JP5903548B2 - COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR - Google Patents

COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR Download PDF

Info

Publication number
JP5903548B2
JP5903548B2 JP2011095768A JP2011095768A JP5903548B2 JP 5903548 B2 JP5903548 B2 JP 5903548B2 JP 2011095768 A JP2011095768 A JP 2011095768A JP 2011095768 A JP2011095768 A JP 2011095768A JP 5903548 B2 JP5903548 B2 JP 5903548B2
Authority
JP
Japan
Prior art keywords
heat
heat receiving
working fluid
inflow pipe
check valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011095768A
Other languages
Japanese (ja)
Other versions
JP2012225622A (en
Inventor
杉山 誠
誠 杉山
郁 佐藤
郁 佐藤
村山 拓也
拓也 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2011095768A priority Critical patent/JP5903548B2/en
Publication of JP2012225622A publication Critical patent/JP2012225622A/en
Application granted granted Critical
Publication of JP5903548B2 publication Critical patent/JP5903548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Description

本発明は、冷却装置およびこれを搭載した電子機器、および電気自動車に関するものである。   The present invention relates to a cooling device, an electronic device equipped with the cooling device, and an electric vehicle.

従来この種の冷却装置は、電気自動車の電力変換回路に搭載されたものが知られている。電気自動車では、駆動動力源となる電動モータを電力変換回路であるインバータ回路でスイッチング駆動していた。インバータ回路には、パワートランジスタを代表とする半導体スイッチング素子が複数個使われていて、それぞれの素子に数十アンペアの大電流が流れていた。そのため半導体スイッチング素子は大きく発熱し、冷却することが必要であった。   Conventionally, this type of cooling device is known to be mounted on a power conversion circuit of an electric vehicle. In an electric vehicle, an electric motor serving as a driving power source is switched by an inverter circuit that is a power conversion circuit. A plurality of semiconductor switching elements represented by power transistors are used in the inverter circuit, and a large current of several tens of amperes flows through each element. Therefore, the semiconductor switching element generates a large amount of heat and needs to be cooled.

そこで、従来は、例えば特許文献1のように、上下に冷媒放熱器と冷媒タンクを備えた沸騰冷却装置にて、下部に配したインバータ回路の冷却を行っていた。   Therefore, conventionally, as in Patent Document 1, for example, a boil cooling device having a refrigerant radiator and a refrigerant tank at the top and bottom has cooled an inverter circuit arranged at the bottom.

特開平8−126125号公報JP-A-8-126125

このような従来の冷却装置においては、半導体スイッチング素子に接触して冷媒タンクを配置し、冷媒タンク内の液化冷媒を、スイッチング素子からの熱を奪わせて気化させる。   In such a conventional cooling device, the refrigerant tank is disposed in contact with the semiconductor switching element, and the liquefied refrigerant in the refrigerant tank is vaporized by taking heat from the switching element.

そして、気化した冷媒を、上部に配置した冷媒放熱器に上昇させ、冷却し、液化させて再び下部に滴下されるサイクルを繰り返している。いわば自然対流によって冷媒が循環するのである。   And the cycle which raises the vaporized refrigerant | coolant to the refrigerant | coolant heat radiator arrange | positioned at the upper part, cools, liquefies, and is dripped again at the lower part is repeated. In other words, the refrigerant circulates by natural convection.

しかしながら、このような自然対流式のものでは、スイッチング素子の熱を、冷媒タンク内に溜められた液化冷媒に、冷媒タンクの壁面(伝熱面)を介し、単なる熱伝導で伝達させていただけであるので、伝熱面における伝熱効率を高めることができず、その結果として、スイッチング素子等の冷却効果を高めることが出来なかった。   However, in such a natural convection type, the heat of the switching element can be simply transferred to the liquefied refrigerant stored in the refrigerant tank through the wall (heat transfer surface) of the refrigerant tank by simple heat conduction. Therefore, the heat transfer efficiency on the heat transfer surface cannot be increased, and as a result, the cooling effect of the switching element or the like cannot be increased.

そこで、本発明は、伝熱面における伝熱効率を高めることで、冷却効果を高めることを目的とするものである。   Then, this invention aims at heightening the cooling effect by raising the heat-transfer efficiency in a heat-transfer surface.

そして、この目的を達成するために、本発明は、発熱体からの熱を作動流体に伝える受熱板を備えた受熱部と、前記作動流体の熱を放出する放熱部と、前記受熱部と前記放熱部とを接続する放熱経路と帰還経路とで構成し、前記作動流体を、前記受熱部、前記放熱経路、前記放熱部、前記帰還経路、前記受熱部へと循環させて熱の移動を行う冷却装置であって、前記帰還経路の受熱部側には、前記受熱部内に前記作動流体を供給する流入管を接続し、前記受熱部と前記流入管の接続部に逆止弁を設け、気化量が減少した前記受熱部内の圧力と前記逆止弁上に溜まった前記作動流体の水頭による圧力との差によって前記逆止弁が押し下げられることにより液化した前記作動流体が前記受熱板上に供給され、記受熱板上に供給された前記作動流体は、前記流入管の端部開口と前記受熱板の隙間から外周部へ拡散され薄い膜として前記受熱板上に広がり、前記流入管の内壁には、前記流入管を構成する材質よりも熱伝導率の低い断熱コーティンを少なくとも前記逆止弁を押し開ける水頭圧を生じさせるだけの前記作動流体の体積分に備え、これにより所期の目的を達成するものである。 In order to achieve this object, the present invention provides a heat receiving portion including a heat receiving plate that transfers heat from the heating element to the working fluid, a heat radiating portion that releases the heat of the working fluid, the heat receiving portion, and the heat receiving portion. A heat dissipation path connecting the heat dissipation part and a return path are configured, and the working fluid is circulated to the heat receiving part, the heat dissipation path, the heat dissipation part, the return path, and the heat receiving part to transfer heat. A cooling device, an inflow pipe for supplying the working fluid into the heat receiving section is connected to the heat receiving section side of the return path, and a check valve is provided at a connection section between the heat receiving section and the inflow pipe to vaporize the cooling path. The working fluid liquefied by the check valve being pushed down due to the difference between the pressure in the heat receiving portion whose amount has decreased and the pressure of the working fluid accumulated on the check valve is supplied onto the heat receiving plate. And the working fluid supplied onto the heat receiving plate The thin film is diffused from the gap between the end opening of the inflow pipe and the heat receiving plate to the outer peripheral portion and spreads as a thin film on the heat receiving plate. The inner wall of the inflow pipe has a thermal conductivity higher than that of the material constituting the inflow pipe. A low thermal insulation coating portion is prepared for the volume of the working fluid to generate at least the hydraulic head pressure that pushes the check valve open, thereby achieving the intended purpose.

