JP2017009239A - Liquid transport device and heat pipe using the same - Google Patents

Liquid transport device and heat pipe using the same Download PDF

Info

Publication number
JP2017009239A
JP2017009239A JP2015127534A JP2015127534A JP2017009239A JP 2017009239 A JP2017009239 A JP 2017009239A JP 2015127534 A JP2015127534 A JP 2015127534A JP 2015127534 A JP2015127534 A JP 2015127534A JP 2017009239 A JP2017009239 A JP 2017009239A
Authority
JP
Japan
Prior art keywords
fine groove
liquid
heat pipe
width
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015127534A
Other languages
Japanese (ja)
Inventor
暁子 長山
Akiko Nagayama
暁子 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2015127534A priority Critical patent/JP2017009239A/en
Publication of JP2017009239A publication Critical patent/JP2017009239A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid transport device that efficiently transports liquid by using capillary force, and a heat pipe using the same.SOLUTION: A heat pipe 10 moves liquid enclosed in a hollow container 11, to an evaporation part 13 from a condensation part 12 by using capillary force. A plurality of minute grooves 20 that reach the evaporation part 13 from the condensation part 12 are provided in an inside surface 19 of the hollow container 11. The width of the minute grooves 20 is formed so as to become narrower toward the region of the evaporation part 13 from the region of the condensation part 12. The liquid is efficiently moved by the capillary force of the minute grooves 20.SELECTED DRAWING: Figure 1

Description

本発明は、毛細管力を利用して液体を輸送する液体輸送装置及びそれを用いたヒートパイプに関する。 The present invention relates to a liquid transport apparatus that transports a liquid using capillary force and a heat pipe using the same.

小型の電子機器を冷却するためのヒートパイプや、液体のサンプルを送液、分離、混合するマイクロデバイスや、燃料電池が発電中に生成される水を外部に排出する排水機構には、省エネルギーの観点等から、毛細管力を利用して液体を移動させる装置の採用が望ましい。毛細管力を液体を移動させる駆動力とすることで、ポンプやモータ等、外部の駆動源を要さないためである。毛細管力を利用して液体を輸送する具体例については、例えば、特許文献1〜3に記載されている。 Heat pipes for cooling small electronic devices, microdevices that send, separate, and mix liquid samples, and drainage mechanisms that discharge water generated during power generation by the fuel cell to the outside, are energy-saving. From the viewpoint and the like, it is desirable to employ an apparatus that moves the liquid using capillary force. This is because the capillary force is used as a driving force for moving the liquid, so that an external driving source such as a pump or a motor is not required. Specific examples of transporting the liquid using the capillary force are described in Patent Documents 1 to 3, for example.

ところで、毛細管力によって液体を輸送する際には、毛細管(毛細管現象により液体を移動可能な溝も含む)が細くなるほど、毛細管力が大きくなる半面、流動抵抗による圧力損失も大きくなることが知られている。そのため、所定の大きさの液体の輸送力を確保するには、毛細管力に加えて圧力損失も考慮する必要がある。
液体の輸送力が不足すると、例えば、ヒートパイプにおいては、蒸発部でドライアウトが生じて、必要な冷却能力を得られなくなるという問題が発生する。
By the way, when liquid is transported by capillary force, it is known that as the capillary (including a groove capable of moving the liquid by capillary action) becomes thinner, the capillary force increases, but the pressure loss due to flow resistance also increases. ing. For this reason, in order to secure the transportation force of a liquid having a predetermined size, it is necessary to consider pressure loss in addition to capillary force.
When the liquid transport capacity is insufficient, for example, in a heat pipe, there is a problem that dryout occurs in the evaporation section and a necessary cooling capacity cannot be obtained.

特開2001−296093号公報JP 2001-296093 A 特開2003−090688号公報Japanese Patent Laid-Open No. 2003-090688 特開2013−032904号公報JP 2013-032904 A

本発明は、かかる事情に鑑みてなされるもので、毛細管力を利用して液体を効率的に輸送する液体輸送装置及びそれを用いたヒートパイプを提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a liquid transport apparatus that efficiently transports a liquid using capillary force and a heat pipe using the same.

前記目的に沿う第1の発明に係る液体輸送装置は、微細溝内の液体を毛細管力によって移動させる液体輸送装置において、前記微細溝の幅は、下流側に向かって狭くなる。 In the liquid transport apparatus according to the first aspect of the present invention, the liquid transport apparatus moves the liquid in the fine groove by capillary force, and the width of the fine groove becomes narrower toward the downstream side.

第1の発明に係る液体輸送装置において、前記微細溝の濡れ性は、下流側が上流側に比べて高いのが好ましい。 In the liquid transport apparatus according to the first invention, it is preferable that the wettability of the fine groove is higher on the downstream side than on the upstream side.

第1の発明に係る液体輸送装置において、前記微細溝は、下流側で枝分かれしているのが好ましい。 In the liquid transport device according to the first aspect of the present invention, the fine groove is preferably branched on the downstream side.

第1の発明に係る液体輸送装置において、前記微細溝は複数あって、それぞれ平行に形成されているのが好ましい。 In the liquid transport device according to the first aspect of the present invention, it is preferable that there are a plurality of the fine grooves, and each of them is formed in parallel.

