JP4382892B2 - Flat heat pipe and manufacturing method thereof - Google Patents

Flat heat pipe and manufacturing method thereof Download PDF

Info

Publication number
JP4382892B2
JP4382892B2 JP25935598A JP25935598A JP4382892B2 JP 4382892 B2 JP4382892 B2 JP 4382892B2 JP 25935598 A JP25935598 A JP 25935598A JP 25935598 A JP25935598 A JP 25935598A JP 4382892 B2 JP4382892 B2 JP 4382892B2
Authority
JP
Japan
Prior art keywords
heat pipe
heat
wick
plate material
flat heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25935598A
Other languages
Japanese (ja)
Other versions
JP2000074579A (en
Inventor
勝 大海
順二 素谷
良夫 石田
秋美 首藤
貴志 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP25935598A priority Critical patent/JP4382892B2/en
Publication of JP2000074579A publication Critical patent/JP2000074579A/en
Application granted granted Critical
Publication of JP4382892B2 publication Critical patent/JP4382892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular

Description

【0001】
【発明の属する技術分野】
本発明は、ウィックが空洞部内に配置された扁平ヒートパイプに関する。
【0002】
【従来の技術】
近年、パソコン等の電気機器に搭載されている半導体素子等の発熱部品の冷却技術が注目されている。その一つの方法としてヒートパイプを応用した冷却技術がある。ヒートパイプを用いた冷却方法として、ヒートパイプを発熱部品に取り付け、そのヒートパイプを経路として発熱部品の熱を放熱用のフィン等まで運んで放散させる形態が代表的である。またそのフィン等に強制的に送風する小型ファンを設置した電気機器もある。
【0003】
ヒートパイプについて簡単に説明すると、ヒートパイプは内部に密封された空洞部を備えており、その空洞部に水、代替フロン等の作動流体(作動液ともいう)が一定量収容されているものである。空洞部内は真空引きされており、作動流体の蒸発が起きやすくなっている。作動流体は空洞部内で液相と気相(蒸気)の混在状態となって存在している。
【0004】
ヒートパイプは空洞部内の作動流体が蒸発し、その蒸気が移動することで熱移動機能が作動する。例えば直状タイプのヒートパイプの場合、その一端部側から熱を与えると(その部分をヒートパイプの吸熱部と呼ぶ)、その吸熱部において液相状態であった作動流体が蒸発し、その蒸気は他方端側に移動し、そこで蒸気が凝縮して放熱する(その部分をヒートパイプの放熱部と呼ぶ)。ヒートパイプの放熱部にはフィン等を取り付けておけば、作動流体の蒸気が有していた熱が外部に放散されやすくなる。
【0005】
ところで放熱部で凝縮した作動流体が吸熱部へ戻らなければ、上述の作動は継続しない。そこで放熱部で凝縮した作動流体(の液相)を吸熱部に帰還(還流)させる必要がある。通常は、吸熱部を放熱部より下方に位置させることで、放熱部で凝縮した作動流体の液相を重力によって下降させている。尚、このような状態をボトムヒートモードと呼ぶこともある。
【0006】
放熱部を吸熱部より上方に配置できない場合は、重力作用による作動流体の還流が期待できない。そこでヒートパイプの空洞部内に毛細管作用を発現するウィック(メッシュやワイヤー等)を配置したり、空洞部内壁に微細な溝を形成したりする方法が知られている。尚、放熱部が吸熱部より下方に位置している場合をトップヒートモードと呼ぶ場合がある。放熱部が吸熱部とほぼ水平に位置している場合も重力作用による作動流体の還流が期待されにくいため、このような場合も、ウィックを配置したりすることが多い。
【0007】
【発明が解決しようとする課題】
近年は、パソコン等の電気機器の小型化、高性能化が著しく、それに搭載されるCPU、MPU等の発熱部品を冷却するための冷却機構の小型化、省スペース化が強く望まれている。従ってヒートパイプを用いた冷却機構の場合、そのヒートパイプの細径化も要求されることになる。
【0008】
そこで例えば外径3mm程度の細いヒートパイプが実用化され、既にそれがパソコン等の冷却機構に適用されている。しかし、パソコン等の筐体内のスペースの都合等により、その細い径のヒートパイプを更に潰して、断面を略扁平形状にしたヒートパイプ(扁平ヒートパイプ)を用いる場合もある。
【0009】
ところでヒートパイプを用いる利点の一つは、発熱部品の箇所と、その熱の放熱箇所(フィンを配置したりする箇所)との距離をある程度長くできる点にある。つまり、例えばCPUやMPU等の発熱部品は、パソコン本体内部の外壁付近ではなく、そこから離れた位置に配置される場合が多いが、このような場合において、ヒートパイプを経由させることで、発熱部品の熱をフィンやファンが配置されるパソコン本体の外壁付近に効率的に運ぶことができるのである。
【0010】