本発明によれば、発熱体からの熱を作動流体に伝える受熱板を備えた受熱部と、前記作動流体の熱を放出する放熱部と、前記受熱部と前記放熱部とを接続する放熱経路と帰還経路とで構成し、前記作動流体を、前記受熱部、前記放熱経路、前記放熱部、前記帰還経路、前記受熱部へと循環させて熱の移動を行う冷却装置であって、前記帰還経路の受熱部側には、前記受熱部内に前記作動流体を供給する流入管を接続し、前記受熱部と前記流入管の接続部に逆止弁を設け、気化量が減少した前記受熱部内の圧力と前記逆止弁上に溜まった前記作動流体の水頭による圧力との差によって前記逆止弁が押し下げられることにより液化した前記作動流体が前記受熱板上に供給され、記受熱板上に供給された前記作動流体は、前記流入管の端部開口と前記受熱板の隙間から外周部へ拡散され薄い膜として前記受熱板上に広がり、前記流入管の内壁には、前記流入管を構成する材質よりも熱伝導率の低い断熱コーティンを少なくとも前記逆止弁を押し開ける水頭圧を生じさせるだけの前記作動流体の体積分に備えたものであるので、冷却効果を高めることが出来る。 According to the present invention, a heat receiving portion including a heat receiving plate that transfers heat from the heat generating element to the working fluid, a heat radiating portion that releases the heat of the working fluid, and a heat radiating path that connects the heat receiving portion and the heat radiating portion. And a return path, wherein the working fluid is circulated to the heat receiving part, the heat radiating path, the heat radiating part, the return path, and the heat receiving part to transfer heat, An inflow pipe for supplying the working fluid into the heat receiving section is connected to the heat receiving section side of the path, and a check valve is provided at a connection section between the heat receiving section and the inflow pipe, and the amount of vaporization is reduced in the heat receiving section. The working fluid liquefied by the check valve being pushed down due to the difference between the pressure and the pressure of the working fluid accumulated on the check valve is supplied onto the heat receiving plate and supplied onto the heat receiving plate. The working fluid that has flowed through the end opening of the inlet pipe Spread on the heat receiving plate as a thin film is diffused into the outer peripheral portion from the gap of the heat receiving plates, the the inner wall of the inlet tube, at least the non-return low adiabatic Kotin unit thermal conductivity than the material constituting the inlet pipe Since it is prepared for the volume of the working fluid to generate the hydraulic head pressure that pushes the valve open, the cooling effect can be enhanced.

すなわち、本発明においては、冷媒となる作動流体の循環経路を、受熱部、放熱経路、放熱部、帰還経路、前記受熱部とすることで、作動流体の循環方向を一方向とすると共に、前記帰還経路の受熱部側に、前記受熱部内に前記作動流体を供給する流入管を接続し、前記受熱部と前記流入管の接続部に逆止弁を設け、気化量が減少した前記受熱部内の圧力と前記逆止弁上に溜まった前記作動流体の水頭による圧力との差によって前記逆止弁が押し下げられることにより液化した前記作動流体が前記受熱板上に供給され、記受熱板上に供給された前記作動流体は、前記流入管の端部開口と前記受熱板の隙間から外周部へ拡散され薄い膜として前記受熱板上に広がることで、受熱部内で作動流体を急激に気化させ、その受熱板部分において作動流体を勢い良く移動させることができ、その結果として伝熱面における伝熱効率を高め、冷却効果を高めることができる。   That is, in the present invention, the circulation path of the working fluid serving as a refrigerant is a heat receiving portion, a heat radiating route, a heat radiating portion, a return route, and the heat receiving portion. An inflow pipe for supplying the working fluid into the heat receiving section is connected to the heat receiving section side of the return path, and a check valve is provided at a connection section between the heat receiving section and the inflow pipe to reduce the amount of vaporization in the heat receiving section. The working fluid liquefied by the check valve being pushed down due to the difference between the pressure and the pressure of the working fluid accumulated on the check valve is supplied onto the heat receiving plate and supplied onto the heat receiving plate. The working fluid is diffused from the gap between the end opening of the inflow pipe and the heat receiving plate to the outer peripheral portion and spreads as a thin film on the heat receiving plate, so that the working fluid is rapidly vaporized in the heat receiving portion. Working flow in the heat receiving plate Forcefully it can be moved, as a result enhancing the heat transfer efficiency in the heat transfer surface as can be enhanced cooling effect.

また、本発明においては、前記受熱部入口側に設けた流入管の内壁面、熱伝導率の低い材料でコーティングした断熱コーティングを備えたので、作動流体を、逆止弁を介して受熱部に導入されるまで液状態に保つことができる。 In the present invention, the inner wall surface of the inflow pipe provided on the inlet side of the heat receiving part is provided with a heat insulating coating coated with a material having low thermal conductivity , so that the working fluid is passed through the check valve through the heat receiving part. It can be kept in a liquid state until it is introduced into the liquid.

