JP2002115981A - Heat-carrying device - Google Patents

Heat-carrying device

Info

Publication number
JP2002115981A
JP2002115981A JP2000316849A JP2000316849A JP2002115981A JP 2002115981 A JP2002115981 A JP 2002115981A JP 2000316849 A JP2000316849 A JP 2000316849A JP 2000316849 A JP2000316849 A JP 2000316849A JP 2002115981 A JP2002115981 A JP 2002115981A
Authority
JP
Japan
Prior art keywords
heat
container
heating
container wall
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000316849A
Other languages
Japanese (ja)
Inventor
Atsushi Suzuki
敦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000316849A priority Critical patent/JP2002115981A/en
Publication of JP2002115981A publication Critical patent/JP2002115981A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a heat-carrying device for indicating specific heat-carrying performance regardless of the operating posture of a container while improving the heat-carrying capacity with a simple configuration. SOLUTION: In a loop-like closed container that has at least one flow direction regulation means 4 while working fluid 5 reduces its sectional area to the extent that a container section is blocked by the surface tension, a heat- insulating section container wall 2 is inserted between a heating section container wall 1 and a heating section container wall 3, and the heat diffusion from the heating section container wall 1 to the surrounding is inhibited, thus maintaining the heat flux of the heating container and accelerating the generation of bumping of the working fluid and hence the circulation of the working fluid 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱輸送装置に係
り、特に、電機・電子機器より生じる大量の発熱を発熱
源から離れた位置に輸送して冷却流体と熱交換させる冷
却装置等に利用される熱輸送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer device, and more particularly to a heat transfer device for transferring a large amount of heat generated by electric or electronic equipment to a position distant from a heat source and exchanging heat with a cooling fluid. Heat transfer device.

【0002】[0002]

【従来の技術】従来の熱輸送装置としては、例えば特公
平6−3354号公報に記載されているように、細管の
両端末が機密にかつ連通状態に相互接続されてループが
形成され、ループ内を作動液がその表面張力によりコン
テナ内を充填閉塞したまま循環するように細径化されて
あることを第1の構成要素とし、ループ型コンテナには
複数の受熱部と放熱部が配設されてあることを第2の構
成要素とし、作動液の循環経路には少なくとも2個の流
れ方向規制手段が配設されてあることを第3の構成要素
とするものがある。
2. Description of the Related Art As a conventional heat transport device, for example, as described in Japanese Patent Publication No. 6-3354, a loop is formed by connecting both terminals of a thin tube in a confidential and communicating manner. The first component is that the inside of the container is circulated while the working fluid is filled and closed by the surface tension due to its surface tension, and the loop type container is provided with a plurality of heat receiving parts and a heat radiating part. In some cases, the second component is defined as having been performed, and the third component is configured such that at least two flow direction regulating means are disposed in the circulation path of the hydraulic fluid.

【0003】[0003]

【発明が解決しようとする課題】かかる熱輸送装置によ
れば、複数の受熱部と放熱部が配設されることが必要で
ある。一方通常の熱輸送装置においては受熱部および放
熱部はそれぞれ1個所の場合がほとんどである。このよ
うな場合に本熱輸送装置を適用するためには、前記細管
コンテナが受熱部と放熱部の間を多数蛇行する必要があ
ることから、必然的に複雑なものとなり、熱輸送装置が大
きくならざるを得ないものとなっていた。
According to such a heat transport device, it is necessary to provide a plurality of heat receiving portions and heat radiating portions. On the other hand, in a general heat transport device, the heat receiving portion and the heat radiating portion are each generally one. In order to apply the present heat transport device in such a case, the thin tube container needs to meander a lot between the heat receiving portion and the heat radiating portion, so that it becomes inevitably complicated, and the heat transport device becomes large. It had to be.

【0004】本発明の目的は、熱輸送装置において、簡単
な構成で作動流体の循環を促進することで熱輸送能力を
向上させるとともに、作動姿勢の影響を受けにくい熱輸
送装置を得ることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat transport device which has a simple structure and promotes circulation of a working fluid to improve heat transport capability and is less affected by an operating posture. .