前記目的に沿う第2の発明に係るヒートパイプは、中空容器内に封入した液体を、微細溝の毛細管力によって、凝縮部から蒸発部に移動させるヒートパイプにおいて、前記中空容器の内側面には、前記凝縮部から前記蒸発部まで延在する複数の前記微細溝が設けられ、該微細溝の幅は、前記凝縮部の領域から前記蒸発部の領域に向かって狭くなる。 The heat pipe according to the second invention that meets the above-mentioned object is a heat pipe that moves the liquid sealed in the hollow container from the condensing part to the evaporation part by the capillary force of the fine groove. A plurality of the fine grooves extending from the condensing part to the evaporation part are provided, and the width of the fine groove becomes narrower from the condensation part region toward the evaporation part region.

第2の発明に係るヒートパイプにおいて、前記微細溝の濡れ性は、前記蒸発部の領域が前記凝縮部の領域に比べて高いのが好ましい。 In the heat pipe according to the second aspect of the present invention, it is preferable that the wettability of the fine groove is higher in the area of the evaporation section than in the area of the condensation section.

第2の発明に係るヒートパイプにおいて、前記微細溝は、前記蒸発部の領域で枝分かれしているのが好ましい。 In the heat pipe according to the second aspect of the present invention, the fine groove is preferably branched in the region of the evaporation portion.

第1の発明に係る液体輸送装置及び第2の発明に係るヒートパイプは、微細溝の幅が、下流側(蒸発部の領域)に向かって狭くなっているので、効率的に液体を輸送することが可能である。この効果は、種々の検証の結果、確認されている。 In the liquid transport device according to the first invention and the heat pipe according to the second invention, the width of the fine groove is narrowed toward the downstream side (the region of the evaporation section), so that the liquid is transported efficiently. It is possible. This effect has been confirmed as a result of various verifications.

(A)、(B)はそれぞれ、本発明の一実施の形態に係るヒートパイプの縦断面図、及び、同ヒートパイプで用いられるベース板の平面図である。(A), (B) is the longitudinal cross-sectional view of the heat pipe which concerns on one embodiment of this invention, respectively, and the top view of the base board used with the same heat pipe. 同ヒートパイプに設けられた微細溝の説明図である。It is explanatory drawing of the fine groove | channel provided in the heat pipe. 微細溝の拡大平面図である。It is an enlarged plan view of a fine groove. 微細溝の拡大斜視図である。It is an expansion perspective view of a fine groove. (A)、(B)はそれぞれ、溝幅一定の場合、及び、溝幅増減の場合の微細溝の幅と液体の輸送力の関係を示すグラフである。(A), (B) is a graph which shows the relationship between the width | variety of a fine groove | channel, and the liquid transport force in the case where a groove width is constant and the case where a groove width increases / decreases, respectively. 実施例及び比較例それぞれの液体の輸送力を示すグラフである。It is a graph which shows the transport power of the liquid of an Example and each comparative example. 実施例及び比較例それぞれについて、熱流束と有効熱伝導率の計測結果を示すグラフである。It is a graph which shows the measurement result of a heat flux and effective thermal conductivity about an Example and each comparative example.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1(A)、(B)、図2に示すように、本発明の一実施の形態に係るヒートパイプ10は、中空容器11内に封入した液体を、微細溝20の毛細管力によって、凝縮部12から蒸発部13に移動させるものである。以下、詳細に説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1A, 1B, and 2, the heat pipe 10 according to the embodiment of the present invention condenses the liquid sealed in the hollow container 11 by the capillary force of the fine groove 20. It is moved from the unit 12 to the evaporation unit 13. Details will be described below.

中空容器11は、図1(A)、(B)、図2に示すように、矩形状の耐熱ガラス板14及び耐熱ガラス板14の下側に設けられた矩形状のベース板15が、隙間(本実施の形態では、1〜5mm)を有して対向配置されている。耐熱ガラス板14とベース板15の間には、矩形状の枠体16が設けられている。本実施の形態では、枠体16の主成分がシリコンであるが、これに限定されないのは言うまでもない。
上下を耐熱ガラス板14及びベース板15によってそれぞれ覆われ、枠体16によって囲まれた密閉空間17には、液体の一例である純水が封入されている。
As shown in FIGS. 1A, 1 </ b> B, and 2, the hollow container 11 includes a rectangular heat-resistant glass plate 14 and a rectangular base plate 15 provided below the heat-resistant glass plate 14. (1 to 5 mm in this embodiment) and are arranged to face each other. A rectangular frame 16 is provided between the heat-resistant glass plate 14 and the base plate 15. In the present embodiment, the main component of the frame body 16 is silicon, but it goes without saying that the present invention is not limited to this.
Pure water, which is an example of a liquid, is sealed in a sealed space 17 that is covered by the heat-resistant glass plate 14 and the base plate 15 and is surrounded by the frame body 16.