このため、作動流体は液体のまま受熱部内へと流入することになるので、上述のごとく、受熱部内で作動流体を急激に気化させ、その受熱板部分において作動流体を勢い良く移動させることができ、その結果として伝熱面における伝熱効率を高め、冷却効果を高めることができる。   For this reason, since the working fluid flows into the heat receiving portion as a liquid, as described above, the working fluid can be rapidly vaporized in the heat receiving portion, and the working fluid can be moved vigorously in the heat receiving plate portion. As a result, the heat transfer efficiency on the heat transfer surface can be increased and the cooling effect can be increased.

本発明の実施の形態1の電気自動車の概略図Schematic of the electric vehicle according to the first embodiment of the present invention. 同放熱体の構成を示す図Diagram showing the structure of the radiator 同冷却装置を示す概略図Schematic showing the cooling system 同冷却装置の受熱部斜視図Heat receiving part perspective view of the cooling device 同冷却装置の受熱部断面図Cross section of heat receiving part of the cooling device

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1に示すように、電気自動車1の車軸(図示せず)を駆動する電動機(図示せず)は、電気自動車1の内に配置した電力変換装置であるインバータ回路2に接続されている。
(Embodiment 1)
As shown in FIG. 1, an electric motor (not shown) that drives an axle (not shown) of an electric vehicle 1 is connected to an inverter circuit 2 that is a power conversion device arranged in the electric vehicle 1.

インバータ回路2は、電動機に電力を供給するもので、複数の半導体スイッチング素子(図3の10)を備えおり、この半導体スイッチング素子(図3の10)が動作中に発熱する。   The inverter circuit 2 supplies electric power to the electric motor, and includes a plurality of semiconductor switching elements (10 in FIG. 3). The semiconductor switching elements (10 in FIG. 3) generate heat during operation.

このため、この半導体スイッチング素子(図3の10)を冷却するために、冷却装置3を備えている。冷却装置3は、受熱部4と、この受熱部4で吸収した熱を放熱する放熱部5を備え、受熱部4と放熱部5の間で熱媒体となる作動流体(図3の12で、例えば水)を循環させる放熱経路6、帰還経路7を設けることで、受熱部4、放熱経路6、放熱部5、帰還経路7、前記受熱部4となる循環経路を構成している。   For this reason, in order to cool this semiconductor switching element (10 in FIG. 3), a cooling device 3 is provided. The cooling device 3 includes a heat receiving portion 4 and a heat radiating portion 5 that radiates heat absorbed by the heat receiving portion 4, and a working fluid (12 in FIG. 3) serving as a heat medium between the heat receiving portion 4 and the heat radiating portion 5. For example, by providing the heat radiation path 6 and the return path 7 for circulating water), the heat receiving section 4, the heat radiation path 6, the heat radiation section 5, the feedback path 7, and the circulation path serving as the heat receiving section 4 are configured.

つまり、この循環経路においては、作動流体(図3の12)が、気体(水の場合水蒸気)や液体及びその混合状態で、受熱部4、放熱経路6、放熱部5、帰還経路7、前記受熱部4と一方向に、循環するようになっている。   That is, in this circulation path, the working fluid (12 in FIG. 3) is a gas (water vapor in the case of water) or a liquid and a mixed state thereof, the heat receiving part 4, the heat radiation path 6, the heat radiation part 5, the return path 7, It circulates in one direction with the heat receiving part 4.

前記放熱部5は、図2に示すように、外気に熱を放出する放熱体8を備えている。   As shown in FIG. 2, the heat dissipating part 5 includes a heat dissipating body 8 that releases heat to the outside air.

この放熱体8は、アルミニウムを短冊状に薄く形成したフィンを所定の間隔をあけて積層したブロック体と、積層したフィンを貫通する放熱経路6とで構成されている。   The heat dissipating body 8 includes a block body in which fins formed by thinly forming aluminum in a strip shape are stacked at a predetermined interval, and a heat dissipating path 6 penetrating the stacked fins.

そして、この放熱体8の表面に送風機9から外気を送風することで、放熱をさせている。なお、この放熱体8の表面からの放熱は、電気自動車1車内の暖房に活用することも出来る。   And heat is radiated by blowing outside air from the blower 9 onto the surface of the radiator 8. The heat radiation from the surface of the heat radiating body 8 can also be utilized for heating in the electric vehicle 1.

また、受熱部4は、図3に示すように、半導体スイッチング素子10に接触させて熱を吸収する受熱板11と、この受熱板11の表面を覆い、流れ込んだ作動流体12を蒸発させる受熱空間13を形成する受熱板カバー14とを備えている。   Further, as shown in FIG. 3, the heat receiving section 4 is in contact with the semiconductor switching element 10 to absorb heat and a heat receiving space that covers the surface of the heat receiving plate 11 and evaporates the flowing working fluid 12. And a heat-receiving plate cover 14 that forms 13.

さらに、受熱板カバー14には、受熱空間13に液化した作動流体12を流し込む流入口15と、受熱空間13から作動流体12を気体にして排出する排出口16が設けられている。   Furthermore, the heat receiving plate cover 14 is provided with an inlet 15 for flowing the liquefied working fluid 12 into the heat receiving space 13 and an outlet 16 for discharging the working fluid 12 from the heat receiving space 13 as a gas.

図3においては、前記受熱部4を模式的に示したが、具体的には図4、図5に示すような構造となっている。   In FIG. 3, although the said heat receiving part 4 was shown typically, it has a structure as specifically shown in FIG. 4, FIG.

すなわち、受熱板カバー14の上面に、流入口15と排出口16を設けており、流入口15には帰還経路7を接続し、また排出口16には放熱経路6を接続している。   That is, the inlet 15 and the outlet 16 are provided on the upper surface of the heat receiving plate cover 14, the return path 7 is connected to the inlet 15, and the heat dissipation path 6 is connected to the outlet 16.

