JPS61223204A - Heat pipe type generating device - Google Patents

Heat pipe type generating device

Info

Publication number
JPS61223204A
JPS61223204A JP6142585A JP6142585A JPS61223204A JP S61223204 A JPS61223204 A JP S61223204A JP 6142585 A JP6142585 A JP 6142585A JP 6142585 A JP6142585 A JP 6142585A JP S61223204 A JPS61223204 A JP S61223204A
Authority
JP
Japan
Prior art keywords
turbine
working fluid
pipe
heat
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6142585A
Other languages
Japanese (ja)
Other versions
JPH0336128B2 (en
Inventor
Masataka Mochizuki
正孝 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP6142585A priority Critical patent/JPS61223204A/en
Priority to AU52457/86A priority patent/AU571769B2/en
Priority to CA000499984A priority patent/CA1283549C/en
Publication of JPS61223204A publication Critical patent/JPS61223204A/en
Publication of JPH0336128B2 publication Critical patent/JPH0336128B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/02Arrangements or modifications of condensate or air pumps
    • F01K9/026Returning condensate by capillarity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D2015/0291Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes comprising internal rotor means, e.g. turbine driven by the working fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve efficiency of power generation by providing a turbine inside a heat pipe and further providing a liquid phase hydraulic fluid passage, for forcing fluid to flow back from a heat pipe condensing part to an evaporating part which furnish said turbine with a backpressure, separately from a steam passage leading from the evaporating part to the turbine. CONSTITUTION:Configuration of a heat pipe is such that gas of noncondensing property such as air or the like is vacuum exhausted from the interior of a hermetically closed pipe 1 made of copper or the like and then hydraulic fluid 2 of condensing property is sealed in said pipe. Then a wick 3 made of very fine lines such as metal net, carbon fiber or the like is provided on the inner peripheral face of said pipe 1. The hermetically closed pipe 1 is vertically erected and fitted with a jacket 4, inside which high- temperature fluid 5 flows, at its lower end part as an evaporating part 6, while an axial turbine 7 for driving a generator 11 is provided in its upper part. Further, the upper side part of the hermetically closed pipe 1 above the axial turbine 7 and a part below the surface of the hydraulic fluid 2 on the evaporating part 6 side are put in communication with each other by means of a bypass pipe 12, and a condensing part 15 including a cooling jacket 13 is provided in the medium part of the pipe 12.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、ヒートパイプにより熱エネルギを機械エネ
ルギから電気エルネギに変換して発電を行なう装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus for generating electricity by converting thermal energy from mechanical energy to electrical energy using a heat pipe.

従来の技術 周知のようにヒートパイプは、密閉管の内部に封入した
水やフロンなどの凝縮性の作動流体を外部熱源によって
加熱蒸発させるとともに、その蒸気を密閉管の内部の圧
力の低い他端部側へ流動させ、しかる後その他端部で放
熱液化させることにより、作動流体の潜熱として熱輸送
を行なうものである。したがってヒートパイプは見掛は
上、銅等の熱伝導率の良好な金属に比較しても数十倍な
いし百数十倍の熱伝導率を有しており、このような特性
を生かして熱交換器などの熱関連機器のみならず電子機
器や医療機器などの各種の分野で使用されている。
Conventional Technology As is well known, a heat pipe uses an external heat source to heat and evaporate a condensable working fluid such as water or fluorocarbon sealed inside a sealed tube, and then transfers the vapor to the other end of the sealed tube where the pressure is lower. By causing the working fluid to flow toward one end, and then being liquefied with heat dissipation at the other end, heat is transported as latent heat of the working fluid. Therefore, heat pipes may look good, but they have a thermal conductivity that is tens to hundreds of times higher than metals with good thermal conductivity such as copper, and they utilize these characteristics to conduct heat. It is used not only in heat-related equipment such as exchangers, but also in various fields such as electronic equipment and medical equipment.

このようなヒートパイプは、従来、単に熱輸送手段とし
て使用しているのが一般的であり、例え、    ば廃
熱回収の場合には、高温排ガス流路と水や空気等の受熱
媒体流路との園にヒートパイプを配置し、ヒートパイプ
を介して高温排ガスと受熱媒体との閣で熱授受を行なう
構成としている。モして回収した熱を他の形態のエネル
ギとして利用する場合には、前記受熱媒体の有する熱に
よって何らかの機器を駆動し、あるいは前記受熱媒体と
更に他の熱媒体との閏で熱交換を行なった後にエネルギ
変換を行なって所望の形態のエネルギとして利用してい
る。
Conventionally, such heat pipes have generally been used simply as a means of heat transport. For example, in the case of waste heat recovery, heat pipes have been used to connect a high-temperature exhaust gas flow path and a heat receiving medium flow path such as water or air. A heat pipe is placed in the garden, and heat is exchanged between the high temperature exhaust gas and the heat receiving medium via the heat pipe. When using the heat recovered as another form of energy, the heat of the heat receiving medium may be used to drive some equipment, or the heat receiving medium may be used to exchange heat with another heat medium. After that, the energy is converted and used as the desired form of energy.

発明が解決しようとする問題点 しかるに、回収した熱エネルギによって発電を行なう場
合、従来のシステムでは上述したように、熱回収のため
の排ガスとの間の熱交換の他に更に熱交換を行なわなけ
ればならないから、効率が極めて低くなるばかりか、装
置の構成や制御が複雑化する内題があった。
Problems to be Solved by the Invention However, when generating electricity using recovered thermal energy, conventional systems require heat exchange in addition to heat exchange with exhaust gas for heat recovery, as described above. As a result, not only the efficiency becomes extremely low, but also the structure and control of the device becomes complicated.