耐熱ガラス板14には、密閉空間17に純水を注入する際に使用された導入部18が設けられている。導入部18は、開口していた挿通部位が、挿通部位を介して、密閉空間17へ純水の注入及び真空ポンプによる密閉空間17の減圧がなされた後に閉じられている。
凝縮部12及び蒸発部13は、前後に長い箱状の中空容器11の密閉空間17内の前側(一側)及び後側(他側)にあり、蒸発部13は外部から熱を吸収する部分として機能し、凝縮部12は外部に放熱する部分として機能する。
The heat-resistant glass plate 14 is provided with an introduction portion 18 used when pure water is injected into the sealed space 17. The introduction portion 18 is closed after the insertion portion that has been opened is injected with pure water into the sealed space 17 and the pressure of the sealed space 17 is reduced by a vacuum pump via the insertion portion.
The condensing unit 12 and the evaporating unit 13 are on the front side (one side) and the rear side (the other side) in the sealed space 17 of the box-shaped hollow container 11 that is long in the front and rear, and the evaporating unit 13 absorbs heat from the outside. The condensing part 12 functions as a part that radiates heat to the outside.

ベース板15の上面(中空容器11の内側面の一例)19には、枠体16で囲まれた矩形領域に、それぞれベース板15の長手方向(前後方向)に沿った複数の微細溝20が平行(複数の微細溝20の中心線が平行)に形成されている。各微細溝20は、凝縮部12から蒸発部13まで延在している。
ベース板15の上面19には、図1(B)、図2に示すように、前後に長い複数の突出片21が平行に形成され、隣り合う突出片21の間に、1つの微細溝20が設けられている。
On the upper surface 19 (an example of the inner surface of the hollow container 11) 19 of the base plate 15, there are a plurality of fine grooves 20 along the longitudinal direction (front-rear direction) of the base plate 15 in a rectangular region surrounded by the frame body 16. They are formed in parallel (the center lines of the plurality of fine grooves 20 are parallel). Each fine groove 20 extends from the condenser 12 to the evaporator 13.
As shown in FIGS. 1B and 2, a plurality of long protruding pieces 21 are formed in parallel on the upper surface 19 of the base plate 15, and one fine groove 20 is provided between adjacent protruding pieces 21. Is provided.

微細溝20及び突出片21は、エッチング加工によって形成されたものであり、突出片21の上部には、図2、図3に示すように、エッチング加工の際にマスクとして機能した窒化膜(Si)22が配されている。ベース板15は、窒化膜22を除き、シリコン(Si)を素材として形成され、水酸化カリウム(KOH)をエッチング液としたエッチング加工によって、上面19に複数の突出片21及び複数の微細溝20が形成されている。
水酸化カリウムの異方性により、微細溝20の断面は、図2に示すように、等脚台形を上下逆にした逆等脚台形状である。
The fine groove 20 and the protruding piece 21 are formed by etching, and a nitride film (Si) functioning as a mask during the etching process is formed on the protruding piece 21 as shown in FIGS. 3 N 4) 22 is arranged. The base plate 15 is formed using silicon (Si) as a raw material except for the nitride film 22, and a plurality of protruding pieces 21 and a plurality of fine grooves 20 are formed on the upper surface 19 by etching using potassium hydroxide (KOH) as an etching solution. Is formed.
Due to the anisotropy of potassium hydroxide, the cross section of the fine groove 20 has a reverse isosceles trapezoidal shape in which the isosceles trapezoid is turned upside down as shown in FIG.

本実施の形態では、微細溝20の深さHが、50〜200μmの範囲の大きさであり、前後方向で一定(実質的に一定)の大きさである。そして、微細溝20の底面に対する突出片21の傾斜角γは54.7°であり、微細溝20の配置ピッチDは100〜800μmであり、微細溝20の幅(本実施の形態では代表長さ)は、1〜500μmである。なお、傾斜角γは、エッチング液や、ベース材の素材等によって、決定されるため、54.7°には限定されない。 In the present embodiment, the depth H of the fine groove 20 is in the range of 50 to 200 μm, and is constant (substantially constant) in the front-rear direction. The inclination angle γ of the protruding piece 21 with respect to the bottom surface of the fine groove 20 is 54.7 °, the arrangement pitch D of the fine grooves 20 is 100 to 800 μm, and the width of the fine grooves 20 (representative length in this embodiment). Is 1 to 500 μm. Note that the inclination angle γ is not limited to 54.7 ° because it is determined by the etching solution, the base material, and the like.

また、各微細溝20は、図3に示すように、後方(下流側)に向かって(即ち、蒸発部13に向かって)、幅が狭くなっている。本実施の形態では、微細溝20の単位長さ当たりの幅の減少率は一定であるが、前後方向で、減少率が異なっていても良い。
このように、微細溝20の深さを、前後方向で一定にし、かつ、微細溝20を、凝縮部12の領域から蒸発部13の領域に向かって狭くする加工は、例えば、上述したエッチング加工により安定的に行うことができる。
Further, as shown in FIG. 3, each fine groove 20 has a narrow width toward the rear (downstream side) (that is, toward the evaporation unit 13). In the present embodiment, the reduction rate of the width per unit length of the fine groove 20 is constant, but the reduction rate may be different in the front-rear direction.
As described above, the process of making the depth of the fine groove 20 constant in the front-rear direction and narrowing the fine groove 20 from the region of the condensation unit 12 toward the region of the evaporation unit 13 is, for example, the above-described etching process. Can be carried out more stably.

