素子9を冷却する場合について説明する。   First, the case where the semiconductor switching element 9 is cooled with the cooling device 3 provided with the single discharge port 15 and the single heat radiation path 6 is demonstrated using FIG.

前述したように、液体状態の作動流体11が逆流防止弁16を通過し、受熱部4へ供給され、半導体スイッチング素子9から発生した熱を除去することにより冷却を行う。   As described above, the working fluid 11 in the liquid state passes through the backflow prevention valve 16, is supplied to the heat receiving unit 4, and is cooled by removing the heat generated from the semiconductor switching element 9.

この時、半導体スイッチング素子9に発生した熱の量が大きくなると、冷却には多くの量の作動流体11を受熱空間12へ供給する必要がある。ここで、冷却に必要な多くの量の作動流体11を封入しても、発生した熱の量の増加に伴って循環流速も増加するため、循環抵抗値も増加し、冷却に必要な量の作動流体11を受熱部4へ供給することができないこととなる。   At this time, if the amount of heat generated in the semiconductor switching element 9 increases, a large amount of working fluid 11 needs to be supplied to the heat receiving space 12 for cooling. Here, even if a large amount of the working fluid 11 necessary for cooling is enclosed, the circulation flow rate also increases as the amount of generated heat increases, so that the circulation resistance value also increases, and the amount of cooling necessary. The working fluid 11 cannot be supplied to the heat receiving unit 4.

その結果、冷却能力が低下し、半導体スイッチング素子9から発生した熱を除去しきれなくなり、最悪の場合、半導体スイッチング素子9が破壊されることになる。   As a result, the cooling capacity is reduced, and the heat generated from the semiconductor switching element 9 cannot be removed. In the worst case, the semiconductor switching element 9 is destroyed.

続いて、図2を用いて、2個の排出口15と2個の放熱経路6とを設けた冷却装置3で半導体スイッチング素子9を冷却する場合について説明する。   Next, the case where the semiconductor switching element 9 is cooled by the cooling device 3 provided with the two discharge ports 15 and the two heat radiation paths 6 will be described with reference to FIG.

図2に示すように、2個の排出口15と2個の放熱経路6とを設けているため、単一個の排出口15と単一個の放熱経路6とを設けた場合と比較して、同量の作動流体11が循環する時の循環抵抗値を低減することができると共に、発生した熱の量の増加に伴う循環抵抗値の増加を抑制することができる。   As shown in FIG. 2, since the two discharge ports 15 and the two heat dissipation paths 6 are provided, compared with the case where the single discharge port 15 and the single heat dissipation path 6 are provided, The circulation resistance value when the same amount of the working fluid 11 circulates can be reduced, and the increase in the circulation resistance value accompanying the increase in the amount of generated heat can be suppressed.

結果として、多くの量の作動流体11を封入した場合においても、作動流体11を受熱部4へ供給しやすくなるため、半導体スイッチング素子9に発生した熱が大きくなり、冷却に必要な作動流体11の量が多くなった場合でも、受熱部4に作動流体11を供給することができるため、冷却能力の低下を抑制することができる。   As a result, even when a large amount of the working fluid 11 is sealed, the working fluid 11 is easily supplied to the heat receiving unit 4, so that the heat generated in the semiconductor switching element 9 increases and the working fluid 11 necessary for cooling is increased. Even when the amount of the refrigerant increases, the working fluid 11 can be supplied to the heat receiving unit 4, so that the cooling capacity can be prevented from decreasing.

また、図2中の矢印で示す作動流体11の循環方向に対する2個の放熱経路6の垂直断面積はすべて同じ面積とした構成としている。   Further, the vertical sectional areas of the two heat radiation paths 6 with respect to the circulation direction of the working fluid 11 indicated by the arrows in FIG.