【0005】[0005]

【課題を解決するための手段】上記目的は、気液二相状
態で満たされた作動流体の液相が表面張力によってコン
テナ断面を閉塞させる程度まで断面積を小さくしたルー
プ状の密閉コンテナと、コンテナ内に1個以上の流れ方
向規制手段からなり、コンテナが、加熱部および放熱部
とが熱伝導率の大きいコンテナ側壁から構成され、加熱
部と放熱部との間に断熱部を設ける構成とすることによ
り達成される。
The object of the present invention is to provide a loop-shaped closed container having a cross-sectional area reduced to such an extent that the liquid phase of a working fluid filled in a gas-liquid two-phase state closes the container cross-section due to surface tension. A container comprising at least one flow direction regulating means in the container, wherein the container comprises a heating portion and a heat radiating portion formed by a container side wall having a large thermal conductivity, and a heat insulating portion is provided between the heating portion and the heat radiating portion. It is achieved by doing.

【0006】[0006]

【発明の実施の形態】以下、図1乃至図4に基づいて本
発明の実施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0007】まず図1を用いて、本発明による熱輸送装
置の第一実施例を説明する。図1は本発明の熱輸送装置
の構成図である。本実施例における熱輸送装置の密閉コ
ンテナは、発熱体6から発生する熱を吸収する加熱部コ
ンテナ壁1と、加熱部コンテナ壁1から吸収した熱を外
部へ放熱するための放熱部コンテナ壁3と、これら加熱
部コンテナ壁1および放熱部コンテナ壁3の間にそれぞ
れ挿入される2つの断熱部コンテナ壁2a、2bがそれぞ
れ連結されて閉ループを形成するように構成される。こ
こで加熱部コンテナ壁1および放熱部コンテナ壁3は、
コンテナ内外で熱の授受を行うため、その材料には例え
ばアルミや銅といった良熱伝導材を用いる。一方断熱部
コンテナ壁2a、2bは特に加熱部コンテナ壁1からの
流路軸方向への熱拡散を防止するために設けられてお
り、少なくとも他のコンテナ壁に対して一桁程度小さい
熱伝導率を有する断熱部材を用いる。
First, a first embodiment of the heat transport device according to the present invention will be described with reference to FIG. FIG. 1 is a configuration diagram of the heat transport device of the present invention. The closed container of the heat transport device in the present embodiment includes a heating unit container wall 1 for absorbing heat generated from the heating element 6 and a radiating unit container wall 3 for radiating the heat absorbed from the heating unit container wall 1 to the outside. And two heat-insulating-portion container walls 2a and 2b inserted between the heating-portion container wall 1 and the heat-dissipating-portion container wall 3 are connected to each other to form a closed loop. Here, the heating unit container wall 1 and the heat radiating unit container wall 3
In order to transfer heat inside and outside the container, a good heat conductive material such as aluminum or copper is used as the material. On the other hand, the heat insulating portion container walls 2a and 2b are provided particularly to prevent heat diffusion from the heating portion container wall 1 in the flow channel axial direction, and have a heat conductivity that is at least one order of magnitude smaller than other container walls. Is used.

【0008】また、このループ状コンテナの内部空間に
は、作動流体の循環方向を規制するための逆止弁4aお
よび4bが挿入されている。図1において、逆止弁4
a、4bは共に、時計周り方向に作動流体が循環するこ
とを許すように配設されている。コンテナの断面形状は
円形である。そして、その直径は最大でもコンテナ内部
に封入される作動流体5の液相5bが表面張力によって
コンテナ断面を閉塞するプラグを形成できる限界程度ま
でに制限される。この直径は使用する作動流体の種類は
表面処理によっても異なるが、その概算値は界面形状の
支配方程式を解くことで以下のように求められる。
[0008] Check valves 4a and 4b for regulating the circulating direction of the working fluid are inserted into the inner space of the loop-shaped container. In FIG. 1, the check valve 4
Both a and 4b are arranged to allow the working fluid to circulate clockwise. The cross-sectional shape of the container is circular. The diameter of the plug is limited to a level at which the liquid phase 5b of the working fluid 5 sealed in the container can form a plug that closes the cross section of the container due to surface tension. This diameter varies depending on the type of working fluid used depending on the surface treatment, but its approximate value can be obtained as follows by solving the governing equation for the interface shape.