微細溝20の幅を、凝縮部12の領域から蒸発部13の領域に向かって狭くしているのは、凝縮部の領域から蒸発部の領域に向かって幅が一定である微細溝に比べ、効率的に液体を移動可能であることが、種々の検証から明らかになったためである。
微細溝20の幅が減少する角度φは、5度以下、好ましくは1度以下、より好ましくは0.3度以下である。これは、減少角φが大きくなると、微細溝20の配置ピッチDを大きくする必要があり、単位面積あたりに設けられる微細溝20の数が減少するため等による。
The width of the fine groove 20 is narrowed from the region of the condensation unit 12 toward the region of the evaporation unit 13 compared to the fine groove whose width is constant from the region of the condensation unit to the region of the evaporation unit. This is because various verifications have revealed that the liquid can be moved efficiently.
The angle φ at which the width of the fine groove 20 decreases is 5 degrees or less, preferably 1 degree or less, more preferably 0.3 degrees or less. This is because, when the reduction angle φ increases, the arrangement pitch D of the fine grooves 20 needs to be increased, and the number of fine grooves 20 provided per unit area decreases.

以下、微細溝20の幅と液体の移動量の関係について説明する。
σを液体の表面張力、θを液体の接触角(微細溝の水平面部に滴下された液体の接線とその水平面部のなす角)、Wを微細溝の幅、hを微細溝の深さとして(図4参照)、微細溝の毛細管力△pcaは、以下の式(1)で示すことができる。
Hereinafter, the relationship between the width of the fine groove 20 and the movement amount of the liquid will be described.
σ is the surface tension of the liquid, θ is the contact angle of the liquid (angle formed by the tangent of the liquid dropped on the horizontal surface of the fine groove and the horizontal surface), W is the width of the fine groove, and h is the depth of the fine groove (See FIG. 4), the capillary force Δp ca of the fine groove can be expressed by the following formula (1).

Figure 2017009239
Figure 2017009239

なお、式中の添字e及び添字cは、それぞれ蒸発部及び凝縮部を意味し、図4に示すように、Wは微細溝の一端(凝縮部の領域で蒸発部の領域から最も離れた部分)の幅を意味し、Wは微細溝の他端(蒸発部の領域で凝縮部の領域から最も離れた部分)の幅を意味する。
式(1)によれば、微細溝の蒸発部の幅が狭いほど、毛細管力が大きくなることが解る。
一方、液体が微細溝を移動するに際して生じる圧力損失は、ほとんどが流動抵抗であると言える。そこで、圧力損失を流動抵抗とみなすと、圧力損失△pは、以下の式(2)で示すことができる。
In addition, the subscript e and the subscript c in the formula mean the evaporation portion and the condensation portion, respectively, and as shown in FIG. 4, W c is one end of the fine groove (in the region of the condensation portion, the furthest away from the evaporation portion region). W e means the width of the other end of the fine groove (the portion farthest from the condensing part region in the evaporation part region).
According to Formula (1), it turns out that capillary force becomes large, so that the width | variety of the evaporation part of a fine groove is narrow.
On the other hand, it can be said that most of the pressure loss caused when the liquid moves through the fine groove is flow resistance. Therefore, when the pressure loss is regarded as the flow resistance, the pressure loss Δp 1 can be expressed by the following equation (2).

Figure 2017009239
Figure 2017009239

式(2)において、μは液体の粘性係数であり、uは液体の平均流速であり、Lは微細溝の長さである。なお、式(2)は、微細溝の幅が、微細溝の長手方向に沿って一定であるとしている。式(2)より、Lが一定であれば、Wが小さい(微細溝の幅が狭い)ほど、液体の圧力損失△pが大きくなると言える。
ここで、微細溝の幅が、図4に示すように、凝縮部から蒸発部に向かって一定の割合で徐々に狭くなるとした場合、圧力損失△pは、以下の式(3)となる。
In equation (2), μ is the viscosity coefficient of the liquid, u is the average flow velocity of the liquid, and L is the length of the fine groove. Equation (2) assumes that the width of the fine groove is constant along the longitudinal direction of the fine groove. From equation (2), if L is constant, the more W is small (narrow width of the fine groove), it can be said that the pressure loss of the liquid △ p l increases.
Here, as shown in FIG. 4, when the width of the fine groove is gradually narrowed at a constant rate from the condensing unit to the evaporating unit, the pressure loss Δp 1 is expressed by the following equation (3). .

Figure 2017009239
Figure 2017009239

式(3)からも、Lが一定であれば、WとWが小さい値であるほど(微細溝の幅が狭いほど)、圧力損失△pが大きくなることが解る。
微細溝による液体の輸送力は、毛細管力△pcaから圧力損失△pを差し引いたものと言えるので、(液体の輸送力)=(毛細管力△pca)−(圧力損失△p)の算出式によって求めることができる。
It can also be seen from equation (3) that if L is constant, the pressure loss Δp 1 increases as W c and W e are smaller (the width of the fine groove is narrower).
Since it can be said that the liquid transport force by the fine groove is obtained by subtracting the pressure loss Δp 1 from the capillary force Δp ca , (liquid transport force) = (capillary force Δp ca ) − (pressure loss Δp 1 ) It can obtain | require by the calculation formula of.