一方、携帯型のパソコン等の場合、その小型化、軽量化が望まれるので、CPU、MPU等の発熱部品が搭載される本体部も、その形状が薄型化される傾向にある。このため、発熱部品の冷却機構に用いられるヒートパイプは、その吸熱部と放熱部とが概ね水平に位置するようになる場合も多い。またパソコン等の使用形態によっては、ヒートパイプがトップヒートモードになる場合もあり得る。このような事情から、パソコン等の機器に用いられるヒートパイプにはウィックをを挿入したり、空洞部内壁に微細な溝を形成したりする場合が多い。
【0011】
しかしヒートパイプがある程度長いと、作動流体の還流経路が長くなるため、上述した空洞部内壁に溝を形成したものでは、その毛細管作用が不足する場合がある。一方、空洞部内にウィックを配置したヒートパイプであっても、特に細径の扁平ヒートパイプの場合、その空洞部断面積が小さいため、作動流体の蒸気が高速化し、その蒸気と逆方向に移動すべき作動流体の液相の移動が妨げられやすくなる。特に厚さが1.5mm以下程度の薄型の扁平ヒートパイプの場合、この傾向が著しくなる傾向がある。
【0012】
作動流体の還流が不十分であると、いわゆるドライアウト現象が起きたりして、そのヒートパイプによる熱移動が停止あるいは性能低下が起きるので問題である。このような事情から、細径の扁平ヒートパイプの場合であっても、作動流体の還流が十分に維持され優れた特性が発現する扁平ヒートパイプの開発が望まれていた。
【0013】
【課題を解決するための手段】
本発明は、上述したような課題を踏まえ、作動流体の還流が十分に維持される優れた扁平ヒートパイプを提供すべくなされたものである。
即ち本発明の扁平ヒートパイプは薄型であり、空洞部の横断面形状が扁平であるコンテナと、前記コンテナ内に挿入され、前記空洞部の長手方向と同等の長さを有し、その長手方向に凹み部が1つ形成された板材と、その凹み部に挿入配置されたウィックとを有する、という構成のものである。
【0014】
前記凹み部は、前記空洞部内の略中央部に位置するように前記板材に形成したものであると良い。また前記板材には、複数の穴または切り欠きを設けておくと良い。本発明の板材としては銅製のものが好ましい。
【0015】
上述の本発明の扁平ヒートパイプ(薄型のもの)の製造方法として、長手方向に沿った凹み部を形成した板材の前記凹み部にウィックを挿入しその板材を略円形形状を有するコンテナ素管内に挿入する工程、前記コンテナ素管をヒートパイプ化する工程、ヒートパイプ化した前記コンテナ素管に扁平加工を施す工程、を有する製造方法を提案する。
【0016】
また、長手方向に沿った凹み部を形成した板材の前記凹み部にウィックを挿入し、その板材を略円形形状を有するコンテナ素管内に挿入する工程、前記コンテナ素管に扁平加工を施す工程、前記コンテナをヒートパイプ化する工程、を有する、扁平ヒートパイプの製造方法を提案する。
【0017】
【発明の実施の形態】
図1は本発明の扁平ヒートパイプの製造工程の一部を模式的に示す説明図である。
先ずヒートパイプのコンテナとなるべきコンテナ素管30(銅パイプ)を用意する。このパイプ30内にウィックを挿入するが、その際、長手方向に沿った凹み部が形成された板材20を用意し、その凹み部にウィック10を配置して、その板材20ごとコンテナ素管30に挿入する(図1(ア))。
【0018】
長手方向に沿った凹み部が形成された板材の例を図2に幾つか挙げておく。図2(ア)は略コ字型に曲げた板材20で、同(イ)の板材21はその略コ字型の開口側を狭めた形状のもの、同(ウ)の板材22は凹み部の角を丸めた形状のもの、である。もちろん、板材の形状としてはその他の形態のものでもよい。図2に示す例は、いずれもその板材に穴または切り欠きを設けている。
【0019】
図1に示した例では、図2(ア)に図示した形状のものを用いている。さて板材20の凹み部にウィック10を挿入して、その板材20ごとコンテナ素管30に挿入する。ウィック10は例えば金属細線を編んだもの(編組と呼ばれることもある)や、金属細線を束ねたものを適用すれば良い。図4には金属細線を編んだ形態のウィック(図4(ア))、金属細線を束ねた形態のウィック(図4(イ))を模式的に示してある。
【0020】
コンテナ素管30にウィック10ごと板材20を挿入後、そのコンテナ素管30に洗浄、作動流体の注入、脱気、両端部の溶接封止等の工程(ヒートパイプ化)を施してヒートパイプを得る。
【0021】
次いで図1(ア)に示すように、そのヒートパイプ化したコンテナ素管30にプレス加工等の扁平加工を施して図1(イ)に示すような扁平ヒートパイプ3を得る。
【0022】
この板材20は、上記扁平加工の際、ウィック10がコンテナ素管30の一定の位置(この場合はほぼ中央部)に保持させる役割を奏している。つまり、扁平加工を施して扁平ヒートパイプ3を得る際、ウィック10がその扁平ヒートパイプ3の空洞部の長手方向の全長に渡り、実質的に中央部に保持された状態となっている。このように、ウィック10を扁平ヒートパイプ3の空洞部の長手方向の全長に渡り、実質的に中央部に配置させることが、板材20の適用によって簡易に実現できる。
【0023】
尚、上記の例では、作動流体の注入、脱気、両端部の溶接封止等のヒートパイプ化工程を経てから、コンテナ素管30に扁平加工を施しているが、扁平加工はヒートパイプ化工程に先立って行っても構わない。
【0024】
この本発明の扁平ヒートパイプ3の作動試験を行ってみると、例え吸熱部が放熱部の下方に位置しない場合(水平配置またはトップヒートモード)でも、作動流体の還流が高く維持され優れた熱輸送特性を実現していることが判った。
【0025】
上述した本発明の扁平ヒートパイプが、トップヒートモード或いは吸熱部と放熱部とが実質水平配置の場合でも、優れた熱移動特性が維持された理由を、本発明者らは次のように推察する。