このような構成にすることで、2個の放熱経路6において作動流体11の循環抵抗値を同じ値にすることができるため、2個の放熱経路6を循環する作動流体11の量を同じ量にすることができる。すなわち、受熱部4から2個の排出口15へと排出される作動流体11の量も同じ量にすることができることとなる。そのため、受熱部4での作動流体11の循環状態の偏りを抑制することができ、作動流体11を効率よく循環させることができるため、作動流体11の循環量を増加させることができる。   By adopting such a configuration, the circulation resistance value of the working fluid 11 can be made the same value in the two heat radiation paths 6, so that the amount of the working fluid 11 circulating in the two heat radiation paths 6 is the same amount. Can be. That is, the amount of the working fluid 11 discharged from the heat receiving portion 4 to the two discharge ports 15 can be made the same amount. Therefore, the bias of the circulating state of the working fluid 11 in the heat receiving unit 4 can be suppressed, and the working fluid 11 can be circulated efficiently, so that the circulation amount of the working fluid 11 can be increased.

結果として、多くの量の作動流体11を封入した場合においても、作動流体11を受熱部4へ供給しやすくなるため、半導体スイッチング素子9に発生した熱が大きくなり、冷却に必要な作動流体11の量が多くなった場合でも、受熱部4に作動流体11を供給することができるため、冷却能力の低下を抑制することができる。   As a result, even when a large amount of the working fluid 11 is sealed, the working fluid 11 is easily supplied to the heat receiving unit 4, so that the heat generated in the semiconductor switching element 9 increases and the working fluid 11 necessary for cooling is increased. Even when the amount of the refrigerant increases, the working fluid 11 can be supplied to the heat receiving unit 4, so that the cooling capacity can be prevented from decreasing.

また、図2で示すように、2個の放熱経路6の全長はすべて同じ長さとした構成としている。   Further, as shown in FIG. 2, the entire length of the two heat radiation paths 6 is the same length.

このような構成にすることで、上述した作動流体11の循環方向に対する2個の放熱経路6の垂直断面積はすべて同じ面積とした構成と同じように、2個の放熱経路6において作動流体11の循環抵抗値を同じ値にすることができる。詳細な説明は省略する。   By adopting such a configuration, the vertical cross-sectional areas of the two heat radiation paths 6 with respect to the circulation direction of the working fluid 11 described above are all the same area, and the working fluid 11 in the two heat radiation paths 6 is the same. The circulation resistance value of the same can be made the same value. Detailed description is omitted.

ここで、図4には2個の排出口15と2個の放熱経路6とを設けた受熱部4を示す。   Here, FIG. 4 shows the heat receiving section 4 provided with two discharge ports 15 and two heat radiation paths 6.

図4に示すように、本発明の冷却装置3においては、流入口14は受熱部4の中央に備え、2個の排出口15と流入口14との距離はすべて同じ距離とするとともに、2個の排出口15は流入口14を中心とした円周上に180度間隔に配置した構成としている。   As shown in FIG. 4, in the cooling device 3 of the present invention, the inlet 14 is provided in the center of the heat receiving portion 4, and the distances between the two outlets 15 and the inlet 14 are all the same distance. The individual outlets 15 are arranged at intervals of 180 degrees on the circumference centering on the inlet 14.

このような構成にすることで、受熱部4内部において流入口14から2個の排出口15までの作動流体11の循環抵抗値を同じ値にすることができるため、受熱部4から2個の排出口15へと排出される作動流体11の量を同じ量にすることができる。そのため、受熱部4での作動流体11の循環状態の偏りを抑制することができ、作動流体11を効率よく循環させることができるため、作動流体11の循環量を増加させることができる。   By adopting such a configuration, the circulation resistance value of the working fluid 11 from the inlet 14 to the two outlets 15 in the heat receiving part 4 can be made the same value. The amount of the working fluid 11 discharged to the discharge port 15 can be made the same amount. Therefore, the bias of the circulating state of the working fluid 11 in the heat receiving unit 4 can be suppressed, and the working fluid 11 can be circulated efficiently, so that the circulation amount of the working fluid 11 can be increased.

結果として、多くの量の作動流体11を封入した場合においても、作動流体11を受熱部4へ供給しやすくなるため、半導体スイッチング素子9に発生した熱が大きくなり、冷却に必要な作動流体11の量が多くなった場合でも、受熱部4に作動流体11を供給することができるため、冷却能力の低下を抑制することができる。   As a result, even when a large amount of the working fluid 11 is sealed, the working fluid 11 is easily supplied to the heat receiving unit 4, so that the heat generated in the semiconductor switching element 9 increases and the working fluid 11 necessary for cooling is increased. Even when the amount of the refrigerant increases, the working fluid 11 can be supplied to the heat receiving unit 4, so that the cooling capacity can be prevented from decreasing.