次に、液体が純水であるとして、微細溝の幅が長手方向に沿って不変である場合(以下、「溝幅一定の場合」とも言う)と、微細溝の幅が凝縮部から蒸発部に向かって同じ割合で徐々に変化する(広くなる、あるいは、狭くなる)場合(以下、「溝幅増減の場合」とも言う)とで、毛細管力△pca、圧力損失△p及び液体の輸送力(△pca−△p)をそれぞれ算出した。溝幅一定の場合、式(1)及び式(2)を用いて、毛細管力△pca及び圧力損失△pをそれぞれ算出した。溝幅増減の場合、Wを100μmで固定し、Wを変化させ、式(1)及び式(3)を用いて、毛細管力△pca及び圧力損失△pをそれぞれ算出した。
溝幅一定の場合及び溝幅増減の場合共に、θ=80°、θ=0°としている。
Next, assuming that the liquid is pure water and the width of the fine groove is unchanged along the longitudinal direction (hereinafter also referred to as “the case where the groove width is constant”), the width of the fine groove is changed from the condensing part to the evaporation part. When the pressure gradually changes (widens or narrows) at the same rate (hereinafter also referred to as “increase / decrease in groove width”), the capillary force Δp ca , pressure loss Δp 1, and liquid The transport force (Δp ca −Δp 1 ) was calculated. When the groove width was constant, the capillary force Δp ca and the pressure loss Δp 1 were calculated using the equations (1) and (2). If the groove width increase or decrease, the W e were fixed with 100 [mu] m, by varying the W c, using equation (1) and (3) to calculate capillary force △ p ca and pressure loss △ p l, respectively.
In both cases where the groove width is constant and the groove width is increased or decreased, θ c = 80 ° and θ e = 0 °.

図5(A)のグラフより、溝幅一定の場合、微細溝の幅が50μm以下で、圧力損失△pが毛細管力△pca以上となって、液体の輸送力が零となり、毛細管限界となる。そして、溝幅一定の場合、液体の輸送力は、微細溝の幅が50〜100μmで、微細溝の幅が広くなるのと共に上昇し、微細溝の幅が100μmで最大値となり、微細溝の幅が100μmより広くなるにつれて、緩やかに減少する。 From the graph of FIG. 5 (A), when the groove width constant, the width of the fine groove is in 50μm or less, the pressure loss △ p l is a capillary force △ p ca above, transport capacity of the liquid is next zero, capillary limit It becomes. When the groove width is constant, the liquid transport force increases with the width of the fine groove being 50 to 100 μm, and the width of the fine groove is widened, and becomes the maximum value when the width of the fine groove is 100 μm. As the width becomes wider than 100 μm, it gradually decreases.

一方、図5(B)のグラフより、溝幅増減の場合、Wが50μm以下で、溝幅固定の場合と同様に毛細管限界となり、Wが50μmを超えると、Wが大きくなるのと共に、液体の輸送力が上昇する。Wが大きくなるのに従って液体の輸送力が上昇するのは、微細溝の蒸発部の幅が微細溝の凝縮部の幅より狭くなる、即ち、Wが100μmより大きい領域でも同様であり、この点が、図5(A)、(B)のグラフにおいて異なっている。
従って、溝幅が凝縮部から蒸発部に向かって狭くなる微細溝は、溝幅が一定の微細溝に比べて、液体の輸送力が大きいことが解る。
On the other hand, from the graph of FIG. 5 (B), when the groove width increase or decrease, in W c is 50 [mu] m or less, it becomes capillary limit as in the case of groove width fixed, when W c is more than 50 [mu] m, the W c is increased At the same time, the liquid transport capacity increases. The reason why the liquid transport force increases as W c increases is the same as the width of the evaporation part of the fine groove becomes narrower than the width of the condensation part of the fine groove, that is, even in a region where W c is larger than 100 μm. This point is different in the graphs of FIGS.
Therefore, it is understood that the fine groove whose groove width becomes narrower from the condensing part toward the evaporation part has a larger liquid transporting force than the fine groove having a constant groove width.

また、本実施の形態では、図1(B)に示すように、各微細溝20が途中で枝分かれすることなく形成されているが、微細溝20の代わりに、蒸発部の領域で枝分かれした微細溝を採用してもよい。微細溝の枝分かれした部分においても、下流側に向かって、溝幅が狭くなっているのが好ましい。微細溝を蒸発部の領域で枝分かれさせることで、複数の輸送路を確保でき、1つの微細溝により輸送できる液体量を増加することが可能となる。なお、枝分かれした微細溝においては、枝分かれしていない領域が、他の微細溝の枝分かれしていない領域と平行である。
そして、式(1)より、cosθ>cosθの場合は、cosθ<cosθの場合に比べて、毛細管力が大きくなるため、微細溝20の濡れ性は、蒸発部13の領域が凝縮部12の領域に比べて高いのが好ましい。
Further, in this embodiment, as shown in FIG. 1B, each fine groove 20 is formed without branching in the middle, but instead of the fine groove 20, the fine groove branched in the region of the evaporation portion. A groove may be employed. Even in the branched portion of the fine groove, the groove width is preferably narrower toward the downstream side. By branching the fine groove in the region of the evaporation section, a plurality of transport paths can be secured, and the amount of liquid that can be transported by one fine groove can be increased. In the branched fine groove, the unbranched region is parallel to the unbranched region of the other fine groove.
From Equation (1), when cos θ e > cos θ c , the capillary force is larger than when cos θ e <cos θ c , and therefore, the wettability of the fine groove 20 is reduced in the region of the evaporation portion 13. It is preferably higher than the area of the portion 12.