ところで熱エネルギを電気エネルギに変換する場合、濃
度差に基づいて起電力を生じる素子を用いることが考え
られ、このような素子を用いれば、直接的に発電を行な
えるから有効であると考えられるが、このような発電が
理論的もしくは実験室的に可能であっても、効率や耐久
性等の点で実用化し得る素子は未だ存在しない。したが
って排ガスから回収した熱によって発電する場合、ター
ビンおよび発電機を回転させるように機械エネルギに一
旦変換することになる。このような発電形態は、通常行
なわれているように熱によって高温高圧気体を作り出し
、これを冷却凝縮させる際の圧力差によってタービンお
よび発電機を駆動するものである。しかるにヒートパイ
プの内部での作動流体の挙動を詳細に検討してみると、
作動流体は外部から熱を受けて蒸発気化した後、圧力の
低い個所へ流動し、しかる機凝纏液化するとともに、ウ
ィックにおける毛糟饋圧力もしくは重力によって還流す
る。作動流体のこのような挙動は、例えば蒸気ボイラお
よびタービンならびにコンデンサーの間における水の挙
動と類似しており、したがってヒートパイプの内部にお
ける気相作動流体によってタービン等の何らかの機械的
な手段を動作させて発電することが可能であると考えら
れる。
By the way, when converting thermal energy into electrical energy, it is possible to use an element that generates an electromotive force based on the concentration difference, and using such an element is considered effective because it can directly generate electricity. However, even if such power generation is theoretically or experimentally possible, there is still no element that can be put to practical use in terms of efficiency, durability, etc. Therefore, when generating electricity using heat recovered from exhaust gas, it is first converted into mechanical energy to rotate a turbine and a generator. This type of power generation uses heat to generate high-temperature, high-pressure gas, which is cooled and condensed, and the pressure difference used to drive the turbine and generator. However, when we examine the behavior of the working fluid inside the heat pipe in detail, we find that
The working fluid receives heat from the outside and evaporates, then flows to a location where the pressure is low, where it condenses and liquefies, and is then refluxed by the wick pressure or gravity. This behavior of the working fluid is similar to that of water, for example in steam boilers and between turbines and condensers, and therefore it is not possible to operate some mechanical means such as a turbine by means of a gas-phase working fluid inside a heat pipe. It is thought that it is possible to generate electricity using

その場合、ヒートパイプは一本の密閉管の中で蒸気流と
液体流とを生じさせる構成であるうえに、本来は単に熱
輸送を行なうための手段であるから、現実に効率良く発
電を行なうには、種々の問題点を解消しなければならず
、従来ではこれらの周照点が充分用らかになっていない
のみならず、解明されていないのが実情である。
In that case, a heat pipe is configured to generate a vapor flow and a liquid flow in a single sealed tube, and since it is originally just a means to transport heat, it is actually possible to generate electricity efficiently. In order to achieve this, various problems must be solved, and the reality is that in the past, not only have these peripheral illumination points not been sufficiently used, but they have not been solved.

この発明は、ヒートパイプを直接的に発電に利用する際
の技術的なrlIWAを検討、研究し、従来のヒートパ
イプでは蒸気流と液体流とが対向流となることに起因す
る発電効率の低下を防止することを目的とするものであ
る。
This invention examines and researches the technical rlIWA when heat pipes are used directly for power generation, and the reduction in power generation efficiency due to the opposing flow of vapor and liquid flows in conventional heat pipes. The purpose is to prevent

@照点を解決するための手段 この発明は、気相の作動流体によって回転駆動するター
ビンをヒートパイプの内部に設ける一方、そのタービン
をヒートパイプの外部に設けた発電機に連結し、かつタ
ービンに対して背圧を与える凝縮部から蒸発部に還流す
る液相作動流体流路を、蒸発部からタービンに到る蒸気
流路とは別に形成したことを主たる特徴とするものであ
る。すなわちこの発明では、非凝縮性気体を排気しかつ
凝縮性流体からなる作動流体を封入した密閉管を上下方
向に向けて配置し、その密閉管の下端部を、外部から熱
を与えて作動流体を蒸発させる蒸発部とし、その蒸発部
で生じた作動流体の蒸気流によって回転駆動されるター
ビンを、密閉管の内部のうち蒸発部より上側に設け、か
つそのタービンを、密mttの外部に設けた発電機に連
結する。他方、密閉管の内部のうちタービンより上側の
所定個所と前記蒸発部とをバイパス管路によって連通さ
せ、そのバイパス管路の途中に、気相作!ll流体から
熱を奪って作動流体を凝縮液化させる凝縮部を設ける。
@Means for solving the problem of illumination This invention provides a turbine that is rotatably driven by a gas-phase working fluid inside a heat pipe, and connects the turbine to a generator installed outside the heat pipe. The main feature is that the liquid-phase working fluid flow path that flows back from the condensation section to the evaporation section, which provides back pressure to the steam, is formed separately from the steam flow path from the evaporation section to the turbine. That is, in this invention, a sealed tube in which a non-condensable gas is exhausted and a working fluid made of a condensable fluid is sealed is arranged vertically, and the lower end of the sealed tube is heated from the outside to pump the working fluid. an evaporator section for evaporating the water, a turbine rotationally driven by the vapor flow of the working fluid generated in the evaporator section is provided inside the sealed tube above the evaporator section, and the turbine is provided outside the closed mtt. connected to a generator. On the other hand, a predetermined portion inside the sealed pipe above the turbine is communicated with the evaporation section through a bypass pipe, and a gas phase production is carried out in the middle of the bypass pipe. A condensing section is provided to remove heat from the fluid and condense and liquefy the working fluid.