図3を参照しながら説明する。扁平ヒートパイプ3の空洞部31内に配置されるウィック10は、板材20(穴や切り込みの図示は省略してある)により、扁平ヒートパイプ3のほぼ全長に渡り、ほぼ中央部に配置されるようになっている。この空洞部31内には図示しないが、作動流体も収容されている。
【0026】
図3に示すようにウィック10が空洞部31のほぼ中央部に、この扁平ヒートパイプの実質全長に渡り配置されているので、主に作動流体の液相が移動する還流経路と、主に作動流体の蒸気が移動する部分(ウィック10以外の空洞部内空間)とが、ほぼ一定位置に区分されている。従って、作動流体の蒸気の流れに逆行する作動流体の液相の移動が、蒸気により妨げられにくくなる。このような事情が本発明において、トップヒートモード或いは吸熱部と放熱部とが実質水平配置の場合でも、優れた熱移動特性が維持されたメカニズムであると本発明者らは推察する。
【0027】
尚、ウィック10は必ずしも空洞部31の中央部に配置されなくても良い。例えば空洞部31の端に寄せて配置しても良い。いずれにしても、扁平ヒートパイプ3のほぼ全長に渡り、蒸気流路31とウィック10の部分がお互いの干渉が少なくなるように区分されていることが大切である。
【0028】
これに対し従来の扁平ヒートパイプの場合は、実用的には空洞部内に配置されたウィックが乱れやすくなっている。この点を図5、6を参照しながら説明する。
図5の例は、スパイラル状に巻いたスパイラルテープ51の弾性力によって、ワイヤーウィック50をパイプ40内の内壁に沿って配置し、そのパイプ40を潰して扁平した場合を示している。しかしこの例の場合、潰す工程において、ワイヤー50が乱れて乱雑になってしまいやすい。また図6の例は、メッシュ52をパイプ40の内壁に沿うように配置し、それを潰して扁平にしたものであるが、この場合も同様に扁平加工の際、メッシュ52が乱れやすい。
【0029】
図5、6に示す従来の例のように、ワイヤーウィック50やメッシュ52が乱れると、ウィック部分と蒸気流路の部分が入り乱れてしまう。特に細径の扁平ヒートパイプの場合、作動流体蒸気の移動が高速化しやすいので、作動流体蒸気によりウィック表面の作動流体液相が飛散させられる等の現象が起きやすいと思われる。このようなことが、作動流体の還流を不十分にさせていた原因と思われる。
【0030】
ところで図2に示した板材20〜22に多数の穴や切り欠き(スリット)を設けた意味について簡単に説明しておく。このような穴や切り欠きは必須ではないが、扁平ヒートパイプに組み込んだ際、板材20〜22における、作動流体の蒸気の通気性を確保している意味の他、その扁平ヒートパイプをある程度曲げて使用したりする場合、板材20〜22がより曲がりやすくなる、という意味もある。板材が曲がりやすくなっていれば、扁平ヒートパイプの空洞部内での、その板材の凹み部のずれの発生がある程度抑制でき望ましい。
【0031】
【実施例】
本発明の実施の形態は上述した例に限られるものではないが、ここでは図1、2に示した例について実施例を説明する。
コンテナ素管30として銅製で外径6mm、肉厚0.25mmのものを用いた。板材20としては、銅製の厚さ0.25mmの板に多数の穴と切り欠き(スリット)を形成したものを用いた。この板材20の凹み部に線径0.1mmの金属線を多数本束ねたウィック10(両端部には図示しないが、金属線のばらけ防止の処理をしている)を挿入した。
【0032】
板材20をコンテナ素管30に挿入後、このコンテナ素管30をヒートパイプ化して(作動流体は水)、更に図示する矢印方向にプレス加工をして厚さ1mmまで潰した。こうして得られた扁平ヒートパイプ3(長さは200mm程度)を水平に置いて、その一方の端部から50mm部分を加熱、他方側を冷却放熱させたところ、8Wまでは加熱部と放熱部の温度差が非常に小さく維持できた。同様の試験を従来のヒートパイプで試みた結果と比べても数倍の熱輸送特性が実現していることが判った。
【0033】
【発明の効果】
以上のように本発明の扁平ヒートパイプとその製造方法は、作動流体の還流が十分に維持され、優れた熱移動特性が実現するものである。
【図面の簡単な説明】
【図1】本発明の扁平ヒートパイプの製造工程の一部を模式的に示す説明図である。
【図2】本発明の板材の例を示す説明図である。
【図3】本発明の扁平ヒートパイプの例の一部断面図である。
【図4】本発明に用いるウィックの例を示す説明図である。
【図5】従来の扁平ヒートパイプの製造工程の一部を模式的に示す説明図である。
【図6】従来の扁平ヒートパイプの製造工程の一部を模式的に示す説明図である。
【符号の説明】
10 ウィック
20 板材
21 板材
22 板材
3 扁平ヒートパイプ
30 コンテナ素管
31 空洞部
50 ワイヤーウィック
51 スパイラルテープ
52 メッシュ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flat heat pipe in which a wick is disposed in a cavity.
[0002]
[Prior art]
In recent years, cooling technology for heat-generating components such as semiconductor elements mounted on electric devices such as personal computers has attracted attention. One method is a cooling technique using a heat pipe. A typical cooling method using a heat pipe is a mode in which a heat pipe is attached to a heat generating component, and heat of the heat generating component is carried to a heat radiating fin or the like through the heat pipe as a path to dissipate. There is also an electric device in which a small fan that forcibly blows air to the fins is installed.