次に、本発明の一実施の形態に係る液体輸送装置について説明する。液体輸送装置は、図1(A)、(B)及び図2に示すヒートパイプ10における微細溝20が形成されたベース板15であり、微細溝20内の液体を毛細管力によって移動させる装置である。凝縮部12側を上流側、蒸発部13側を下流側として、微細溝20の幅は、上流側から下流側に向かって狭くなっている。 Next, a liquid transport device according to an embodiment of the present invention will be described. The liquid transport device is a base plate 15 in which the fine grooves 20 in the heat pipe 10 shown in FIGS. 1A, 1B, and 2 are formed, and moves the liquid in the fine grooves 20 by capillary force. is there. The width of the fine groove 20 is narrowed from the upstream side toward the downstream side, with the condensation unit 12 side being the upstream side and the evaporation unit 13 side being the downstream side.

液体輸送装置であるベース板15は、ヒートパイプ10においてのみ利用されるものではなく、例えば、サンプル送液のためのデバイスにおいて利用することや、燃料電池で生成される水を排出する排出機構として利用することもできる。
また、液体輸送装置であるベース板15において、微細溝20の濡れ性は、蒸発部13の領域(下流側)が凝縮部12の領域(上流側)に比べて高い。そして、微細溝20の代わりに、蒸発部の領域で枝分かれした微細溝を採用することもできる。
なお、ベース板15では、複数の微細溝20が設けられているが、液体輸送装置が利用される対象によっては、微細溝が1つであってもよい。
The base plate 15 that is a liquid transport device is not used only in the heat pipe 10, but is used in, for example, a device for feeding a sample or as a discharge mechanism that discharges water generated in a fuel cell. It can also be used.
Further, in the base plate 15 that is a liquid transport device, the wettability of the fine groove 20 is higher in the region of the evaporation unit 13 (downstream side) than in the region of the condensation unit 12 (upstream side). Then, instead of the fine groove 20, a fine groove branched in the area of the evaporation portion can be adopted.
In the base plate 15, a plurality of fine grooves 20 are provided. However, one fine groove may be provided depending on an object for which the liquid transport apparatus is used.

以下、本発明の作用効果を確認するために、ヒートパイプを対象に行った実験について説明する。
実験においては、上面の幅15mm、長さ70mmの領域に、深さ100±4μmの33本の微細溝が平行に形成されたベース板を備える第1、第2のヒートパイプを用いて、純水の輸送を行った。
Hereinafter, in order to confirm the effect of this invention, the experiment conducted on the heat pipe is demonstrated.
In the experiment, the first and second heat pipes having a base plate in which 33 fine grooves having a depth of 100 ± 4 μm were formed in parallel in a region having a width of 15 mm and a length of 70 mm on the upper surface were used. Water was transported.

第1のヒートパイプ(実施例)は、各微細溝の幅が、凝縮部から蒸発部に向かって一定の割合で狭くなっており、W=200μm、W=400μmであり、第2のヒートパイプ(比較例)は、微細溝の幅が、微細溝に沿って300μmで一定である。
第1、第2のヒートパイプは、凝縮部の領域と蒸発部の領域の表面処理が異なり、純水の接触角は、第1のヒートパイプがθ=10°、θ=92°であり、第2のヒートパイプが、θ=0°、θ=80°である。なお、第1、第2のヒートパイプにおける純水の接触角は、室温25℃、湿度40RH%の条件下で計測している。
In the first heat pipe (example), the width of each fine groove is narrowed at a constant rate from the condensing part to the evaporation part, and W e = 200 μm, W c = 400 μm, In the heat pipe (comparative example), the width of the fine groove is constant at 300 μm along the fine groove.
The first and second heat pipes have different surface treatments in the condensation area and the evaporation area, and the contact angles of pure water are θ e = 10 ° and θ c = 92 ° for the first heat pipe. Yes, the second heat pipe has θ e = 0 ° and θ c = 80 °. Note that the contact angle of pure water in the first and second heat pipes is measured under conditions of room temperature of 25 ° C. and humidity of 40 RH%.

第1、第2のヒートパイプそれぞれについて、毛細管力△pca、圧力損失△p及び液体の輸送力(△pca−△p)をシミュレーション計測した結果を図6のグラフに示す。図6のグラフでは、第1、第2のヒートパイプを、それぞれCase1、2として示している。θとθの差異は、第1、第2のヒートパイプで2°と小さい(即ち、濡れ性の差は小さい)が、液体の輸送力は、第1のヒートパイプが第2のヒートパイプに比べて約1.7倍と差が大きかった。 The graph of FIG. 6 shows the results of simulation measurement of the capillary force Δp ca , the pressure loss Δp 1, and the liquid transport force (Δp ca −Δp 1 ) for each of the first and second heat pipes. In the graph of FIG. 6, the first and second heat pipes are shown as Cases 1 and 2, respectively. The difference between θ c and θ e is as small as 2 ° between the first and second heat pipes (that is, the difference in wettability is small), but the liquid transport force is that the first heat pipe is the second heat pipe. The difference was about 1.7 times that of the pipe.