ここで、図5に2個の放熱経路6が合流した後に放熱部5に連通する構成とした冷却装置3を示す。図6には3個の排出口15と3個の放熱経路6とを設けた受熱部4を示す。   Here, FIG. 5 shows the cooling device 3 configured to communicate with the heat radiating portion 5 after the two heat radiating paths 6 merge. FIG. 6 shows the heat receiving portion 4 provided with three discharge ports 15 and three heat radiation paths 6.

なお、図2では、2個の放熱経路6はそれぞれ放熱部5に連通する構成としているが、図5のように2個の放熱経路6が合流した後に放熱部5に連通する構成としても良く、作用効果に差異を生じない。   In FIG. 2, the two heat radiation paths 6 are configured to communicate with the heat radiation part 5, respectively, but may be configured to communicate with the heat radiation part 5 after the two heat radiation paths 6 merge as illustrated in FIG. 5. No difference in action and effect.

なお、上記実施形態においては、排出口15と放熱経路6とは2個の場合の説明をしているが、3個、4個、5個、・・・N個と複数個にした場合は、排出口15と放熱経路6との増加に伴い、循環抵抗値の値をさらに減少させることができることとなり、作動流体11の循環量をさらに増加させることができる。   In addition, in the said embodiment, although the discharge port 15 and the heat radiation path | route 6 are demonstrated in the case of two, when it is set as 3, 4, 5, ... N and plural, As the discharge port 15 and the heat radiation path 6 increase, the value of the circulation resistance value can be further reduced, and the circulation amount of the working fluid 11 can be further increased.

なお、排出口15を3個配置した場合においては、図6のように、流入口14を中心とした円周上に120度間隔に配置した構成としている。同様に4個、5個、・・・N個と複数個配置した場合においては、流入口14を中心とした円周上に90度、72度、・・・360/N度間隔に配置した構成となる。   In the case where three discharge ports 15 are arranged, as shown in FIG. 6, the discharge ports 15 are arranged at intervals of 120 degrees on the circumference around the inflow port 14. Similarly, in the case where a plurality of four, five,... N are arranged, they are arranged at intervals of 90 degrees, 72 degrees,... 360 / N degrees on the circumference around the inlet 14. It becomes composition.

なお、2個の排出口15と2個の放熱経路6とを設けた受熱部4においては、図7のように、2個の排出口15は、流入口14の中心を通過する中心線に対して同一角度かつ対象の位置に配置した構成としても作用効果に差異を生じない。   In the heat receiving portion 4 provided with the two discharge ports 15 and the two heat radiation paths 6, the two discharge ports 15 are arranged on the center line passing through the center of the inflow port 14 as shown in FIG. On the other hand, even if it is a structure arranged at the same angle and at the target position, there is no difference in the operational effect.

なお、上記実施形態においては、冷却装置3を電気自動車1に適用したものを説明したが、電子機器に冷却装置3を適用することも出来る。   In the above embodiment, the cooling device 3 applied to the electric vehicle 1 has been described. However, the cooling device 3 can also be applied to an electronic device.

本発明にかかる冷却装置は半導体スイッチング素子に発生する熱が大きくなり、多くの量の作動流体を加熱部へ供給する必要がある場合でも、冷却に必要な量の作動流体を供給することができるため、電子機器および電気自動車のインバータ回路内の半導体スイッチング素子などの冷却に有用である。   The cooling device according to the present invention can supply a working fluid in an amount necessary for cooling even when a large amount of heat is generated in the semiconductor switching element and a large amount of working fluid needs to be supplied to the heating unit. Therefore, it is useful for cooling semiconductor switching elements and the like in inverter circuits of electronic devices and electric vehicles.