[0003]
Briefly describing the heat pipe, the heat pipe has a hollow portion sealed inside, and a certain amount of working fluid (also referred to as hydraulic fluid) such as water or alternative chlorofluorocarbon is contained in the hollow portion. is there. The inside of the cavity is evacuated so that the working fluid is easily evaporated. The working fluid exists in a mixed state of a liquid phase and a gas phase (vapor) in the cavity.
[0004]
In the heat pipe, the working fluid in the cavity evaporates, and the heat transfer function is activated by the movement of the vapor. For example, in the case of a straight type heat pipe, when heat is applied from one end side thereof (this part is referred to as a heat absorption part of the heat pipe), the working fluid that is in a liquid phase in the heat absorption part evaporates, and the vapor Moves to the other end, where the vapor condenses and dissipates heat (this portion is called the heat dissipating part of the heat pipe). If fins or the like are attached to the heat radiating portion of the heat pipe, the heat of the working fluid vapor is easily dissipated to the outside.
[0005]
By the way, if the working fluid condensed in the heat radiating part does not return to the heat absorbing part, the above-described operation is not continued. Therefore, it is necessary to return (reflux) the working fluid (liquid phase) condensed in the heat radiating section to the heat absorbing section. Usually, the liquid phase of the working fluid condensed in the heat dissipation part is lowered by gravity by positioning the heat absorption part below the heat dissipation part. Such a state may be referred to as a bottom heat mode.
[0006]
When the heat dissipating part cannot be arranged above the heat absorbing part, the working fluid cannot be recirculated by the gravitational action. Therefore, there are known methods of disposing a wick (mesh, wire, etc.) that develops a capillary action in the cavity of the heat pipe or forming a fine groove on the inner wall of the cavity. In addition, the case where the heat radiating part is located below the heat absorbing part may be referred to as a top heat mode. Even when the heat dissipating part is positioned substantially horizontally with the heat absorbing part, it is difficult to expect the working fluid to recirculate due to the gravity action. In such a case, a wick is often disposed.