さらに、前記帰還経路7の受熱部4側には、前記受熱部4内に前記作動流体12を供給する流入管19を、受熱空間13内に突入させた状態で接続し、また前記受熱部4の流入口15と、前記流入管19の接続部に逆止弁18を設けている。以下では受熱空間13内の流入管19を導入管17と記載する。   Further, an inflow pipe 19 for supplying the working fluid 12 into the heat receiving portion 4 is connected to the heat receiving portion 4 side of the return path 7 in a state of protruding into the heat receiving space 13, and the heat receiving portion 4. A check valve 18 is provided at a connection portion between the inlet 15 and the inlet pipe 19. Hereinafter, the inflow pipe 19 in the heat receiving space 13 is referred to as an introduction pipe 17.

また、この流入管19の内壁には、この流入管19を構成する材質(例えば銅)よりも熱伝導率の低いコーティング材料(耐熱性の樹脂)をコーティングした。コーティングした部分を断熱コーティング部とする。 The inner wall of the inflow pipe 19 was coated with a coating material (heat-resistant resin) having a lower thermal conductivity than the material (for example, copper) constituting the inflow pipe 19. Let the coated part be a heat insulation coating part.

このような構成による冷却装置3の作用について説明する。   The operation of the cooling device 3 having such a configuration will be described.

上記構成において、インバータ回路2の半導体スイッチング素子10が動作を開始すると電動機に電力が供給されて、電気自動車1は、動きだすこととなる。   In the above configuration, when the semiconductor switching element 10 of the inverter circuit 2 starts to operate, electric power is supplied to the electric motor, and the electric vehicle 1 starts to move.

このとき、半導体スイッチング素子10には大電流が流れることにより、少なくとも全電力の数%が損失となって大きく発熱する。   At this time, when a large current flows through the semiconductor switching element 10, at least several percent of the total power is lost and a large amount of heat is generated.

一方で、半導体スイッチング素子10から発される熱は、受熱空間13の受熱板11上に供給された液状の作動流体12に、半導体スイッチング素子10から熱が移動されると、この液状の作動流体12は一瞬にして気化することになり、排出口16から放熱経路6へと流れ、放熱部5で熱を外気に放出する。   On the other hand, when the heat generated from the semiconductor switching element 10 is transferred from the semiconductor switching element 10 to the liquid working fluid 12 supplied onto the heat receiving plate 11 of the heat receiving space 13, the liquid working fluid is heated. 12 is vaporized in an instant, flows from the discharge port 16 to the heat radiation path 6, and releases heat to the outside air by the heat radiation portion 5.

放熱部5の作用によって熱を放出した作動流体12は、液化して帰還経路7へと流れ、流入口15の逆止弁18上に溜まることとなる。   The working fluid 12 that has released heat by the action of the heat radiating unit 5 is liquefied and flows to the return path 7 and accumulates on the check valve 18 of the inflow port 15.

液化した作動流体12は、徐々に帰還経路7内で増加する一方、受熱空間13内での作動流体12の気化量が減少し、受熱空間13内の圧力も減少し、逆止弁18上に溜まった作動流体12の水頭による圧力によって逆止弁18を押し下げると、再び受熱空間13内の受熱板11上に供給される。   While the liquefied working fluid 12 gradually increases in the return path 7, the vaporization amount of the working fluid 12 in the heat receiving space 13 decreases, the pressure in the heat receiving space 13 also decreases, and the pressure on the check valve 18 is increased. When the check valve 18 is pushed down by the pressure of the accumulated working fluid 12 due to the water head, it is supplied again onto the heat receiving plate 11 in the heat receiving space 13.

このようにして作動流体12が冷却装置3内を循環することで、半導体スイッチング素子10の冷却を行なうことになる。   In this way, the working fluid 12 circulates in the cooling device 3 to cool the semiconductor switching element 10.

ここで、受熱空間13内の冷却のメカニズムについて説明を加える。   Here, the cooling mechanism in the heat receiving space 13 will be described.

受熱空間13内では、帰還経路7からの作動流体12は、導入管17から受熱板11上に液滴となって滴下される。滴下した作動流体12は、帰還経路7の端部開口と受熱板11の隙間から外周部へ拡散される。   In the heat receiving space 13, the working fluid 12 from the return path 7 is dropped as droplets from the introduction pipe 17 onto the heat receiving plate 11. The dropped working fluid 12 is diffused from the gap between the end opening of the return path 7 and the heat receiving plate 11 to the outer periphery.

このとき受熱板11の表面には、放射状に流路が拡大する形状にしているので、作動流体12は、薄い膜として受熱板11上に広がる。受熱板11の裏面側は、半導体スイッチング素子10に接触しているので、薄い膜となった作動流体12は、一瞬にして加熱され気化することとなる。   At this time, since the surface of the heat receiving plate 11 has a shape in which the flow path radially expands, the working fluid 12 spreads on the heat receiving plate 11 as a thin film. Since the back surface side of the heat receiving plate 11 is in contact with the semiconductor switching element 10, the working fluid 12 that has become a thin film is heated and vaporized in an instant.

受熱空間13を含む循環経路内の気圧は、大気圧よりも低く設定しているので、作動流体12は、水を使用しても大気圧中の水の沸騰に比べて低い温度で気化させることができる。   Since the atmospheric pressure in the circulation path including the heat receiving space 13 is set lower than the atmospheric pressure, the working fluid 12 is vaporized at a temperature lower than the boiling of water in the atmospheric pressure even if water is used. Can do.

本実施の形態のように、気圧を−97KPaにして、循環経路内を飽和状態にしておくことで、外気温に応じた沸騰温度が決定され容易に水を気化させることができ、このときに半導体スイッチング素子10の熱を奪い、冷却することができる。   As in the present embodiment, by setting the atmospheric pressure to −97 KPa and keeping the inside of the circulation path saturated, the boiling temperature according to the outside air temperature is determined and water can be easily vaporized. The semiconductor switching element 10 can be deprived of heat and cooled.