【0009】管内径<1.94×(表面張力/(重力加
速度×(液相密度−気相密度))) 加熱部は円形断面を有している。また、一般に発熱体は
直方体の形状を有している。そのため、発熱体のコンテ
ナへの取り付け性を改善するために、直方体の形状をし
た加熱ブロック7が、加熱部コンテナ壁1に熱的に接続
される。発熱体6は、この加熱ブロック7上に熱的に接
続されて配設される。
Pipe inner diameter <1.94 × (surface tension / (gravity acceleration × (liquid phase density−gas phase density))) The heating section has a circular cross section. In general, the heating element has a rectangular parallelepiped shape. Therefore, in order to improve the attachment of the heating element to the container, the heating block 7 having a rectangular parallelepiped shape is thermally connected to the heating unit container wall 1. The heating element 6 is disposed on the heating block 7 so as to be thermally connected thereto.

【0010】放熱部は、一般に加熱部に対して大きい表
面積を有するように配設される。さらに、放熱能力を向
上させるため、本実施例では、例えば冷却水等が通水さ
れる放熱ブロック8が、放熱部コンテナ壁3と熱的に接
続されて配設される。従って、本実施例では、発熱体6
から発生した熱は、放熱部コンテナ壁3および放熱ブロ
ック8を介して周囲外気あるいは放熱ブロック8に通水
される冷却流体へ放熱される。
The heat radiating section is generally arranged so as to have a large surface area with respect to the heating section. Furthermore, in this embodiment, in order to improve the heat radiation capability, a heat radiation block 8 through which, for example, cooling water or the like is passed is provided so as to be thermally connected to the heat radiation part container wall 3. Therefore, in the present embodiment, the heating element 6
Is radiated through the heat radiating part container wall 3 and the heat radiating block 8 to the ambient air or the cooling fluid flowing through the heat radiating block 8.

【0011】次に、本熱輸送装置の動作について説明す
る。本熱輸送装置の吸熱源から放熱源の熱輸送は、以下
に示す4つの状態変化が連続的に行われることにより熱
輸送を実現するものである。
Next, the operation of the heat transport device will be described. The heat transport from the heat absorbing source to the heat radiating source of the present heat transport device realizes the heat transport by continuously performing the following four state changes.

【0012】等容変化 加熱コンテナ壁1に対し、熱を加えることで加熱部コン
テナ壁に位置する作動流体の液相5bは、ほぼ同体積の
まま圧力および温度が増加していく。ここで、通常の密
閉2相サーモサイフォンでは、加えられた熱によって液
相からの蒸発が促進され、容器内部の圧力および温度が
一様に上昇していく。しかし、本熱輸送装置の場合にお
ける気液界面は、表面張力が支配しているため蒸発が抑
制され、液相は容積をほぼ一定としつつ、蒸気圧曲線から
定義される飽和温度に対してさらに高い温度(過熱度)
で存在する準安定状態となる。
When the heat is applied to the heating container wall 1, the pressure and the temperature of the liquid phase 5b of the working fluid located on the heating unit container wall increase while keeping the same volume. Here, in a normal closed two-phase thermosiphon, evaporation from the liquid phase is promoted by the applied heat, and the pressure and temperature inside the container are uniformly increased. However, at the gas-liquid interface in the case of the present heat transport device, evaporation is suppressed because the surface tension is dominant, and the liquid phase is kept substantially constant in volume, and further with respect to the saturation temperature defined from the vapor pressure curve. High temperature (superheat)
And a metastable state exists.

【0013】等圧等温変化 で示した液相5bにおいて過熱度が増すと、液相内部
において蒸発を生じるに十分な高エネルギ分子が一個所
に集まる確率が増し、十分多数の活性分子が集まって一
塊になると気泡5aが液内に発生する。発生した気泡5
aは、加熱部コンテナ内で急成長する。以下、この蒸発
現象を「突沸」と称する。逆止弁4aが半時計周り方向
への成長を阻止するため、結果として気泡5aは時計周
り方向へ成長していく。
When the degree of superheat increases in the liquid phase 5b indicated by the isothermal isothermal change, the probability that high-energy molecules sufficient to cause evaporation inside the liquid phase increase at one location, and a sufficiently large number of active molecules collect When the lump is formed, bubbles 5a are generated in the liquid. Generated air bubbles 5
a grows rapidly in the heating section container. Hereinafter, this evaporation phenomenon is referred to as “bumping”. Since the check valve 4a prevents the growth in the counterclockwise direction, as a result, the bubble 5a grows in the clockwise direction.