前記蒸発部と凝縮部とでは、凝縮部の圧力が低くなるか
ら、この発明では、バイパス管路の蒸発部側での開口位
置に応じて、バイパス管路に逆止部を設け、気相作動流
体の凝縮部への流入を防ぐよう構成することもできる。
In the evaporation section and the condensation section, the pressure in the condensation section is low, so in this invention, a check section is provided in the bypass line depending on the opening position of the bypass line on the evaporation section side, and gas phase operation is performed. It can also be configured to prevent fluid from flowing into the condensation section.

またタービンに対する気相作動流体の相対的な流速を速
くすることが好ましいから、この発明で0     は
、タービンを設けた部分での密閉管の内径を小さく設定
し、その部分での気相作動流体の流速を速くするよう構
成してもよい。
Furthermore, since it is preferable to increase the relative flow velocity of the gas-phase working fluid to the turbine, in this invention, the inner diameter of the sealed pipe is set small at the part where the turbine is installed, and the gas-phase working fluid flows in that part. The flow rate may be increased.

ざらにこの発明においては、気相作動流体を過熱蒸気と
して発電効率を更に高めるために、タービンより下側に
加熱部を設けることもできる。
In general, in the present invention, a heating section may be provided below the turbine in order to further increase the power generation efficiency by converting the gas phase working fluid into superheated steam.

作   用 この発明の装置において、蒸発部に入熱すると、密閉管
の内部の作動流体が蒸発気化して上昇流となり、これと
同時に凝縮部から抜熱すれば、タービンの下側すなわち
流入側の圧力が高く、これに対し上側すなわち流出側の
圧力が低くなる。その結果、作動流体の蒸気が高速でタ
ービンを通過することにより、タービンが回転駆動され
、それに伴って発電機が回転して発電を行なう。このよ
うな断熱膨張過程を経た作動流体は、バイパス管路を通
って凝縮部に到り、ここで熱を奪われて凝縮液化し、そ
の結果生じた液相作動流体はバイパス雪路を介して蒸発
部に還流する。
Function: In the device of the present invention, when heat is input to the evaporator section, the working fluid inside the closed tube evaporates and vaporizes to form an upward flow, and at the same time, if heat is removed from the condensing section, the lower side of the turbine, that is, the inlet side. The pressure is high, whereas the pressure on the upper or outlet side is lower. As a result, the steam of the working fluid passes through the turbine at high speed, which drives the turbine to rotate, thereby causing the generator to rotate and generate electricity. The working fluid that has undergone such an adiabatic expansion process passes through the bypass pipe and reaches the condensation section, where it is deprived of heat and condenses into a liquid.The resulting liquid-phase working fluid passes through the bypass pipe. Reflux to the evaporation section.

実施例 以下、この発明の実施例を添付の図面を参照して説明す
る。 − 第1図はこの発明の一実施例を示す略解断面図であって
、銅あるいはアルミニウムなどの金属からなる密閉管1
はヒートパイプとして構成されており、その内部は空気
等の非凝縮性気体を真空排気した後に凝縮性の作動流体
2が封入され、かつ内周面に金厘網や炭素lll1など
の極細線などからなるウィック3が設けられている。こ
こで、作動流体としては動作させるべき温度に応じて適
宜のものを用いることができ、例えば水やフロンを用い
ることができる。そして密閉管1は上下方向に向けて立
設されるとともに、その下端部には、ジ″ヤケット4が
取付けられ、そのジャケット4内に排ガスなどの高温流
体5を流すことにより、密閉管1内の作動流体2に熱を
与えて蒸発気化させる蒸発部6として構成されている。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. - FIG. 1 is a schematic cross-sectional view showing an embodiment of the present invention, and shows a sealed tube 1 made of metal such as copper or aluminum.
is configured as a heat pipe, the inside of which is filled with a condensable working fluid 2 after evacuating non-condensable gas such as air, and the inner peripheral surface is covered with ultrafine wires such as wire mesh or carbon 1ll1. A wick 3 consisting of the following is provided. Here, an appropriate working fluid can be used depending on the temperature at which the device should be operated, and for example, water or fluorocarbon can be used. The sealed tube 1 is erected vertically, and a jacket 4 is attached to the lower end of the sealed tube 1. By flowing a high-temperature fluid 5 such as exhaust gas into the jacket 4, the inside of the sealed tube 1 is heated. The working fluid 2 is configured as an evaporator 6 that applies heat to the working fluid 2 to evaporate it.

なお、ジャケット4の内部にある密閉管1の下端部にフ
ィンを取付け、熱伝達面積を増大させてもよい。
Note that a fin may be attached to the lower end of the sealed tube 1 inside the jacket 4 to increase the heat transfer area.