[0007]
[Problems to be solved by the invention]
In recent years, electrical devices such as personal computers have been remarkably downsized and improved in performance, and downsizing and space saving of a cooling mechanism for cooling heat-generating components such as CPU and MPU mounted thereon are strongly desired. Therefore, in the case of a cooling mechanism using a heat pipe, it is required to reduce the diameter of the heat pipe.
[0008]
Therefore, for example, a thin heat pipe having an outer diameter of about 3 mm has been put into practical use and has already been applied to a cooling mechanism such as a personal computer. However, depending on the space in the housing of a personal computer or the like, a heat pipe (flat heat pipe) in which the thin diameter heat pipe is further crushed to have a substantially flat cross section may be used.
[0009]
By the way, one of the advantages of using a heat pipe is that the distance between the location of the heat generating component and the heat radiation location (location where fins are arranged) can be increased to some extent. In other words, for example, the heat generating parts such as CPU and MPU are often arranged not in the vicinity of the outer wall inside the personal computer body but in a position away from them, but in such a case, heat is generated by passing through the heat pipe. The heat of the parts can be efficiently transferred to the vicinity of the outer wall of the PC main body where the fins and fans are arranged.
[0010]
On the other hand, in the case of a portable personal computer or the like, since it is desired to reduce its size and weight, the shape of the main body portion on which heat generating components such as a CPU and MPU are mounted tends to be thinned. For this reason, the heat pipe used for the cooling mechanism of the heat-generating component often has its heat absorbing portion and heat radiating portion positioned substantially horizontally. Further, depending on the usage form of a personal computer or the like, the heat pipe may be in a top heat mode. For these reasons, a wick is often inserted into a heat pipe used in a device such as a personal computer or a fine groove is formed on the inner wall of the cavity.
[0011]
However, if the heat pipe is long to some extent, the return path of the working fluid becomes long. Therefore, in the case where the groove is formed on the inner wall of the cavity, the capillary action may be insufficient. On the other hand, even in the case of a heat pipe with a wick in the cavity, especially in the case of a flat heat pipe with a small diameter, the cross-sectional area of the cavity is small, so the steam of the working fluid becomes faster and moves in the opposite direction to the steam The movement of the liquid phase of the working fluid to be performed is likely to be hindered. In particular, in the case of a thin flat heat pipe having a thickness of about 1.5 mm or less, this tendency tends to be remarkable.
[0012]
If the working fluid is not sufficiently recirculated, a so-called dry-out phenomenon may occur, and heat transfer by the heat pipe stops or performance degradation occurs. Under such circumstances, even in the case of a thin flat heat pipe, it has been desired to develop a flat heat pipe that sufficiently maintains the reflux of the working fluid and exhibits excellent characteristics.
[0013]
[Means for Solving the Problems]
The present invention has been made in view of the above-described problems, and is intended to provide an excellent flat heat pipe that sufficiently maintains the reflux of the working fluid.
That is, the flat heat pipe of the present invention is thin, the container having a flat cross-sectional shape of the cavity portion, and inserted into the container, has a length equivalent to the longitudinal direction of the cavity portion, and its longitudinal direction. It has the structure of having a plate material in which one dent portion is formed and a wick inserted and arranged in the dent portion.
[0014]
The recessed portion may be formed in the plate material so as to be positioned at a substantially central portion in the hollow portion. The plate material may be provided with a plurality of holes or notches. The plate material of the present invention is preferably made of copper.
[0015]
As a manufacturing method of the flat heat pipe ( thin type) of the present invention described above, a wick is inserted into the concave portion of the plate material in which the concave portion along the longitudinal direction is formed, and the plate material is placed in a container base tube having a substantially circular shape. The manufacturing method which has the process of inserting, the process of converting the said container base pipe into a heat pipe, and the process of flattening the said container base pipe converted into a heat pipe is proposed.
[0016]
Further, a step of inserting a wick into the concave portion of the plate material formed with a concave portion along the longitudinal direction, and inserting the plate material into a container base tube having a substantially circular shape, a step of flattening the container base tube, The manufacturing method of the flat heat pipe which has the process of making the said container into a heat pipe is proposed.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an explanatory view schematically showing a part of the manufacturing process of the flat heat pipe of the present invention.
First, a container pipe 30 (copper pipe) to be a heat pipe container is prepared. A wick is inserted into the pipe 30. At this time, a plate member 20 having a recess formed along the longitudinal direction is prepared, the wick 10 is arranged in the recess, and the container base tube 30 together with the plate member 20 is arranged. (Fig. 1 (a)).