【0014】断熱膨張変化 で発生した気泡5aは、成長速度が速いため、相変化
の結果としての成長が終了してからも、さらに慣性によ
って膨張しようとする。この際の膨張仕事によってコン
テナ内に充填されている作動流体の液相5bは、時計周
りに移動し、その一部は逆止弁4aを通過して加熱部ブ
ロック壁に最充填される。
Since the growth rate of the bubbles 5a generated by the adiabatic expansion change is high, the bubbles 5a tend to expand further by inertia even after the growth as a result of the phase change ends. The liquid phase 5b of the working fluid filled in the container by the expansion work at this time moves clockwise, and part of the liquid phase 5b passes through the check valve 4a and is refilled to the wall of the heating unit block.

【0015】等圧等温変化 において断熱膨張した気泡5aは、放熱部にて冷却さ
れることで凝縮が生じる。気泡5aはこの凝縮によりそ
の体積を縮小していく。この際に放熱部ブロック内では
反時計周り方向への循環力が発生する可能性があるが、
逆止弁4bがこれを阻止する。
The bubbles 5a which have been adiabatically expanded during the isothermal isothermal change are condensed by being cooled in the radiator. The volume of the bubble 5a is reduced by the condensation. At this time, there is a possibility that a circulating force in the counterclockwise direction may be generated in the radiator block,
The check valve 4b prevents this.

【0016】以上からまでの状態変化を1サイクル
として、加熱部コンテナ壁1に加えられた熱が放熱部コ
ンテナ壁3から出ていくという、熱輸送機構を形成す
る。なお、以上の動作は重力を利用する部分がないた
め、本構成は、加熱部を放熱部に対して上部に配置す
る。いわゆる、トップヒートモードでの熱輸送が可能な
構成である。
With the above-described state change as one cycle, a heat transport mechanism is formed in which heat applied to the heating unit container wall 1 flows out of the heat radiating unit container wall 3. Note that, in the above operation, since there is no portion that utilizes gravity, in this configuration, the heating unit is disposed above the heat radiation unit. This is a configuration that enables heat transport in a so-called top heat mode.

【0017】以上までの動作で実用上特に重要となるの
は、加熱部コンテナ壁1における突沸を安定して発生さ
れることにある。そのためには、加熱部コンテナ壁内表
面の熱流束(熱密度)を常に突沸が発生しやすいしきい値
以上に制御することが必要である。本実施例では、これ
を実現するために加熱部コンテナ壁1と放熱部コンテナ
壁3との間に断熱部コンテナ壁2を挿入している。すな
わち、この断熱部コンテナ壁がない場合には発熱体から
発生する熱が、加熱部コンテナ壁を介して放熱部コンテ
ナ壁に熱伝導により拡散する。このため、結果として、
加熱部コンテナ内表面から作動流体へ伝わる熱流束が小
さいなってしまい、突沸の周期が長くなったり、突沸の
発生が不安定になったり、場合によっては突沸が停止す
る要因となっていた。
What is particularly important practically in the above operation is that bumping in the heating unit container wall 1 is stably generated. For that purpose, it is necessary to always control the heat flux (heat density) on the inner surface of the heating unit container wall to a threshold value or more at which bumping easily occurs. In this embodiment, in order to realize this, the heat insulating part container wall 2 is inserted between the heating part container wall 1 and the heat radiating part container wall 3. That is, when there is no heat insulating part container wall, the heat generated from the heating element diffuses by heat conduction to the heat radiating part container wall via the heating part container wall. Because of this,
The heat flux transmitted from the inner surface of the heating unit container to the working fluid becomes small, so that the period of bumping becomes longer, the occurrence of bumping becomes unstable, and in some cases, bumping stops.