また密閉管1の内部で前記蒸発部6より上側に、軸流タ
ービン7がその軸棒を上下方向に向けて配置されており
、その軸流タービン7はその回転軸8を密閉管1の上端
部に設けた軸受9によって支持することにより、回転自
在とされている。また回転軸8は適宜のシール部材、例
えばメカニカルシール10によりて気密性を保持した状
態で密n管1の外部に突出し、その突出端に発電機11
が連結されている。
Further, an axial flow turbine 7 is disposed inside the hermetic tube 1 above the evaporation section 6 with its shaft rod facing in the vertical direction, and the axial flow turbine 7 has its rotating shaft 8 at the upper end of the hermetic tube 1. It is made rotatable by being supported by a bearing 9 provided in the section. Further, the rotating shaft 8 protrudes to the outside of the closed tube 1 while maintaining airtightness with a suitable sealing member, for example, a mechanical seal 10, and a generator 11 is attached to the protruding end of the rotary shaft 8.
are connected.

さらに前記密閉管1のうち軸流タービン7より上側の部
分と蒸発部6側の作動流体2の液面下の部分とがバイパ
ス!!12によって連通されており、そのバイパス管1
2の中間部に冷却用のジャケット13が取付けられ、そ
の内部に水等の冷却媒体14を流すことにより、バイパ
ス管12内の作動流体から熱を奪って凝縮液化させる凝
縮部15として構成されている。凝縮部15におけるバ
イパス管12の外表面にフィン16を取付ければ、熱伝
達面積をより拡大できることは勿論である。
Furthermore, the portion of the sealed pipe 1 above the axial flow turbine 7 and the portion below the liquid level of the working fluid 2 on the evaporator 6 side are bypassed! ! 12, and its bypass pipe 1
A cooling jacket 13 is attached to the middle part of the bypass pipe 12, and by flowing a cooling medium 14 such as water inside the cooling jacket 13, it is configured as a condensing part 15 that removes heat from the working fluid in the bypass pipe 12 and condenses and liquefies it. There is. Of course, if the fins 16 are attached to the outer surface of the bypass pipe 12 in the condensing section 15, the heat transfer area can be further expanded.

上記の装置によって発電を行なうには、蒸発部6のジャ
ケット4内に高温流体5を流し、かつ凝縮部15のジャ
ケット13内に冷却媒体14を流す。このようにすると
、蒸発部6においては、重力に基づく水頭圧で圧縮状態
にある液相の作動流体2が、高温流体5から熱を受けて
蒸発気化し、軸流タービン7の下側では圧力が高くなる
。これに対し軸流タービン7より上側は、温度の低い凝
縮aB15に直接連通して圧力が低くなっている。
In order to generate electricity using the above-mentioned device, high-temperature fluid 5 is caused to flow in jacket 4 of evaporator section 6, and cooling medium 14 is caused to flow in jacket 13 of condensation section 15. In this way, in the evaporator 6, the liquid-phase working fluid 2, which is in a compressed state due to the head pressure based on gravity, receives heat from the high-temperature fluid 5 and evaporates, and the lower side of the axial flow turbine 7 is under pressure. becomes higher. On the other hand, the area above the axial flow turbine 7 is in direct communication with the condensing aB15, which has a low temperature, and has a low pressure.

したがって気相の作動流体は密閉管1の内部を上昇流と
なって高速で流れ、軸流タービン7の部分で断熱膨張し
、これを口紙駆動する。その結果、発電機11が軸流タ
ービン7によって回転させられ、発電を行なう。
Therefore, the working fluid in the gas phase flows upward inside the sealed tube 1 at high speed, expands adiabatically in the axial flow turbine 7, and drives the turbine. As a result, the generator 11 is rotated by the axial turbine 7 and generates electricity.

断熱膨張した作動流体は、例えば水の場合は湿り蒸気に
なり、またフロンR−113の場合は過熱蒸気になり、
その状態でバイパス管12の内部を凝縮部15に流れる
。凝縮部15においては、ジャケット13内に供給して
いる冷fiI]tJ1体′14が作ib流体から熱を奪
うから、気相の作曲流体の全てがここで11ma化し、
その結果、軸流タービン7の背圧を充分低下させること
になる。そして液・ 化した作*i体はバイパス管12の内部を流下し、m終
的には、蒸発部6に還流する。   □したがって上記
の発電#A置では、作動流体の蒸気流Vが密n憶1の内
部を流れ、これに対し蒸発部6に戻る作動流体の液流し
がバイパス管12の内部を流れ、その結果両者がll#
!されるから、蒸気mvが音速程度の最高速度に達した
としても、蒸気流Vによる液相作動、・流体の飛散が生
じない。
The adiabatically expanded working fluid becomes wet steam in the case of water, or superheated steam in the case of Freon R-113,
In this state, it flows inside the bypass pipe 12 to the condensing section 15. In the condensing section 15, the cold fiI]tJ1 body '14 supplied into the jacket 13 takes away heat from the production fluid, so all the composition fluid in the gas phase is converted to 11ma here,
As a result, the back pressure of the axial flow turbine 7 is sufficiently reduced. The liquefied product flows down inside the bypass pipe 12 and finally returns to the evaporation section 6. □ Therefore, in the above-mentioned power generation station #A, the vapor flow V of the working fluid flows inside the dense storage 1, whereas the liquid flow of the working fluid returning to the evaporator 6 flows inside the bypass pipe 12, and as a result, Both are ll#
! Therefore, even if the steam mv reaches a maximum speed of approximately the speed of sound, liquid phase operation due to the vapor flow V and fluid scattering will not occur.