[0018]
Some examples of the plate material in which the recesses along the longitudinal direction are formed are given in FIG. FIG. 2A shows a plate material 20 bent into a substantially U shape. The plate material 21 of FIG. 2A has a shape in which the opening side of the substantially U shape is narrowed, and the plate material 22 of FIG. It has a shape with rounded corners. Of course, the plate material may have other forms. In any of the examples shown in FIG. 2, holes or notches are provided in the plate material.
[0019]
In the example shown in FIG. 1, the one having the shape shown in FIG. Now, the wick 10 is inserted into the recess of the plate member 20, and the plate member 20 is inserted into the container base tube 30. The wick 10 may be, for example, a braided metal thin wire (sometimes called a braid) or a bundle of thin metal wires. FIG. 4 schematically shows a wick in the form of knitted metal wires (FIG. 4A) and a wick in the form of bundled metal wires (FIG. 4A).
[0020]
After inserting the plate material 20 together with the wick 10 into the container base 30, the container base 30 is subjected to processes (heat pipe formation) such as cleaning, injection of working fluid, degassing, and welding sealing at both ends. obtain.
[0021]
Next, as shown in FIG. 1A, the container pipe 30 formed into a heat pipe is subjected to flat processing such as press processing to obtain a flat heat pipe 3 as shown in FIG.
[0022]
The plate member 20 plays a role in which the wick 10 is held at a fixed position (in this case, substantially the central portion) of the container base tube 30 during the flattening. That is, when the flat heat pipe 3 is obtained by performing the flat processing, the wick 10 is substantially held in the central portion over the entire length of the hollow portion of the flat heat pipe 3 in the longitudinal direction. As described above, the wick 10 can be easily arranged by being applied to the plate member 20 over the entire length in the longitudinal direction of the hollow portion of the flat heat pipe 3 in the central portion.
[0023]
In the above example, the container base tube 30 is flattened after undergoing a heatpipe process such as injection of working fluid, deaeration, and welding sealing at both ends. It may be performed prior to the process.
[0024]
When the operation test of the flat heat pipe 3 of the present invention is performed, even when the heat absorbing portion is not located below the heat radiating portion (horizontal arrangement or top heat mode), the working fluid is maintained at a high reflux and has excellent heat. It was found that the transport characteristics were realized.
[0025]
In the above-described flat heat pipe of the present invention, even when the top heat mode or the heat absorbing portion and the heat radiating portion are substantially horizontally arranged, the present inventors infer the reason why the excellent heat transfer characteristics are maintained as follows. To do.
This will be described with reference to FIG. The wick 10 disposed in the hollow portion 31 of the flat heat pipe 3 is disposed at a substantially central portion over the substantially entire length of the flat heat pipe 3 by the plate material 20 (holes and cuts are not shown). It is like that. Although not shown, the working fluid is also accommodated in the cavity 31.
[0026]
As shown in FIG. 3, the wick 10 is arranged in the substantially central portion of the hollow portion 31 over the substantially entire length of the flat heat pipe. A portion where the vapor of the fluid moves (a space in the cavity other than the wick 10) is divided into substantially constant positions. Therefore, the movement of the liquid phase of the working fluid that goes against the flow of the working fluid vapor is less likely to be hindered by the steam. In the present invention, the inventors speculate that such a situation is a mechanism in which excellent heat transfer characteristics are maintained even when the top heat mode or the heat absorbing portion and the heat radiating portion are substantially horizontally arranged.
[0027]
The wick 10 does not necessarily have to be arranged at the center of the cavity 31. For example, it may be arranged close to the end of the cavity 31. In any case, it is important that the steam flow path 31 and the wick 10 are divided so as to reduce mutual interference over almost the entire length of the flat heat pipe 3.
[0028]
On the other hand, in the case of the conventional flat heat pipe, the wick disposed in the cavity is easily disturbed practically. This point will be described with reference to FIGS.
The example of FIG. 5 shows a case where the wire wick 50 is arranged along the inner wall in the pipe 40 by the elastic force of the spiral tape 51 wound in a spiral shape, and the pipe 40 is crushed and flattened. However, in the case of this example, in the crushing step, the wire 50 is likely to be disturbed and messy. In the example of FIG. 6, the mesh 52 is arranged along the inner wall of the pipe 40, and is crushed and flattened. In this case as well, the mesh 52 is easily disturbed during flattening.
[0029]
If the wire wick 50 and the mesh 52 are disturbed as in the conventional example shown in FIGS. 5 and 6, the wick portion and the steam flow path portion are disturbed. In particular, in the case of a flat heat pipe with a small diameter, the movement of the working fluid vapor is likely to be accelerated, and it is likely that a phenomenon such as the working fluid liquid phase on the wick surface being scattered by the working fluid vapor is likely to occur. This seems to be the cause of the insufficient reflux of the working fluid.