また、作動流体12が気化するときに受熱空間13内の圧力が増加するが、逆止弁18の作用により作動流体12は逆流して帰還経路7側へ戻ることはなく、確実に排出口16から放熱経路6へ放出させることができる。   Further, when the working fluid 12 is vaporized, the pressure in the heat receiving space 13 increases. However, the working fluid 12 does not flow back to the return path 7 due to the action of the check valve 18, and the discharge port 16 is surely provided. To the heat dissipation path 6.

このように冷却装置3を動作させることで、規則的な受熱と放熱のサイクルができ、連続して作動流体12を受熱空間13内で気化させて半導体スイッチング素子10の冷却を行なうことができ、大きな冷却効果を得ることができる。   By operating the cooling device 3 in this manner, a regular heat receiving and releasing cycle can be performed, and the working fluid 12 can be continuously vaporized in the heat receiving space 13 to cool the semiconductor switching element 10. A large cooling effect can be obtained.

ここで、本発明の最も特徴的な部分について説明する。   Here, the most characteristic part of the present invention will be described.

前述したように、帰還経路7内の逆止弁18の直前の上流側(以降、この部分を流入管19と呼ぶ)においては、受熱空間13内に滴下する前の作動流体12が液体として留まっていることになる。   As described above, on the upstream side immediately before the check valve 18 in the return path 7 (hereinafter, this portion is referred to as the inflow pipe 19), the working fluid 12 before dropping into the heat receiving space 13 remains as a liquid. Will be.

作動流体12を受熱空間13内に液体のまま滴下させるには、この流入管19内において、作動流体12が気化するほどの熱を加えないことが重要になってくる。そのためには、受熱部4から伝わってくる流入管19の壁面の熱を作動流体12に加えないよう、流入管19の内壁および逆止弁18の流入管側に露出する面に断熱材20をコーティングする。   In order to drop the working fluid 12 in the heat receiving space 13 as a liquid, it is important not to apply heat in the inflow pipe 19 to vaporize the working fluid 12. For this purpose, a heat insulating material 20 is provided on the inner wall of the inflow pipe 19 and the surface exposed to the inflow pipe side of the check valve 18 so that the heat of the wall surface of the inflow pipe 19 transmitted from the heat receiving portion 4 is not applied to the working fluid 12. Coating.

断熱材20をコーティングしない場合は、受熱板11で受けた半導体スイッチング素子10の熱は、受熱空間13内で作動流体12を気化させるとともに、温度の上がった受熱空間13から受熱板カバー14を経て帰還経路7、すなわち流入管19へと伝わることになる。   When the heat insulating material 20 is not coated, the heat of the semiconductor switching element 10 received by the heat receiving plate 11 vaporizes the working fluid 12 in the heat receiving space 13 and passes through the heat receiving plate cover 14 from the heat receiving space 13 where the temperature has risen. It is transmitted to the return path 7, that is, the inflow pipe 19.

しかし、本実施形態においては、流入管19部分においては、逆止弁18も含めたその内壁部分に断熱材20を設けているので、流入管19部分に溜まった作動流体12には熱が伝わりにくくなっている。   However, in the present embodiment, since the heat insulating material 20 is provided on the inner wall portion including the check valve 18 in the inflow pipe 19 portion, heat is transmitted to the working fluid 12 accumulated in the inflow pipe 19 portion. It has become difficult.

そのため、流入管19内においては、作動流体12は気化せず、流入管19内では作動流体12が液体のまま留まることになる。   Therefore, the working fluid 12 is not vaporized in the inflow pipe 19, and the working fluid 12 remains liquid in the inflow pipe 19.

従って、帰還経路7を通過した作動流体12は、液体のまま受熱空間13へと流入することになるので、受熱空間13内で一気に気化して循環経路内を作動流体12が移動する圧力になるのである。   Accordingly, since the working fluid 12 that has passed through the return path 7 flows into the heat receiving space 13 as a liquid, the working fluid 12 is vaporized in the heat receiving space 13 at a stretch and becomes a pressure at which the working fluid 12 moves in the circulation path. It is.

また、流入管19内部に溜まった作動流体12に熱が伝わり作動流体12が流入管19内部において気化した場合は、循環経路内に逆流が起こり、気化した作動流体12が流入管19から帰還経路7を通り、放熱部5まで流れることとなり、冷却装置3の冷却性能を低下させる要因となるが、本実施の形態に示す構成においては、流入管19から放熱部5までへの逆流を抑制することができる。   In addition, when heat is transferred to the working fluid 12 accumulated in the inflow pipe 19 and the working fluid 12 is vaporized in the inflow pipe 19, a reverse flow occurs in the circulation path, and the vaporized working fluid 12 is returned from the inflow pipe 19 to the return path. However, in the configuration shown in the present embodiment, the backflow from the inflow pipe 19 to the heat dissipating part 5 is suppressed. be able to.

なお、この断熱材20は、流入管19を形成する壁面(例えば銅)よりも熱伝導率の低い耐熱性の樹脂を用いる。   The heat insulating material 20 uses a heat resistant resin having a lower thermal conductivity than the wall surface (for example, copper) forming the inflow pipe 19.

また、断熱材20は、コーティングによるものだけではなく、貼り付けたり、あるいは、圧入するものなど、内壁面を形成するものであればよい。   Moreover, the heat insulating material 20 should just be what forms an inner wall surface, such as not only by the thing by coating but affixing or press-fitting.