換言すれば、液相の作動流体が蒸発部6に確実かつ充分
に還流するとともに、気相作動流体の流動が妨げられな
いので、効率良くかつ継続して発電を行なうことができ
る。
In other words, the liquid-phase working fluid reliably and sufficiently flows back to the evaporator 6, and the flow of the gas-phase working fluid is not hindered, so that electric power can be generated efficiently and continuously.

なお、上述した装置の熱サイクルを例示ずれば第2図(
A)(B)の通りrsる。12all(A)は水を作動
流体とした場合の例を示し、液相の作動流体は飽和液纏
に沿って圧力が上昇・するとともに、所定の圧力で蒸発
して乾き飽和蒸気になり、ついで断熱膨張しつつ軸流タ
ービン7を回転させて湿り飽和蒸気になり、しかる後熱
を外部に放出して凝縮液化する。また第2図(8)はフ
ロンR−113を作動流体とした場合の例を示し、この
場合は断熱膨張することにより過熱蒸気になり、しかる
後熱を外部に放出して凝縮液化する。これらいずれの場
合であっても熱効率ηはη−(13−is)/(i3−
  il)で示される。
An example of the thermal cycle of the above-mentioned device is shown in Figure 2 (
A) rs as per (B). 12all (A) shows an example in which water is used as the working fluid.The working fluid in the liquid phase increases in pressure along the saturated liquid web, evaporates at a predetermined pressure, becomes dry saturated steam, and then evaporates into saturated steam. The axial flow turbine 7 is rotated while expanding adiabatically to turn the steam into moist saturated steam, which then releases heat to the outside and condenses into liquefaction. FIG. 2 (8) shows an example in which Freon R-113 is used as a working fluid. In this case, it undergoes adiabatic expansion to become superheated steam, and then releases heat to the outside to condense and liquefy. In any of these cases, the thermal efficiency η is η-(13-is)/(i3-
il).

ところで凝縮1115の圧力は蒸発・部6の圧力よりも
相当低くなるので、設計の都合上、バイパス管12の下
端部を密閉管1内の下端部のうち作動流体2の液面より
上側に開口させた場合、作動流体の蒸気の一部がバイパ
ス[12を通って直接凝縮部15へ流れ、発電の用に供
されない不都合が生じることがある。このような場合、
バイパス管12のうち凝縮部15より下側に逆止部を設
けることが好ましい。第3図(A)(B)はその例を示
し、第3図(A>に示す逆止弁17は、凝縮部15で生
じた液相作動流体の水頭圧よりも蒸発部6の圧力が高く
なった際に閉動作するよう構成されている。また第3図
(B)は0字管状のトラップ18であり、溜った液相作
動流体〉によって作動流体蒸気が凝縮部15へ直接流入
することを防止するよう構成されている。
By the way, the pressure of the condensate 1115 is considerably lower than the pressure of the evaporator section 6, so for design reasons, the lower end of the bypass pipe 12 is opened at the lower end of the sealed pipe 1 above the liquid level of the working fluid 2. In this case, a part of the vapor of the working fluid may flow directly to the condensing section 15 through the bypass [12], causing the inconvenience that it cannot be used for power generation. In such a case,
It is preferable to provide a check portion below the condensing portion 15 in the bypass pipe 12 . FIGS. 3(A) and 3(B) show an example of this, and the check valve 17 shown in FIG. Fig. 3(B) shows a trap 18 in the shape of a 0-shaped tube, and the working fluid vapor directly flows into the condensing section 15 by the accumulated liquid-phase working fluid. It is configured to prevent this.

第4図はこの発明の他の実施例を示す略解断面図であっ
て、ここに示す1iW11は、小型でかつ発電容量が多
くなるよう構成したものである。すなわちビートパイプ
構造とした!!!閉管1Aの内径が、加熱部6である下
端部から軸流タービン7を設けた部分に向けて次第に小
さくなるよう設定され、かつ他の構成は第1図に示す構
成と同一とされている。したがって第4図に示す構成で
は、N閉管1A自体がデフユーザとして機能し、多量の
作動流体が軸流タービン7に高速で集中的に作用するこ
とになるから、小型であるにも拘わらず、発電容量を高
めることができる。
FIG. 4 is a schematic cross-sectional view showing another embodiment of the present invention, and 1iW11 shown here is configured to be small and have a large power generation capacity. In other words, it has a beat pipe structure! ! ! The inner diameter of the closed tube 1A is set to gradually become smaller from the lower end, which is the heating section 6, toward the section where the axial flow turbine 7 is provided, and other configurations are the same as the configuration shown in FIG. Therefore, in the configuration shown in FIG. 4, the N closed pipe 1A itself functions as a differential user, and a large amount of working fluid acts intensively on the axial flow turbine 7 at high speed. Capacity can be increased.