1 電気自動車
2 インバータ回路
3 冷却装置
4 受熱部
5 放熱部
6 放熱経路
7 帰還経路
8 送風機
9 半導体スイッチング素子
10 受熱板
11 作動流体
12 受熱空間
13 受熱板カバー
14 流入口
15 排出口
16 逆流防止弁
DESCRIPTION OF SYMBOLS 1 Electric vehicle 2 Inverter circuit 3 Cooling device 4 Heat receiving part 5 Heat radiating part 6 Heat radiating path 7 Return path 8 Blower 9 Semiconductor switching element 10 Heat receiving plate 11 Working fluid 12 Heat receiving space 13 Heat receiving plate cover 14 Inlet 15 Outlet 16 Backflow prevention valve

Claims (6)

作動流体を循環し液相と気相との相変化により冷却する冷却装置であって、発熱体からの熱を受熱板に接触させて作動流体に伝える受熱部と、前記作動流体の熱を放出する放熱部と、前記受熱部の排出口と前記放熱部とを連通する放熱経路と、前記放熱部と前記受熱部の流入口を連通する帰還経路とで構成し、前記帰還経路には逆流防止弁を備えるとともに、複数個の前記排出口設け、前記排出口の数に対応した複数個の前記放熱経路を設け、前記逆流防止弁の上流側の圧力が下流側の圧力より高くなった時に前記作動流体は前記逆流防止弁を通過し、前記作動流体は、前記受熱板上に液滴となって滴下され、滴下した前記作動流体は、前記帰還経路の前記流入口と前記受熱板の隙間から外周部へ拡散され、前記受熱板の表面では、前記作動流体が薄い膜として広がり気化することを特徴とする冷却装置。 A cooling device that circulates the working fluid and cools it by the phase change between the liquid phase and the gas phase, and contacts the heat receiving plate with heat from the heating element to transmit the heat to the working fluid, and releases the heat of the working fluid. And a heat radiation path that communicates the discharge port of the heat receiving part and the heat radiation part, and a feedback path that communicates the inlet of the heat radiation part and the heat receiving part. A plurality of discharge ports, a plurality of heat dissipation paths corresponding to the number of the discharge ports, and when the upstream pressure of the backflow prevention valve becomes higher than the downstream pressure The working fluid passes through the backflow prevention valve, and the working fluid is dropped as droplets on the heat receiving plate, and the dropped working fluid passes through a gap between the inlet of the return path and the heat receiving plate. Diffused to the outer periphery, the surface of the heat receiving plate, the operation Body cooling apparatus characterized by to spread vaporized as a thin film. 複数個の前記放熱経路の前記作動流体循環方向に対する垂直断面積はすべて同じ面積としたことを特徴とする請求項1に記載の冷却装置。   2. The cooling device according to claim 1, wherein vertical cross-sectional areas of the plurality of heat radiation paths with respect to the working fluid circulation direction are all the same area. 複数個の前記放熱経路の全長はすべて同じ長さとしたことを特徴とする請求項1または2に記載の冷却装置。   The cooling device according to claim 1 or 2, wherein the plurality of heat radiation paths have the same overall length. 前記流入口は前記受熱部の中央に備え、複数個の前記排出口と前記流入口との距離はすべて同じ距離とするとともに、複数個の前記排出口は前記流入口を中心とした円周上に等間隔に配置したことを特徴とする請求項1から3いずれかに記載の冷却装置。   The inflow port is provided at the center of the heat receiving portion, and the distance between the plurality of discharge ports and the inflow port is all the same, and the plurality of discharge ports are on the circumference centering on the inflow port. The cooling device according to any one of claims 1 to 3, wherein the cooling devices are arranged at equal intervals. 請求項1から4いずれか一つに記載の冷却装置を備えたことを特徴とする電子機器。   An electronic apparatus comprising the cooling device according to claim 1. 請求項1からいずれか一つに記載の冷却装置を備えたことを特徴とする電気自動車。 An electric vehicle comprising the cooling device according to any one of claims 1 to 4 .
JP2011224658A 2011-10-12 2011-10-12 COOLING DEVICE AND ELECTRONIC DEVICE AND ELECTRIC CAR HAVING THE SAME Active JP5891349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011224658A JP5891349B2 (en) 2011-10-12 2011-10-12 COOLING DEVICE AND ELECTRONIC DEVICE AND ELECTRIC CAR HAVING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011224658A JP5891349B2 (en) 2011-10-12 2011-10-12 COOLING DEVICE AND ELECTRONIC DEVICE AND ELECTRIC CAR HAVING THE SAME