さらに、断熱材20の表面を撥水性の材料、例えば、テフロン(登録商標)でコーティングするとよい。この撥水コーティング21によって、作動流体12は壁面を抵抗無く移動するので、作動流体12は、スムーズに流入口15へと流れていくのである。そして、全体として循環経路内の圧力損失を小さくして作動流体12の流量を確保できるので、効率的に半導体スイッチング素子10の冷却が行えるのである。 Furthermore, the surface of the heat insulating material 20 may be coated with a water-repellent material, for example, Teflon (registered trademark). Since the working fluid 12 moves on the wall surface without resistance by the water repellent coating portion 21, the working fluid 12 smoothly flows to the inflow port 15. And since the pressure loss in a circulation path can be made small as a whole and the flow volume of the working fluid 12 can be ensured, the semiconductor switching element 10 can be cooled efficiently.

なお、流入管19となる部分、すなわち、断熱材20をコーティングする部分の長さは、長いほど性能がよくなるが、少なくとも逆止弁18を押し開ける水頭圧を生じさせるだけの作動流体12の体積分を断熱材20でコーティングするとよい。   Note that the longer the length of the portion that becomes the inflow pipe 19, that is, the portion that coats the heat insulating material 20, the better the performance, but at least the volume of the working fluid 12 that generates the hydraulic head pressure that pushes the check valve 18 open. The minutes may be coated with a heat insulating material 20.

次に、受熱空間13内について説明する。   Next, the inside of the heat receiving space 13 will be described.

受熱板カバー14の内壁面および逆止弁18下方の導入管17には、断熱材20をコーティングしており、さらにその断熱材20の表面を撥水性の材料、例えば、テフロン(登録商標)でコーティング(撥水コーティング21)してある。この撥水コーティング21は、放熱経路6の内壁面にも施すとよい。この構成により、受熱空間13から流入管19内部の冷媒への熱移動を低減することができる。 The inner wall surface of the heat receiving plate cover 14 and the introduction pipe 17 below the check valve 18 are coated with a heat insulating material 20, and the surface of the heat insulating material 20 is coated with a water repellent material, for example, Teflon (registered trademark). It is coated (water repellent coating portion 21). The water repellent coating portion 21 may be applied also to the inner wall surface of the heat dissipation path 6. With this configuration, heat transfer from the heat receiving space 13 to the refrigerant in the inflow pipe 19 can be reduced.

また、このような構成による受熱空間13内の作用について説明する。受熱空間13内では、前述したとおり、受熱板11へ滴下した作動流体12は、受熱板11の表面を周囲に拡散するように薄い膜として受熱板11上に広がる。そして、熱くなった受熱板11の熱を受けて、薄い膜となった作動流体12は、一瞬にして加熱され気化することとなる。   Moreover, the effect | action in the heat receiving space 13 by such a structure is demonstrated. In the heat receiving space 13, as described above, the working fluid 12 dropped on the heat receiving plate 11 spreads on the heat receiving plate 11 as a thin film so as to diffuse the surface of the heat receiving plate 11 around. And the working fluid 12 which became a thin film | membrane by receiving the heat | fever of the heat-receiving plate 11 which became hot will be heated and vaporized in an instant.

しかし、作動流体12の全てが気化するわけではなく、一部液体のまま排出口16へと移動する。このとき、作動流体12は、撥水コーティング21を施した受熱板カバー14の内壁面に接触しながら排出口16へ移動する。 However, not all of the working fluid 12 is vaporized, and the working fluid 12 moves to the discharge port 16 while remaining partially liquid. At this time, the working fluid 12 moves to the discharge port 16 while being in contact with the inner wall surface of the heat receiving plate cover 14 provided with the water repellent coating portion 21.

従って、受熱空間13内の移動における抵抗を小さく抑えて、作動流体12の移動に対する圧力損失を抑えることができる。すなわち、スムーズに作動流体12を流すことができるので、効率よく冷却できるのである。   Therefore, the resistance in movement in the heat receiving space 13 can be suppressed to be small, and pressure loss due to movement of the working fluid 12 can be suppressed. That is, since the working fluid 12 can flow smoothly, it can be cooled efficiently.

なお、放熱経路6内の撥水コーティング21については、経路全体をコーティングしてもよいが、受熱板カバー14から離れた部分、すなわち、受熱板11の熱の影響を受けにくい部分については、壁面の抵抗の少ない材料を用いれば同様の作用・効果が得られる。 In addition, about the water-repellent coating part 21 in the heat radiation path | route 6, although the whole path | route may be coated, about the part away from the heat receiving plate cover 14, ie, the part which is hard to be influenced by the heat of the heat receiving plate 11, The same action and effect can be obtained by using a material with low wall resistance.

なお、上記実施形態においては、断熱材20の表面を撥水コーティング21する場合において説明したが、断熱材20自体が撥水性を有するものであっても同様の作用と効果を有する。 In the above-described embodiment, the case where the surface of the heat insulating material 20 is the water repellent coating portion 21 has been described. However, even if the heat insulating material 20 itself has water repellency, the same action and effect are obtained.

なお、上記実施形態においては、冷却装置3を電気自動車1に適用したものを説明したが、電力変換装置であるインバータ回路2は電子機器でもあり、電子機器に冷却装置3を適用することも出来る。   In the above embodiment, the cooling device 3 applied to the electric vehicle 1 has been described. However, the inverter circuit 2 that is a power conversion device is also an electronic device, and the cooling device 3 can be applied to the electronic device. .

本発明にかかる冷却装置は、冷媒となる作動流体の循環経路を、受熱部、放熱経路、放熱部、帰還経路、前記受熱部とすることで、作動流体の循環方向を一方向とすると共に、前記帰還経路の受熱部側に、前記受熱部内に前記作動流体を供給する流入管を接続し、前記受熱部と前記流入管の接続部に逆止弁を設けることで、受熱部内で作動流体を急激に気化させ、その受熱板部分において作動流体を勢い良く移動させることができ、その結果として伝熱面における伝熱効率を高め、冷却効果を高めることができる。   The cooling device according to the present invention has a circulation path of the working fluid as one direction by setting a circulation path of the working fluid serving as a refrigerant as a heat receiving section, a heat radiation path, a heat radiation section, a return path, and the heat receiving section. An inflow pipe that supplies the working fluid into the heat receiving part is connected to the heat receiving part side of the return path, and a check valve is provided at a connection part between the heat receiving part and the inflow pipe, so that the working fluid is supplied in the heat receiving part. It is possible to rapidly vaporize and move the working fluid vigorously in the heat receiving plate portion. As a result, the heat transfer efficiency on the heat transfer surface can be increased and the cooling effect can be increased.