ところでヒートパイプは作動流体が蒸発部に還流するこ
とによって熱輸送を継続して行なうことができるのであ
り、したがって上述した装置においてヒートパイプであ
る密閉管1.1Aの熱輸送能力を越えた入熱があった場
合には、蒸発および凝縮を伴う作動流体の循環流動が生
じなくなるから、発電を行なえなくなる。このような場
合、入熱を制限できなければ、前述した装置の設置台数
を増して1台当りの入熱を低下させる方法以外に、1台
当りの熱効率を高めるよう構成することができる。第5
図はそのための構成を示す略解断面図であって、ここに
示す装置は、ヒートパイプ構造とされた密閉管1のうち
軸流タービン6を設けた部分の下側に加熱部19が設け
られ、かつ他の構成が第1図に示す構成と同一とされて
いる。その加熱部19は、蒸発部6において生じた作動
流体の乾き飽和蒸気を過熱蒸気とするためのものであっ
て、例えば蒸発部6に対する入熱源とi−ノg濃流体5
を流すことのできるコイルを密閉管1に巻き付けた構成
とされている。したがって第5図に示す構成の装置では
、加熱部19において過熱蒸気とされた作動流体が軸流
タービン7の部分で断熱膨張してこれを回転させ、発電
を行なう。このような熱サイクルを示せば第6図の通り
であって、熱効率ηはη−(i4−  is )、/ 
(14−it)となり、第1図あるいは第4図に示す装
置におけるよりも高い熱効率を得ることができる。
By the way, heat pipes can continuously transport heat by circulating the working fluid back to the evaporation section. Therefore, in the above-mentioned device, heat input that exceeds the heat transport capacity of the 1.1A sealed tube that is the heat pipe is possible. If this occurs, the circulating flow of the working fluid that accompanies evaporation and condensation will no longer occur, making it impossible to generate electricity. In such a case, if the heat input cannot be restricted, instead of increasing the number of devices installed and reducing the heat input per device as described above, it is possible to configure the device to increase the thermal efficiency per device. Fifth
The figure is a schematic cross-sectional view showing a configuration for this purpose. In addition, the other configurations are the same as the configuration shown in FIG. The heating section 19 is for converting the dry saturated steam of the working fluid generated in the evaporation section 6 into superheated steam, and serves as a heat input source for the evaporation section 6 and the i-nog concentrated fluid 5, for example.
It has a structure in which a coil capable of passing a current is wound around a sealed tube 1. Therefore, in the apparatus having the configuration shown in FIG. 5, the working fluid that has been turned into superheated steam in the heating section 19 expands adiabatically in the axial flow turbine 7, rotates it, and generates electricity. Such a thermal cycle is shown in Figure 6, where the thermal efficiency η is η-(i4-is), /
(14-it), and higher thermal efficiency can be obtained than in the apparatus shown in FIG. 1 or 4.

なお、前記加熱部19の熱源としては、蒸発部6と同一
の高温流体5以外のものを使用することもでき、例えば
廃熱回収よりも発電を主目的とする場合には、予め用意
した補助熱源を使用してもよい。
Note that as the heat source for the heating section 19, it is also possible to use something other than the same high-temperature fluid 5 as that for the evaporation section 6. For example, when the main purpose is power generation rather than waste heat recovery, a pre-prepared auxiliary fluid may be used. A heat source may also be used.

またこの発明の@胃は第1図および第4図ならびに第5
図に示すようにタービン7を設けた構成であるが、その
タービン7は1段である必要は特にはなく、必要に応じ
て複数段設けてもよい。さらにタービン7の上流側の中
心部に第7図に示すようなほぼ円錐状のコーン20を設
ければ、密閉管1の内周面とコーン20との間のfil
がデフユーザと同様な機能を果し、タービン7を効率良
く回転させることができる。
Also, the @stomach of this invention is shown in Figures 1, 4, and 5.
Although the configuration includes a turbine 7 as shown in the figure, the turbine 7 does not need to be in one stage, and may be provided in multiple stages as necessary. Furthermore, if a substantially conical cone 20 as shown in FIG.
serves the same function as a differential user, and can rotate the turbine 7 efficiently.