また、第1、第2のヒートパイプに対し、凝縮部を、ベース板の下側に取り付けたペルティエ素子で冷却し、蒸発部を、ベース板の下側に取り付けたヒータによって加熱して、中空容器内で熱の移動が生じる状態にした上で、耐熱ガラス板に埋め込んだ11本の熱電対と、蒸発部及び凝縮部に設けた熱流束センサによって、熱量の計測を行い、熱流束と有効熱伝導率の関係を求めた。
求められた熱流束と有効熱伝導率の関係を図7のグラフに示す。図7のグラフにおいて、横軸が熱流束であり、縦軸が有効熱伝導率であり、第1、第2のヒートパイプは、それぞれCase1、2として示されている。
Further, the first and second heat pipes are cooled by a Peltier element attached to the lower side of the base plate, and the evaporation part is heated by a heater attached to the lower side of the base plate to be hollow. After making heat transfer in the container, heat quantity is measured by using 11 thermocouples embedded in a heat-resistant glass plate and heat flux sensors provided in the evaporator and condenser. The relationship of thermal conductivity was obtained.
The relationship between the obtained heat flux and effective thermal conductivity is shown in the graph of FIG. In the graph of FIG. 7, the horizontal axis is the heat flux, the vertical axis is the effective thermal conductivity, and the first and second heat pipes are shown as Cases 1 and 2, respectively.

濡れ性の差が小さい第1、第2のヒートパイプを比較すると、有効熱伝導率の最大値は、第1のヒートパイプが、第2のヒートパイプの約1.5倍となり、第1のヒートパイプが、第2のヒートパイプより、熱伝導率が優れていることが確認された。 When comparing the first and second heat pipes having a small difference in wettability, the maximum value of the effective thermal conductivity is about 1.5 times that of the second heat pipe in the first heat pipe, It was confirmed that the heat pipe is superior in thermal conductivity to the second heat pipe.

以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、ヒートパイプは、中空容器内の内側面全体に微細溝が形成されていてもよい。
また、ヒートパイプの中空容器は、箱状である必要はなく、例えば、縦長のカプセル状であってもよい。
そして、ヒートパイプ及び液体輸送装置において、複数の微細溝は、平行である必要はなく、直線状に形成されている必要もない。
更に、液体輸送装置によって輸送される液体は、純水に限らず、例えば、不凍液であってもよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention.
For example, the heat pipe may have fine grooves formed on the entire inner surface in the hollow container.
Moreover, the hollow container of a heat pipe does not need to be a box shape, For example, a vertically long capsule shape may be sufficient.
In the heat pipe and the liquid transport apparatus, the plurality of fine grooves do not need to be parallel and need not be formed in a straight line.
Furthermore, the liquid transported by the liquid transport apparatus is not limited to pure water, and may be, for example, an antifreeze liquid.

10:ヒートパイプ、11:中空容器、12:凝縮部、13:蒸発部、14:耐熱ガラス板、15:ベース板、16:枠体、17:密閉空間、18:導入部、19:上面、20:微細溝、21:突出片、22:窒化膜 10: Heat pipe, 11: Hollow container, 12: Condensing part, 13: Evaporating part, 14: Heat-resistant glass plate, 15: Base plate, 16: Frame body, 17: Sealed space, 18: Introduction part, 19: Upper surface, 20: fine groove, 21: protruding piece, 22: nitride film

Claims (7)