また、本発明においては、前記受熱部入口側に設けた流入管の内壁面を、熱伝導率の低い材料でコーティングしたので、作動流体を、逆止弁を介して受熱部に導入されるまで液状態に保つことができる。   In the present invention, since the inner wall surface of the inflow pipe provided on the inlet side of the heat receiving part is coated with a material having low thermal conductivity, the working fluid is introduced into the heat receiving part via the check valve. It can be kept in a liquid state.

このため、上述のごとく、受熱部内で作動流体を急激に気化させ、その受熱板部分において作動流体を勢い良く移動させることができ、その結果として伝熱面における伝熱効率を高め、冷却効果を高めることができる。   For this reason, as described above, the working fluid can be rapidly vaporized in the heat receiving portion, and the working fluid can be moved vigorously in the heat receiving plate portion. As a result, the heat transfer efficiency on the heat transfer surface can be improved and the cooling effect can be improved. be able to.

このため、電気自動車の駆動装置としての電力変換装置に使用されるパワー半導体、高い発熱量を有するCPUなどの冷却に有用である。   For this reason, it is useful for cooling power semiconductors used in power conversion devices as drive devices for electric vehicles, CPUs with high heat generation, and the like.

1 電気自動車
2 インバータ回路
3 冷却装置
4 受熱部
5 放熱部
6 放熱経路
7 帰還経路
8 放熱体
9 送風機
10 半導体スイッチング素子
11 受熱板
12 作動流体
13 受熱空間
14 受熱板カバー
15 流入口
16 排出口
17 導入管
18 逆止弁
19 流入管
20 断熱材
21 撥水コーティング
DESCRIPTION OF SYMBOLS 1 Electric vehicle 2 Inverter circuit 3 Cooling device 4 Heat receiving part 5 Heat radiating part 6 Heat radiating path 7 Return path 8 Heat radiating body 9 Blower 10 Semiconductor switching element 11 Heat receiving plate 12 Working fluid 13 Heat receiving space 14 Heat receiving plate cover 15 Inlet 16 Outlet 17 Introducing pipe 18 Check valve 19 Inflow pipe 20 Heat insulating material 21 Water repellent coating part

Claims (6)

発熱体からの熱を作動流体に伝える受熱板を備えた受熱部と、
前記作動流体の熱を放出する放熱部と、
前記受熱部と前記放熱部とを接続する放熱経路と帰還経路とで構成し、
前記作動流体を、前記受熱部、前記放熱経路、前記放熱部、前記帰還経路、前記受熱部へと循環させて熱の移動を行う冷却装置であって、
前記帰還経路の受熱部側には、前記受熱部内に前記作動流体を供給する流入管を接続し、前記受熱部と前記流入管の接続部に逆止弁を設け、
気化量が減少した前記受熱部内の圧力と前記逆止弁上に溜まった前記作動流体の水頭による圧力との差によって前記逆止弁が押し下げられることにより液化した前記作動流体が前記受熱板上に供給され、
記受熱板上に供給された前記作動流体は、前記流入管の端部開口と前記受熱板の隙間から外周部へ拡散され薄い膜として前記受熱板上に広がり、
前記流入管の内壁には、前記流入管を構成する材質よりも熱伝導率の低い断熱コーティンを少なくとも前記逆止弁を押し開ける水頭圧を生じさせるだけの前記作動流体の体積分に備えたことを特徴とする冷却装置。
A heat receiving section having a heat receiving plate for transferring heat from the heating element to the working fluid;
A heat dissipating part for releasing the heat of the working fluid;
Consists of a heat dissipation path and a return path connecting the heat receiving section and the heat dissipation section,
A cooling device that circulates the working fluid to the heat receiving unit, the heat dissipation path, the heat dissipation unit, the return path, and the heat receiving unit to transfer heat,
On the heat receiving part side of the return path, an inflow pipe for supplying the working fluid is connected in the heat receiving part, and a check valve is provided at a connection part between the heat receiving part and the inflow pipe,
The working fluid liquefied by the check valve being pushed down due to the difference between the pressure in the heat receiving portion where the amount of vaporization has decreased and the pressure due to the head of the working fluid accumulated on the check valve is placed on the heat receiving plate. Supplied,
The working fluid supplied onto the heat receiving plate is diffused from the gap between the end opening of the inflow pipe and the heat receiving plate to the outer peripheral portion and spreads as a thin film on the heat receiving plate,
On the inner wall of the inflow pipe, a heat insulating coating portion having a lower thermal conductivity than the material constituting the inflow pipe is provided for the volume of the working fluid to generate at least the hydraulic head pressure that pushes the check valve open . A cooling device characterized by that.
前記逆止弁の前記流入管側に露出する面に、前記逆止弁を構成する材質よりも熱伝導率の低い断熱コーティング部を備えたことを特徴とする請求項1記載の冷却装置。 The cooling device according to claim 1, further comprising a heat insulating coating portion having a lower thermal conductivity than a material constituting the check valve on a surface exposed to the inflow pipe side of the check valve. 前記断熱コーティングが撥水性を有することを特徴とする請求項1または2記載の冷却装置。 The cooling apparatus according to claim 1, wherein the heat insulating coating portion has water repellency. 前記断熱コーティングの上に撥水性の撥水コーティング部を備えたことを特徴とする請求項1または2記載の冷却装置。 Cooling apparatus according to claim 1, wherein further comprising a water-repellent coating of the water repellent onto the thermal barrier coating unit. 請求項1〜4いずれか一つに記載の冷却装置を備えたことを特徴とする電子機器。 An electronic apparatus comprising the cooling device according to claim 1. 請求項1〜4いずれか一つに記載の冷却装置を備えたことを特徴とする電気自動車。
An electric vehicle comprising the cooling device according to any one of claims 1 to 4.
JP2011095768A 2011-04-22 2011-04-22 COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR Active JP5903548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011095768A JP5903548B2 (en) 2011-04-22 2011-04-22 COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011095768A JP5903548B2 (en) 2011-04-22 2011-04-22 COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR

Publications (2)

Publication Number Publication Date
JP2012225622A JP2012225622A (en) 2012-11-15
JP5903548B2 true JP5903548B2 (en) 2016-04-13

Family

ID=47275979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011095768A Active JP5903548B2 (en) 2011-04-22 2011-04-22 COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR

Country Status (1)

Country Link
JP (1) JP5903548B2 (en)

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207896A (en) * 1984-03-30 1985-10-19 Agency Of Ind Science & Technol Reverse syphon type heat transmission system
JPS6141888A (en) * 1984-08-01 1986-02-28 Agency Of Ind Science & Technol Heat pipe of loop type
JPH0230439B2 (en) * 1985-01-30 1990-07-06 Matsushita Electric Ind Co Ltd RUUPUSHIKIHIITOPAIPU
JPS61223204A (en) * 1985-03-26 1986-10-03 Fujikura Ltd Heat pipe type generating device
JPS62233686A (en) * 1986-03-31 1987-10-14 Yamato Seisakusho:Kk Heat transfer device
JPH0718555B2 (en) * 1986-06-06 1995-03-06 東京瓦斯株式会社 Operating method of heat transfer device
JPH01263494A (en) * 1988-04-15 1989-10-19 Zenshin Denryoku Eng:Kk Thermal flow adjusting valve
JPH0428983A (en) * 1989-10-26 1992-01-31 Mitsubishi Electric Corp Evaporative cooler
JPH08126125A (en) * 1994-10-21 1996-05-17 Nippondenso Co Ltd Power converter for electric automobile
JPH08170869A (en) * 1994-12-15 1996-07-02 Tokyo Yogyo Co Ltd Cold/hot water apparatus
JPH08299376A (en) * 1995-05-01 1996-11-19 Ito Junko Heat treatment device with the use of heat pipe
JP2957112B2 (en) * 1995-08-29 1999-10-04 リンナイ株式会社 Regenerator for absorption refrigeration system
US5911272A (en) * 1996-09-11 1999-06-15 Hughes Electronics Corporation Mechanically pumped heat pipe
JP3450148B2 (en) * 1997-03-07 2003-09-22 三菱電機株式会社 Loop type heat pipe
JP2002115981A (en) * 2000-10-12 2002-04-19 Hitachi Ltd Heat-carrying device
JP3946551B2 (en) * 2002-03-14 2007-07-18 三菱電機株式会社 Loop heat pipe evaporator
JP4032954B2 (en) * 2002-07-05 2008-01-16 ソニー株式会社 COOLING DEVICE, ELECTRONIC DEVICE DEVICE, SOUND DEVICE, AND COOLING DEVICE MANUFACTURING METHOD
JP4380250B2 (en) * 2002-08-28 2009-12-09 ソニー株式会社 Heat transport device, electronic device and heat transport device manufacturing method
JP2004239567A (en) * 2003-02-07 2004-08-26 Nec Toshiba Space Systems Ltd Heat pipe
JP2004257682A (en) * 2003-02-27 2004-09-16 Mitsubishi Electric Corp Evaporator
CN100413061C (en) * 2004-06-07 2008-08-20 鸿富锦精密工业(深圳)有限公司 Thermal tube and producing method thereof
JP2007095762A (en) * 2005-09-27 2007-04-12 Matsushita Electric Ind Co Ltd Flexible heat pipe
JP5151362B2 (en) * 2007-09-28 2013-02-27 パナソニック株式会社 COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
JP4978401B2 (en) * 2007-09-28 2012-07-18 パナソニック株式会社 Cooling system
JP2010190453A (en) * 2009-02-17 2010-09-02 Mitsubishi Electric Corp Gas liquid filling device

Also Published As

Publication number Publication date
JP2012225622A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5786132B2 (en) Electric car
US20210218090A1 (en) Phase-change cooling module and battery pack using same
JP4639850B2 (en) Cooling method and apparatus
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
JP5874935B2 (en) Flat plate cooling device and method of using the same
JP2007115917A (en) Thermal dissipation plate
JP5957686B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE AND ELECTRIC CAR HAVING THE SAME
JP2004349551A (en) Boiling cooling system
JP2008258340A (en) Cooler and electronic apparatus equipped with the same
JP5903549B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP5903548B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP2008218513A (en) Cooling device
JP2014048002A (en) Cooling device, electric vehicle equipped with the same, and electronic apparatus equipped with the same
JP5799205B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP2011096983A (en) Cooling device
JP2018105525A (en) Cooling device, electronic apparatus mounted with the same and electric vehicle
JP6035513B2 (en) Cooling device and electric vehicle equipped with the same
JP2008244320A (en) Cooling apparatus
JP2018031557A (en) Cooling device and electric equipment mounting the same, and electric car
JP6028232B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP5934886B2 (en) Cooling device and electric vehicle equipped with the same
KR101172679B1 (en) Outdoor unit of air conditioner
JP6010753B2 (en) Cooling device and electric vehicle equipped with the same
JP5938574B2 (en) Cooling device and electric vehicle equipped with the same
JP5887479B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140327

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R151 Written notification of patent or utility model registration

Ref document number: 5903548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151