[0030]
By the way, the meaning which provided many holes and notches (slits) in the board | plate materials 20-22 shown in FIG. 2 is demonstrated easily. Such holes and notches are not essential, but when assembled in a flat heat pipe, the plate 20 to 22 has a bend of the flat heat pipe to some extent in addition to ensuring the vapor permeability of the working fluid. When used, there is also a meaning that the plate members 20 to 22 are more easily bent. If the plate material is easy to bend, it is desirable that the occurrence of the deviation of the recess portion of the plate material in the hollow portion of the flat heat pipe can be suppressed to some extent.
[0031]
【Example】
Although the embodiment of the present invention is not limited to the above-described example, the example will be described with respect to the example shown in FIGS.
The container base tube 30 was made of copper and had an outer diameter of 6 mm and a wall thickness of 0.25 mm. As the board | plate material 20, what formed many holes and notches (slits) in the copper-made board of thickness 0.25mm was used. A wick 10 in which a large number of metal wires having a wire diameter of 0.1 mm were bundled (not shown at both ends, but processing for preventing the metal wires from being scattered) was inserted into the recesses of the plate material 20.
[0032]
After inserting the plate material 20 into the container base tube 30, the container base tube 30 was formed into a heat pipe (the working fluid was water), and further pressed in the direction of the arrow shown in the figure to be crushed to a thickness of 1 mm. The flat heat pipe 3 (with a length of about 200 mm) obtained in this way was placed horizontally, the 50 mm portion was heated from one end, and the other side was cooled and dissipated. The temperature difference could be kept very small. It was found that several times the heat transport characteristics were realized compared to the result of a similar test conducted with a conventional heat pipe.
[0033]
【The invention's effect】
As described above, the flat heat pipe and the manufacturing method thereof according to the present invention sufficiently maintain the reflux of the working fluid and realize excellent heat transfer characteristics.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing a part of a manufacturing process of a flat heat pipe of the present invention.
FIG. 2 is an explanatory view showing an example of a plate material of the present invention.
FIG. 3 is a partial cross-sectional view of an example of a flat heat pipe of the present invention.
FIG. 4 is an explanatory diagram showing an example of a wick used in the present invention.
FIG. 5 is an explanatory view schematically showing a part of a manufacturing process of a conventional flat heat pipe.
FIG. 6 is an explanatory view schematically showing a part of a manufacturing process of a conventional flat heat pipe.
[Explanation of symbols]
10 Wick 20 Plate Material 21 Plate Material 22 Plate Material 3 Flat Heat Pipe 30 Container Base 31 Cavity 50 Wire Wick 51 Spiral Tape 52 Mesh

Claims (6)

空洞部の横断面形状が扁平であるコンテナと、前記コンテナ内に挿入され、前記空洞部の長手方向と同等の長さを有し、その長手方向に凹み部が1つ形成された板材と、その凹み部に挿入配置されたウィックとを有する、薄型の扁平ヒートパイプ。A container having a flat cross-sectional shape of the cavity, and a plate member inserted into the container, having a length equivalent to the longitudinal direction of the cavity, and having one recess in the longitudinal direction; A thin flat heat pipe having a wick inserted and disposed in the recess. 前記凹み部は、前記空洞部内の略中央部に位置するように前記板材に形成したものである、請求項1に記載の薄型の扁平ヒートパイプ。The thin flat heat pipe according to claim 1, wherein the recess is formed in the plate material so as to be positioned at a substantially central portion in the cavity. 前記板材には、複数の穴または切り欠きが設けられている、請求項1または請求項2記載の薄型の扁平ヒートパイプ。The thin flat heat pipe according to claim 1 or 2 , wherein the plate member is provided with a plurality of holes or notches. 前記板材は銅製である、請求項1〜3のいずれかに記載の薄型の扁平ヒートパイプ。The thin flat heat pipe according to claim 1, wherein the plate material is made of copper. 請求項1〜4のいずれかに記載の薄型の扁平ヒートパイプを製造する方法であって、長手方向に沿った凹み部を形成した板材の前記凹み部にウィックを挿入しその板材を略円形形状を有するコンテナ素管内に挿入する工程、前記コンテナ素管をヒートパイプ化する工程、ヒートパイプ化した前記コンテナ素管に扁平加工を施す工程を有する薄型の扁平ヒートパイプの製造方法。 It is a method of manufacturing the thin flat heat pipe in any one of Claims 1-4, Comprising: A wick is inserted in the said dent part of the board | plate material in which the dent part along the longitudinal direction was formed, and the board | plate material is substantially circular shape. A method for producing a thin flat heat pipe, including a step of inserting the container base tube into a heat pipe, a step of converting the container base tube into a heat pipe, and a step of flattening the container base tube into a heat pipe. 請求項1〜4のいずれかに記載の薄型の扁平ヒートパイプを製造する方法であって、長手方向に沿った凹み部を形成した板材の前記凹み部にウィックを挿入し、その板材を略円形形状を有するコンテナ素管内に挿入する工程、前記コンテナ素管に扁平加工を施す工程、前記コンテナをヒートパイプ化する工程、を有する薄型の扁平ヒートパイプの製造方法。 It is a method of manufacturing the thin flat heat pipe in any one of Claims 1-4, Comprising: A wick is inserted in the said dent part of the board | plate material which formed the dent part along a longitudinal direction, The board | plate material is substantially circular. A method for producing a thin flat heat pipe , comprising a step of inserting into a container base pipe having a shape, a step of flattening the container base pipe, and a step of forming the container into a heat pipe .