微細溝内の液体を毛細管力によって移動させる液体輸送装置において、
前記微細溝の幅は、下流側に向かって狭くなることを特徴とする液体輸送装置。
In the liquid transport device that moves the liquid in the fine groove by capillary force,
The width of the fine groove is narrower toward the downstream side.
請求項1記載の液体輸送装置において、前記微細溝の濡れ性は、下流側が上流側に比べて高いことを特徴とする液体輸送装置。 2. The liquid transport apparatus according to claim 1, wherein the wettability of the fine groove is higher on the downstream side than on the upstream side. 請求項1又は2記載の液体輸送装置において、前記微細溝は、下流側で枝分かれしていることを特徴とする液体輸送装置。 3. The liquid transport apparatus according to claim 1, wherein the fine groove is branched on the downstream side. 請求項1又は2記載の液体輸送装置において、前記微細溝は複数あって、それぞれ平行に形成されていることを特徴とする液体輸送装置。 3. The liquid transport apparatus according to claim 1, wherein there are a plurality of the fine grooves, and each of them is formed in parallel. 中空容器内に封入した液体を、微細溝の毛細管力によって、凝縮部から蒸発部に移動させるヒートパイプにおいて、
前記中空容器の内側面には、前記凝縮部から前記蒸発部まで延在する複数の前記微細溝が設けられ、該微細溝の幅は、前記凝縮部の領域から前記蒸発部の領域に向かって狭くなることを特徴とするヒートパイプ。
In the heat pipe that moves the liquid sealed in the hollow container from the condensing part to the evaporation part by the capillary force of the fine groove,
A plurality of the fine grooves extending from the condensing part to the evaporation part are provided on the inner surface of the hollow container, and the width of the fine groove is from the condensation part region toward the evaporation part region. Heat pipe characterized by narrowing.
請求項5記載のヒートパイプにおいて、前記微細溝の濡れ性は、前記蒸発部の領域が前記凝縮部の領域に比べて高いことを特徴とするヒートパイプ。 6. The heat pipe according to claim 5, wherein the wettability of the fine groove is higher in the area of the evaporation section than in the area of the condensation section. 請求項5又は6記載のヒートパイプにおいて、前記微細溝は、前記蒸発部の領域で枝分かれしていることを特徴とするヒートパイプ。
The heat pipe according to claim 5 or 6, wherein the fine groove is branched in a region of the evaporation section.
JP2015127534A 2015-06-25 2015-06-25 Liquid transport device and heat pipe using the same Pending JP2017009239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015127534A JP2017009239A (en) 2015-06-25 2015-06-25 Liquid transport device and heat pipe using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015127534A JP2017009239A (en) 2015-06-25 2015-06-25 Liquid transport device and heat pipe using the same

Publications (1)

Publication Number Publication Date
JP2017009239A true JP2017009239A (en) 2017-01-12

Family

ID=57763198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015127534A Pending JP2017009239A (en) 2015-06-25 2015-06-25 Liquid transport device and heat pipe using the same

Country Status (1)

Country Link
JP (1) JP2017009239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690265A (en) * 2017-07-31 2018-02-13 深圳市嘉姆特通信电子有限公司 Flexible heat sink device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128756A (en) * 1975-05-02 1976-11-09 Mitsubishi Electric Corp Heating pipe
JPH11257882A (en) * 1998-03-12 1999-09-24 Sharp Corp Heat pipe and heat-collecting device
JP2001296093A (en) * 2000-04-13 2001-10-26 Furukawa Electric Co Ltd:The Heat pipe
JP2005291599A (en) * 2004-03-31 2005-10-20 Kobelco & Materials Copper Tube Inc Tube with internal groove for heat pipe and heat pipe
JP2014047979A (en) * 2012-08-31 2014-03-17 Toyota Central R&D Labs Inc Self-excited vibration heat pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128756A (en) * 1975-05-02 1976-11-09 Mitsubishi Electric Corp Heating pipe
JPH11257882A (en) * 1998-03-12 1999-09-24 Sharp Corp Heat pipe and heat-collecting device
JP2001296093A (en) * 2000-04-13 2001-10-26 Furukawa Electric Co Ltd:The Heat pipe
JP2005291599A (en) * 2004-03-31 2005-10-20 Kobelco & Materials Copper Tube Inc Tube with internal groove for heat pipe and heat pipe
JP2014047979A (en) * 2012-08-31 2014-03-17 Toyota Central R&D Labs Inc Self-excited vibration heat pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690265A (en) * 2017-07-31 2018-02-13 深圳市嘉姆特通信电子有限公司 Flexible heat sink device
CN107690265B (en) * 2017-07-31 2024-05-24 深圳市嘉姆特科技有限公司 Flexible heat dissipation device

Similar Documents

Publication Publication Date Title
US20210088288A1 (en) Heat dissipation structure
Yang et al. A novel oxidized composite braided wires wick structure applicable for ultra-thin flattened heat pipes
US8622118B2 (en) Loop heat pipe
US10436520B2 (en) Plate pulsating heat spreader with artificial cavities
US8915293B2 (en) Heat exchanger
ITTV20080145A1 (en) CLOSED OSCILLATING HEAT PIPE SYSTEM IN POLYMERIC MATERIAL
KR101205715B1 (en) Heat spreader with flat plate and manufacturing method thereof
JP6862304B2 (en) heat pipe
JP6169969B2 (en) Cooling device and manufacturing method thereof
TWI633266B (en) Heat pipe
JP5966637B2 (en) Microreactor
TW201842297A (en) Heat pipe
JP2017009239A (en) Liquid transport device and heat pipe using the same
JP4899997B2 (en) Thermal siphon boiling cooler
WO2005043620A1 (en) Cooling device and electronic device
US3598178A (en) Heat pipe
JP5938865B2 (en) Loop heat pipe and electronic device
Mehta et al. Development of flat plate oscillating heat pipe as a heat transfer device
KR100991205B1 (en) A method for Producing working fluid using Non-Metallic of Nanometer-sized and working fluid Thereby, Heat pipe, apparatus for Producing working fluid
JP2013243277A (en) Heat generation element cooling device and cooling method and information equipment
KR101297046B1 (en) Phase change heat transfer system equipped with vapor fin
US10634438B2 (en) Cooling plate and information processing device
JP2016075437A (en) Loop type heat pipe and electronic equipment
JP7476913B2 (en) Pumps, heat pipes
JP2005337701A (en) Cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190820