発明の効果 以上の説明から明らかなようにこの発明の発電装館によ
れば、外部から熱を導入するW&発部で蒸発させた作#
IIPI1体によってタービンを駆動させる密閉管に対
し、そのタービンより上側の部分と蒸発部とを連通させ
るバイパス管路を設け、そのバイパス管路の中間部で作
l!Pl流体を凝縮液化させて液相作動流体を蒸発部へ
バイパス管路を通って還流させろよう構成したから、蒸
気流と液流とが隔絶されて対向流とならないために、液
相作1llFR体の飛散やそれに伴う蒸発部への還流不
足、あるいは蒸気流の阻害などが生じることがなく、し
たがって発電効率を低下させることなく確実かつ安定し
て発電を行なうことができる。またバイパス管路のうち
凝縮部より下側に、気相作動流体の流入を防止する逆止
部を設ければ、バイパスMNの下端部の密閉管に対する
開口位置を任意に選択できるので、設計の自由度が増す
とともに、熱効率の低下を防止できる。さらにタービン
を設けた個所の密閉管の内径を小さくすれば、長屋の蒸
気流をタービンに対して高速で作用させることができる
から、発電容量を下げずに小型化することができる。ま
たさらに密閉管のうちタニビンを設けた部分より下側に
加熱部を設ければ、蒸発部で生じた乾き飽和蒸気を過熱
蒸気とすることができるから、熱効率を更に高めること
ができる。
Effects of the Invention As is clear from the above explanation, the power generation system of this invention has a power generation system that evaporates heat in the W& generator that introduces heat from the outside.
For the sealed pipe in which the turbine is driven by one IIPI unit, a bypass pipe is provided to communicate the part above the turbine with the evaporation section, and the middle part of the bypass pipe is used to create a closed pipe. Since the Pl fluid is condensed and liquefied and the liquid-phase working fluid is returned to the evaporator through the bypass pipe, the vapor flow and the liquid flow are separated and do not become countercurrents, so that the liquid-phase working 111 FR body There is no scattering of water, insufficient return to the evaporation section, or obstruction of steam flow, and therefore power generation can be performed reliably and stably without reducing power generation efficiency. In addition, if a check part is provided below the condensing part of the bypass pipe to prevent the inflow of gas-phase working fluid, the opening position of the lower end of the bypass MN relative to the sealed pipe can be arbitrarily selected, making it possible to adjust the design. In addition to increasing the degree of freedom, it is possible to prevent a decrease in thermal efficiency. Furthermore, by reducing the inner diameter of the sealed tube at the location where the turbine is installed, the steam flow from the tenement can be applied to the turbine at high speed, allowing for downsizing without reducing power generation capacity. Further, if a heating section is provided below the portion of the sealed tube where the tanibin is provided, the dry saturated steam generated in the evaporation section can be converted into superheated steam, so that the thermal efficiency can be further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一寅IM例を示す略解断面■、第2
図(A)(B)はそれぞれ熱4)′イクルを示す線図で
あって、同図(A)は水の調合のT−sm図、同図(B
)はフロンR−113の場合のP−1轢図、第3図(A
)(B)は逆止部の例をそれぞれ示し、同図(A)は逆
止弁の略解図、同図(B)はトラップの略解図、第4図
はこの発明の他の実施例を示す略解断WJ図、第5v!
Jはこの発明の更に他の実施例を示す略解断面図、第6
図は第5図の構成とした場合の熱サイクルを示すT−s
線図、第7図はタービンの上流側にコーンを設けた構成
の部分略wI断面図である。 1、IA−!f!f!ff、 2 ・ff 勤1 (t
、 5−1 m流体、 6・・・蒸発部、 7・・・軸
流タービン、 11・・・発電機、 12・・・バイパ
ス管、 14・・・冷却媒体、 15・・・凝l!J部
、 17・・・逆止弁、18・・・トラップ、 19・
・・加熱部。
Figure 1 shows a schematic cross-section (■) showing one IM example of this invention, and the second
Figures (A) and (B) are diagrams showing the thermal 4)' cycle, respectively, where (A) is a T-sm diagram of water preparation, and (B) is a T-sm diagram of water preparation.
) is the P-1 track diagram for Freon R-113, and Figure 3 (A
)(B) shows an example of a check part, FIG. 4(A) is a schematic illustration of a check valve, FIG. 4(B) is a schematic illustration of a trap, and FIG. 4 shows another embodiment of the present invention. Roughly disassembled WJ diagram shown, 5th v!
J is a schematic sectional view showing still another embodiment of the present invention, No. 6
The figure shows the thermal cycle when the configuration shown in Figure 5 is used.
The diagram and FIG. 7 are partial schematic cross-sectional views along wI of a configuration in which a cone is provided on the upstream side of the turbine. 1.IA-! f! f! ff, 2 ・ff 1 (t
, 5-1 m fluid, 6... Evaporation section, 7... Axial flow turbine, 11... Generator, 12... Bypass pipe, 14... Cooling medium, 15... Condensation l! J part, 17... Check valve, 18... Trap, 19.
...Heating section.

Claims (4)

【特許請求の範囲】[Claims] (1)非凝縮性気体を排気しかつ凝縮性流体からなる作
動流体を封入した密閉管が上下方向に向けて配置される
とともに、その密閉管の下端部が外部から熱を受けて作
動流体を蒸発させる蒸発部とされ、また密閉管内の蒸発
部より上側に気相作動流体によって回転駆動されるター
ビンが内装され、かつそのタービンが密閉管の外部に設
けた発電機に連結され、さらに前記密閉管の内部のうち
タービンより上側の所定個所と前記蒸発部とを連通させ
るバイパス管路が付設されるとともに、そのバイパス管
路の途中に、気相作動流体から熱を奪って作動流体を凝
縮液化させる凝縮部が設けられていることを特徴とする
ヒートパイプ式発電装置。
(1) A sealed tube that exhausts non-condensable gas and fills a working fluid consisting of a condensable fluid is arranged vertically, and the lower end of the sealed tube receives heat from the outside and discharges the working fluid. A turbine that is rotatably driven by a gas-phase working fluid is installed above the evaporator section in the sealed tube, and the turbine is connected to a generator provided outside the sealed tube. A bypass pipe line is provided that communicates the evaporation section with a predetermined portion inside the pipe above the turbine, and a bypass line is installed in the middle of the bypass line to remove heat from the gas-phase working fluid to condense and liquefy the working fluid. A heat pipe type power generation device characterized by being provided with a condensing section.
(2)前記バイパス管路は、気相作動流体の流入を防ぐ
逆止部を、その内部のうち前記凝縮部と蒸発部との間に
有していることを特徴とする特許請求の範囲第1項記載
のヒートパイプ式発電装置。
(2) The bypass pipe line has a check part between the condensing part and the evaporating part within the bypass pipe line, which prevents the inflow of the gas-phase working fluid. The heat pipe type power generation device according to item 1.
(3)前記密閉管は、前記タービンを設けた部分の内径
が前記蒸発部の内径より小さい形状であることを特徴と
する特許請求の範囲第1項記載のヒートパイプ式発電装
置。
(3) The heat pipe type power generation device according to claim 1, wherein the sealed tube has a shape in which the inner diameter of the portion where the turbine is provided is smaller than the inner diameter of the evaporation section.
(4)前記密閉管は、気相作動流体を更に加熱する加熱
部を、前記タービンより下側に有していることを特徴と
する特許請求の範囲第1項記載のヒートパイプ式発電装
置。
(4) The heat pipe type power generation device according to claim 1, wherein the sealed tube has a heating section below the turbine that further heats the gas-phase working fluid.
JP6142585A 1985-03-26 1985-03-26 Heat pipe type generating device Granted JPS61223204A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6142585A JPS61223204A (en) 1985-03-26 1985-03-26 Heat pipe type generating device
AU52457/86A AU571769B2 (en) 1985-03-26 1986-01-17 Heat pipe with inbuilt turbine
CA000499984A CA1283549C (en) 1985-03-26 1986-01-21 Heat pipe having a turbine built therein and apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6142585A JPS61223204A (en) 1985-03-26 1985-03-26 Heat pipe type generating device