【0018】これに対して、本実施例では、加熱部コン
テナ壁から周囲へ漏洩する熱が抑制されるため、熱流束
は安定した値を維持できる。このため、結果として突沸
は短い周期で安定して発生することができる。なお、加
熱部コンテナ壁での温度差は断熱部コンテナ壁が無い場
合と比較して大きくなるが、本来良熱伝導部材を用いて
いるため、その割合は前述した突沸促進による熱輸送能
力の向上効果と比較すると無視できる程度である。以上
述べた通り、本実施例の構成によって熱輸送装置全体と
しての熱輸送能力を向上することが可能となる。
On the other hand, in the present embodiment, since the heat leaking from the heating unit container wall to the surroundings is suppressed, the heat flux can be maintained at a stable value. As a result, bumping can be stably generated in a short cycle. The temperature difference between the heating part container wall and the heat insulation part container wall is larger than that without the heat insulation part container wall. It is negligible compared to the effect. As described above, the configuration of the present embodiment makes it possible to improve the heat transport capability of the entire heat transport device.

【0019】次に、図2を用いて、本発明による熱輸送
装置の第二実施例を説明する。本装置は、第一実施例に
対し、さらに安定かつ低周期の突沸を発生させるため
に、加熱部コンテナ壁1の内表面近傍で熱流束を増加さ
せる構成を示している。具体的には加熱部コンテナ壁1
の内表面に複数の断熱部9を設けて熱流束を局所的に増
加させた。この場合、断熱部9は内表面に対し離散的に
配置することから熱流の縮流による放熱部コンテナ壁内
部での温度上昇分は、同一面積で断熱部が1個所に配置
される場合と比較してより小さく押さえることができる
ものである。
Next, a second embodiment of the heat transport device according to the present invention will be described with reference to FIG. This apparatus is different from the first embodiment in that the heat flux is increased near the inner surface of the heating unit container wall 1 in order to generate more stable and low-period bumping. Specifically, the heating unit container wall 1
The heat flux was locally increased by providing a plurality of heat insulating portions 9 on the inner surface of the. In this case, since the heat insulating portion 9 is discretely arranged on the inner surface, the temperature rise inside the heat radiating portion container wall due to the contraction of the heat flow is compared with the case where the heat insulating portion is arranged at one place in the same area. It can be kept smaller.

【0020】次に、図3を用いて、本発明による熱輸送
装置の第三実施例を説明する。本装置は、第一実施例に
対し、断熱部コンテナ壁2の一部を用いて加熱部コンテ
ナ壁1の内表面を覆うことで、局所的に熱流束を増加さ
せた。これにより、第一実施例に対し、さらに安定かつ
低周期の突沸を発生させることで熱輸送能力をさらに向
上させることが可能になると同時に、第二実施例と比較
してより簡素な構成で熱流束の制御が可能である。
Next, a third embodiment of the heat transport device according to the present invention will be described with reference to FIG. This apparatus locally increased the heat flux by covering the inner surface of the heating unit container wall 1 using a part of the heat insulating unit container wall 2 in the first embodiment. As a result, it is possible to further improve the heat transport ability by generating bumps having a more stable and low cycle than in the first embodiment, and at the same time, to achieve a heat flow with a simpler configuration compared to the second embodiment. Bundle control is possible.

【0021】次に、図4を用いて、本発明による熱輸送
装置の第四実施例を説明する。本装置は、第三実施例に
対し、加熱部コンテナ壁1から見て作動流体が流入して
くる側の断熱部コンテナ壁2aのコンテナ直径を加熱部
コンテナ壁1の直径よりも小さくした。この構成によっ
て突沸時に発生気泡が反時計周りに成長することが抑制
されるため、第一実施例における逆止弁4aを省略する
ことが可能となり、装置がより簡素化するという効果が
ある。
Next, a fourth embodiment of the heat transport device according to the present invention will be described with reference to FIG. In this device, the container diameter of the heat insulating part container wall 2a on the side where the working fluid flows in from the heating part container wall 1 is smaller than the diameter of the heating part container wall 1 as compared with the third embodiment. With this configuration, the generated bubbles are prevented from growing counterclockwise during bumping, so that the check valve 4a in the first embodiment can be omitted, and the device is more simplified.