Publications (2)

Publication Number Publication Date
JP2013083413A JP2013083413A (en) 2013-05-09
JP5891349B2 true JP5891349B2 (en) 2016-03-23

Family

ID=48528783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011224658A Active JP5891349B2 (en) 2011-10-12 2011-10-12 COOLING DEVICE AND ELECTRONIC DEVICE AND ELECTRIC CAR HAVING THE SAME

Country Status (1)

Country Link
JP (1) JP5891349B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5934886B2 (en) * 2012-04-26 2016-06-15 パナソニックIpマネジメント株式会社 Cooling device and electric vehicle equipped with the same
JP6784281B2 (en) * 2017-09-13 2020-11-11 株式会社デンソー Equipment temperature controller
WO2019054076A1 (en) * 2017-09-13 2019-03-21 株式会社デンソー Device temperature adjustment apparatus
JP7271170B2 (en) * 2018-12-27 2023-05-11 川崎重工業株式会社 Evaporator and loop heat pipe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065456A (en) * 1998-08-20 2000-03-03 Denso Corp Ebullient cooler
US7434308B2 (en) * 2004-09-02 2008-10-14 International Business Machines Corporation Cooling of substrate using interposer channels
JP4771964B2 (en) * 2007-01-15 2011-09-14 財団法人若狭湾エネルギー研究センター Loop type heat pipe
US7882890B2 (en) * 2007-07-13 2011-02-08 International Business Machines Corporation Thermally pumped liquid/gas heat exchanger for cooling heat-generating devices
JP5151362B2 (en) * 2007-09-28 2013-02-27 パナソニック株式会社 COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
JP2010133686A (en) * 2008-12-08 2010-06-17 Mitsubishi Materials Corp Heat pipe and cooler

Also Published As

Publication number Publication date
JP2013083413A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
EP2667408B1 (en) Natural circulation type cooling apparatus
JP5891349B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE AND ELECTRIC CAR HAVING THE SAME
JP5786132B2 (en) Electric car
JP5957686B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE AND ELECTRIC CAR HAVING THE SAME
JP2015141958A (en) Cooling device and electronic equipment having the same
JP2013019549A (en) Cooling device, and electronic apparatus and electric vehicle equipped with the same
JP6101936B2 (en) Cooling device and electric vehicle equipped with the same
JP6171164B2 (en) COOLING DEVICE AND ELECTRIC CAR AND ELECTRONIC DEVICE EQUIPPED WITH THE SAME
JP2014048002A (en) Cooling device, electric vehicle equipped with the same, and electronic apparatus equipped with the same
JP2017116151A (en) Cooling device, electronic equipment and electric vehicle mounting the same
JP2018031557A (en) Cooling device and electric equipment mounting the same, and electric car
JP2017067355A (en) Cooling device and electronic apparatus mounting the same and electric vehicle
JP2011096983A (en) Cooling device
JP5938574B2 (en) Cooling device and electric vehicle equipped with the same
JP2014116385A (en) Cooler and electric car and electronic apparatus mounting the same
JP5994103B2 (en) COOLING DEVICE AND ELECTRIC CAR AND ELECTRONIC DEVICE EQUIPPED WITH THE SAME
JP5903549B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP5934886B2 (en) Cooling device and electric vehicle equipped with the same
JP5903548B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP2014052117A (en) Cooling device, electric vehicle equipped with the same, and electronic apparatus equipped with the same
JP2017150767A (en) Cooling device and electronic device mounting the same and electric vehicle
JP2010206892A (en) Device for cooling inverter
JP6028232B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP2017009253A (en) Cooler, electronic equipment mounted with the same, and electric vehicle
JP2013170746A (en) Cooling device, and electric vehicle and electronic device loading the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20141015

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R151 Written notification of patent or utility model registration

Ref document number: 5891349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151