JP25935598A 1998-08-28 1998-08-28 Flat heat pipe and manufacturing method thereof Expired - Lifetime JP4382892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25935598A JP4382892B2 (en) 1998-08-28 1998-08-28 Flat heat pipe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25935598A JP4382892B2 (en) 1998-08-28 1998-08-28 Flat heat pipe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000074579A JP2000074579A (en) 2000-03-14
JP4382892B2 true JP4382892B2 (en) 2009-12-16

Family

ID=17332969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25935598A Expired - Lifetime JP4382892B2 (en) 1998-08-28 1998-08-28 Flat heat pipe and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4382892B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150176918A1 (en) * 2013-12-24 2015-06-25 Hao Pai Coaxial capillary structure and ultra-thin heat pipe structure having the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7159647B2 (en) * 2005-01-27 2007-01-09 Hul-Chun Hsu Heat pipe assembly
WO2009048225A2 (en) * 2007-10-08 2009-04-16 Cheonpyo Park Evaporator
KR100912914B1 (en) * 2007-10-08 2009-08-20 박천표 Evaporator
CN102538528B (en) * 2011-12-14 2013-10-23 中山伟强科技有限公司 Ultrathin heat pipe and manufacturing method thereof
CN103322842B (en) * 2012-03-23 2015-11-18 富瑞精密组件(昆山)有限公司 Flat hot pipe
JP6049837B1 (en) * 2015-10-28 2016-12-21 株式会社フジクラ Flat heat pipe
US20200064078A1 (en) * 2018-08-21 2020-02-27 The Regents Of The University Of Michigan Canopy Wick For Extreme Heat Transfer And Small Resistance
JPWO2023085350A1 (en) * 2021-11-15 2023-05-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150176918A1 (en) * 2013-12-24 2015-06-25 Hao Pai Coaxial capillary structure and ultra-thin heat pipe structure having the same

Also Published As

Publication number Publication date
JP2000074579A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
JP3146158U (en) Heat dissipation module
JP4043986B2 (en) Heat sink with radiating fin and fixing method of radiating fin
US7665509B2 (en) Heat exchange module for electronic components
US20170234625A1 (en) Heat Pipe
JP4382891B2 (en) Flat heat pipe and manufacturing method thereof
US20050077030A1 (en) Transport line with grooved microchannels for two-phase heat dissipation on devices
JP2001094023A (en) Cooler for electronic device
JP2004096074A (en) Heat sink with integrally formed fin and method of manufacturing the same
JP5323614B2 (en) Heat pipe and manufacturing method thereof
JP4382892B2 (en) Flat heat pipe and manufacturing method thereof
JP2011138974A (en) Heat sink
US20080093055A1 (en) Heat-dissipating structure
JP4297908B2 (en) Cooling device and electronic device
JP4278739B2 (en) Flat heat pipe and manufacturing method thereof
JP2009115346A (en) Heat pipe
JP3113254U (en) heat pipe
JP2009024996A (en) Method of manufacturing heat pipe
JP2010025407A (en) Heat pipe container and heat pipe
JP4128669B2 (en) Flat heat pipe and manufacturing method thereof
US9476652B2 (en) Thin heat pipe structure having enlarged condensing section
JP4969979B2 (en) heatsink
JP2006319334A (en) Combination of fan and heatsink
JP2008185283A (en) Heat pipe
JP2010219085A (en) Heat sink for natural air cooling
JP5624771B2 (en) Heat pipe and heat sink with heat pipe

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

EXPY Cancellation because of completion of term