【0022】[0022]

【発明の効果】本発明の熱輸送装置によれば、作動流体
のサイクル動作から取り出すことのできる動力を利用
し、さらに熱伝導率の加熱コンテナ部の熱流束を制御す
ることで突沸を安定に発生させるため、装置全体として
の熱輸送能力が著しく向上する。また、本熱輸送装置の
作動は重力の影響をほとんど受けないため機器の設計自
由度を飛躍的に向上させる。さらに本装置は外部動力を
必要とせず、流れ方向規制手段以外の可動部がないこと
から、高い信頼性が確保可能であり、かつこれを安価に
供給することが可能となる。
According to the heat transport device of the present invention, the power that can be extracted from the cycle operation of the working fluid is used, and the heat flux of the heating container portion having a thermal conductivity is controlled to stabilize bumping. Because of this, the heat transport capacity of the entire apparatus is significantly improved. In addition, since the operation of the heat transport device is hardly affected by gravity, the degree of freedom in designing equipment is greatly improved. Further, the present apparatus does not require external power and has no movable parts other than the flow direction regulating means, so that high reliability can be ensured and it can be supplied at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施例における熱輸送装置の構成
図である。
FIG. 1 is a configuration diagram of a heat transport device according to a first embodiment of the present invention.

【図2】本発明の第二実施例における熱輸送装置の加熱
部およびその周辺部品の構成図である。
FIG. 2 is a configuration diagram of a heating unit of a heat transport device and peripheral components thereof according to a second embodiment of the present invention.

【図3】本発明の第三実施例における熱輸送装置の加熱
部およびその周辺部品の構成図である。
FIG. 3 is a configuration diagram of a heating unit of a heat transport device and its peripheral parts according to a third embodiment of the present invention.

【図4】本発明の第四実施例における熱輸送装置の加熱
部およびその周辺部品の構成図である。
FIG. 4 is a configuration diagram of a heating unit of a heat transport device and its peripheral parts according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…加熱コンテナ壁、2…断熱コンテナ壁、3…放熱コン
テナ壁、4…逆止弁、5a…作動流体(気相)、5b…作
動流体(液相)、6…発熱体、7…加熱ブロック、 8…放熱ブロック、9…断熱壁、10…コンテナ。
DESCRIPTION OF SYMBOLS 1 ... Heating container wall, 2 ... Heat insulation container wall, 3 ... Heat dissipation container wall, 4 ... Check valve, 5a ... Working fluid (gas phase), 5b ... Working fluid (liquid phase), 6 ... Heating element, 7 ... Heating Block: 8: heat dissipation block, 9: heat insulation wall, 10: container.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】気液二相状態で満たされた作動流体の液相
が表面張力によってコンテナ断面を閉塞させる程度まで
断面積を小さくしたループ状の密閉コンテナと、コンテ
ナ内に1個以上の流れ方向規制手段を備えた熱輸送装置
において、前記コンテナが、加熱部及び放熱部とが熱伝
導率の大きいコンテナ側壁で構成され、前記加熱部と放
熱部の間に断熱部を備えたことを特徴とする熱輸送装
置。
1. A closed container in the form of a loop having a cross-sectional area reduced to such an extent that a liquid phase of a working fluid filled in a gas-liquid two-phase state closes a cross section of the container by surface tension, and one or more flows in the container. In the heat transport device provided with a direction regulating means, the container is configured such that a heating section and a heat radiating section are formed by a container side wall having a large thermal conductivity, and a heat insulating section is provided between the heating section and the heat radiating section. And heat transport equipment.
【請求項2】前記断熱部は作動流体が接触する加熱部コ
ンテナの内表面の一部に設けたことを特徴とする請求項
1に記載の熱輸送装置。
2. The heat transport device according to claim 1, wherein the heat insulating portion is provided on a part of the inner surface of the heating portion container with which the working fluid contacts.
【請求項3】前記断熱部は加熱部を挟んで2つも受けら
れ、その1つの断熱コンテナ壁の流路断面積が、それ以
外のコンテナ壁の濡れぶち長さよりも小さいことを特徴
とする請求項1に記載の熱輸送装置。
3. The heat insulation part is received two with the heating part interposed therebetween, and the flow path cross-sectional area of one heat insulation container wall is smaller than the wetting length of the other container walls. Item 2. The heat transport device according to Item 1.
JP2000316849A 2000-10-12 2000-10-12 Heat-carrying device Pending JP2002115981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000316849A JP2002115981A (en) 2000-10-12 2000-10-12 Heat-carrying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000316849A JP2002115981A (en) 2000-10-12 2000-10-12 Heat-carrying device