Publications (2)

Publication Number Publication Date
JPS61223204A true JPS61223204A (en) 1986-10-03
JPH0336128B2 JPH0336128B2 (en) 1991-05-30

Family

ID=13170708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6142585A Granted JPS61223204A (en) 1985-03-26 1985-03-26 Heat pipe type generating device

Country Status (1)

Country Link
JP (1) JPS61223204A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307398C (en) * 2004-09-09 2007-03-28 明基电通股份有限公司 Semi-loop hot-pipe structure
JP2012225623A (en) * 2011-04-22 2012-11-15 Panasonic Corp Cooling device, electronic apparatus with the same, and electric vehicle
JP2012225622A (en) * 2011-04-22 2012-11-15 Panasonic Corp Cooling device, electronic apparatus with the same, and electric vehicle
WO2018047533A1 (en) * 2016-09-09 2018-03-15 株式会社デンソー Device temperature adjusting apparatus
IT201700008792A1 (en) * 2017-01-27 2018-07-27 Luigi Sanna "thermoelectric converter with convective motions"
US11506088B2 (en) * 2018-06-22 2022-11-22 Gas Technology Institute Hydro-turbine drive methods and systems for application for various rotary machineries

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51162142U (en) * 1975-06-18 1976-12-23
JPS5752608A (en) * 1980-09-17 1982-03-29 Masayasu Negishi Heat pipe type heat engine
JPS6165078A (en) * 1984-09-04 1986-04-03 Ishikawajima Harima Heavy Ind Co Ltd Geo-thermal generation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51162142U (en) * 1975-06-18 1976-12-23
JPS5752608A (en) * 1980-09-17 1982-03-29 Masayasu Negishi Heat pipe type heat engine
JPS6165078A (en) * 1984-09-04 1986-04-03 Ishikawajima Harima Heavy Ind Co Ltd Geo-thermal generation device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307398C (en) * 2004-09-09 2007-03-28 明基电通股份有限公司 Semi-loop hot-pipe structure
JP2012225623A (en) * 2011-04-22 2012-11-15 Panasonic Corp Cooling device, electronic apparatus with the same, and electric vehicle
JP2012225622A (en) * 2011-04-22 2012-11-15 Panasonic Corp Cooling device, electronic apparatus with the same, and electric vehicle
WO2018047533A1 (en) * 2016-09-09 2018-03-15 株式会社デンソー Device temperature adjusting apparatus
IT201700008792A1 (en) * 2017-01-27 2018-07-27 Luigi Sanna "thermoelectric converter with convective motions"
WO2018138606A1 (en) * 2017-01-27 2018-08-02 Luigi Sanna Convective motions thermoelectric converter
US11506088B2 (en) * 2018-06-22 2022-11-22 Gas Technology Institute Hydro-turbine drive methods and systems for application for various rotary machineries

Also Published As

Publication number Publication date
JPH0336128B2 (en) 1991-05-30

Similar Documents

Publication Publication Date Title
CN108005743B (en) A kind of cold synergy of contraction with pressure without pump organic Rankine cycle power generation system
US5186013A (en) Refrigerant power unit and method for refrigeration
RU2320879C1 (en) Coaxial-face thermal tube engine
BRPI0418895B1 (en) Heat cycle system
CN104420903B9 (en) Air cooling unit
CA2155654A1 (en) Method and apparatus for cooling hot fluids
ITMI941519A1 (en) METHOD AND APPARATUS FOR INCREASING THE POWER PRODUCED BY GAS TURBINE
US4081966A (en) Solar operated closed system power generator
JPS6033281Y2 (en) Power generation refrigeration equipment
JPS61223204A (en) Heat pipe type generating device
US5566751A (en) Vented vapor source
Dambly et al. The Organic Rankine Cycle for Geothermal Power Generation
EP2300769B1 (en) A device and method for transport heat
CA1283549C (en) Heat pipe having a turbine built therein and apparatus using same
JP2000509122A (en) Power generation system using fluid
KR20230038736A (en) Multi-temperature heat pump for thermal energy storage
JPH0252081B2 (en)
JPH01232175A (en) Geothermal usable power converter
JPH10311207A (en) Mercury power generating device
JPH01259767A (en) Geothermal power generation device
JPH0438883B2 (en)
TW201520500A (en) Heat exchanger with preheating and evaporating functions and heat cycle system and method using the same
JPH11182804A (en) Heat energy transporting method through open type heat pipe
JPS60119306A (en) Heat pipe power plant
JP2011522209A (en) Thermodynamic cycle with power unit and venturi tube and method for obtaining useful effects using the same