Publications (1)

Publication Number Publication Date
JP2002115981A true JP2002115981A (en) 2002-04-19

Family

ID=18795738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000316849A Pending JP2002115981A (en) 2000-10-12 2000-10-12 Heat-carrying device

Country Status (1)

Country Link
JP (1) JP2002115981A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7108400B2 (en) 2003-09-04 2006-09-19 Seiko Epson Corporation Light source unit and projector
US7360903B2 (en) 2003-09-01 2008-04-22 Seiko Epson Corporation Light source device, method for manufacturing light source device, and projection type display apparatus
JP2012225622A (en) * 2011-04-22 2012-11-15 Panasonic Corp Cooling device, electronic apparatus with the same, and electric vehicle
JP2013055355A (en) * 2012-11-20 2013-03-21 Panasonic Corp Cooling device and electronic apparatus including the same
US9074825B2 (en) 2007-09-28 2015-07-07 Panasonic Intellectual Property Management Co., Ltd. Heatsink apparatus and electronic device having the same
TWI601930B (en) * 2014-09-04 2017-10-11 Fujitsu Ltd Heat transfer equipment and electronic machines

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7360903B2 (en) 2003-09-01 2008-04-22 Seiko Epson Corporation Light source device, method for manufacturing light source device, and projection type display apparatus
CN100426134C (en) * 2003-09-01 2008-10-15 精工爱普生株式会社 Light source device, method for manufacturing light source device, and projection type display apparatus
US7108400B2 (en) 2003-09-04 2006-09-19 Seiko Epson Corporation Light source unit and projector
US9074825B2 (en) 2007-09-28 2015-07-07 Panasonic Intellectual Property Management Co., Ltd. Heatsink apparatus and electronic device having the same
JP2012225622A (en) * 2011-04-22 2012-11-15 Panasonic Corp Cooling device, electronic apparatus with the same, and electric vehicle
JP2013055355A (en) * 2012-11-20 2013-03-21 Panasonic Corp Cooling device and electronic apparatus including the same
TWI601930B (en) * 2014-09-04 2017-10-11 Fujitsu Ltd Heat transfer equipment and electronic machines

Similar Documents

Publication Publication Date Title
JP2859927B2 (en) Cooling device and temperature control device
US7886816B2 (en) Intelligent cooling method combining passive and active cooling components
JP4978401B2 (en) Cooling system
JP2013509709A (en) Passive cabinet cooling
JP2007115917A (en) Thermal dissipation plate
JP2007263427A (en) Loop type heat pipe
JP5874935B2 (en) Flat plate cooling device and method of using the same
JP2007010211A (en) Cooling device of electronics device
US20190041143A1 (en) Heat dissipation system using single-phase, supercritical fluid
JP2013242111A (en) Loop type heat pipe and electronic apparatus
JP5304479B2 (en) Heat transport device, electronic equipment
JP2002115981A (en) Heat-carrying device
JP2005229102A (en) Heatsink
JP2006202798A (en) Heat sink
JP2017083050A (en) Cooling device and electronic equipment mounting the same
JPWO2016129044A1 (en) Cooling device and electronic equipment
JP7233336B2 (en) Boiling heat transfer member, cooler with boiling heat transfer member, and cooling device with boiling heat transfer member
JP3695892B2 (en) Loop type heat pipe
US4884627A (en) Omni-directional heat pipe
JPH06257969A (en) Loop type heat pipe
JP2011096983A (en) Cooling device
WO2005098336A1 (en) Evaporator, themosiphon, and stirling cooling chamber
KR100439530B1 (en) Isothermal heat spreader for an electronic machine radiation
KR102247062B1 (en) Cooling device
KR100365730B1 (en) Cooling apparatus and its cooling method for multipchip module