JP2018204882A - Ebullition cooler - Google Patents

Ebullition cooler Download PDF

Info

Publication number
JP2018204882A
JP2018204882A JP2017111759A JP2017111759A JP2018204882A JP 2018204882 A JP2018204882 A JP 2018204882A JP 2017111759 A JP2017111759 A JP 2017111759A JP 2017111759 A JP2017111759 A JP 2017111759A JP 2018204882 A JP2018204882 A JP 2018204882A
Authority
JP
Japan
Prior art keywords
heat
porous body
metal porous
heat receiving
internal space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017111759A
Other languages
Japanese (ja)
Other versions
JP7022402B2 (en
Inventor
和久 結城
Kazuhisa Yuki
和久 結城
理沙子 木伏
Risako Kibushi
理沙子 木伏
徳幸 海野
Tokuyuki Unno
徳幸 海野
拓哉 井手
Takuya Ide
拓哉 井手
大串 哲朗
Tetsuro Ogushi
哲朗 大串
村上 政明
Masaaki Murakami
政明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lotus Thermal Solution Inc
Tokyo University of Science
Original Assignee
Lotus Thermal Solution Inc
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lotus Thermal Solution Inc, Tokyo University of Science filed Critical Lotus Thermal Solution Inc
Priority to JP2017111759A priority Critical patent/JP7022402B2/en
Publication of JP2018204882A publication Critical patent/JP2018204882A/en
Priority to JP2021109983A priority patent/JP7220434B2/en
Application granted granted Critical
Publication of JP7022402B2 publication Critical patent/JP7022402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

To provide an ebullition cooler including excellent cooling performance, and capable of sufficiently supporting cooling of an inverter in recent electric equipment, electric car, or hybrid vehicle.SOLUTION: A heat transfer wall part 22 corresponding to a position of a heating body 9 of a heat receiving part 2 comprises: an uneven surface 5 having a plurality of recesses 50 extending along an inner wall surface of the heat receiving part 2; and a metal porous body 6 attached to the uneven surface 5 so that at least a part of the recess 50 of the uneven surface 5 is overlapped so as to open toward the internal space, wherein the metal porous body 6 has a plurality of open holes 60 extending in a specific direction formed, one opening 60a of the open hole 60 faces the uneven surface 5, and the other opening 60b is attached so as to open toward the internal space.SELECTED DRAWING: Figure 1

Description

本発明は、冷媒を用いた沸騰冷却装置に関する。   The present invention relates to a boiling cooling device using a refrigerant.

沸騰冷却装置は、冷媒の液体から気体への相変化を利用して発熱体を冷却する装置であり、具体的には、互いに連通した内部空間を備える受熱部と放熱部とを備え、内部に冷媒が封入されるとともに受熱部の外壁面に発熱体が取り付けられ、受熱部の内部に液相状態で貯留された前記冷媒が、相変化により潜熱として放熱部に熱を輸送するものが知られている(例えば、特許文献1参照。)。冷媒の相変化は、受熱部の冷媒に接する内面のうち、主に発熱体の取り付け位置に対応する内面を伝熱面として発泡が生じる沸騰・蒸発により生じる。この沸騰・蒸発が伝熱面(伝熱壁部)において効率よく生じることで、熱伝達率、すなわち発熱体の冷却効率が向上する。   A boiling cooling device is a device that cools a heating element by using a phase change from a liquid of a refrigerant to a gas. Specifically, the boiling cooling device includes a heat receiving portion and a heat radiating portion having internal spaces communicating with each other. It is known that a refrigerant is enclosed and a heating element is attached to the outer wall surface of the heat receiving part, and the refrigerant stored in the liquid phase inside the heat receiving part transports heat to the heat radiating part as latent heat by phase change. (For example, refer to Patent Document 1). The phase change of the refrigerant is caused by boiling / evaporation in which foaming occurs mainly using the inner surface corresponding to the mounting position of the heating element among the inner surfaces of the heat receiving portion in contact with the refrigerant. This boiling / evaporation occurs efficiently on the heat transfer surface (heat transfer wall), thereby improving the heat transfer rate, that is, the cooling efficiency of the heating element.

この伝熱壁部に多数の穴を形成し、凹凸粗面にすることで沸騰・蒸発を促進することも提案されている(例えば、特許文献2、3参照。)。しかしながら、近年は電子機器の小型化と高性能化に伴い、電子機器の発熱密度が急激に上昇しており、より高い冷却効率を有するものが求められている。例えば、現行ハイブリッド車のインバータでは最大発熱密度が300W/cmを超え、循環ポンプを用いた強制流動による冷却方式が採用されている。しかしながらハイブリッド車や電気自動車の電費を下げるためには、本来、モータ以外での電力消費は望ましくなく、もし沸騰冷却装置で対応することができれば、より電費を下げることに貢献できる。 It has also been proposed to promote boiling / evaporation by forming a large number of holes in the heat transfer wall and making it a rough surface (see, for example, Patent Documents 2 and 3). However, in recent years, with the miniaturization and high performance of electronic devices, the heat generation density of electronic devices has rapidly increased, and a device having higher cooling efficiency has been demanded. For example, the inverter of a current hybrid vehicle has a maximum heat generation density exceeding 300 W / cm 2 and adopts a cooling method by forced flow using a circulation pump. However, in order to reduce the power consumption of a hybrid vehicle or an electric vehicle, power consumption other than that of the motor is not desirable, and if it can be handled by a boiling cooling device, it can contribute to lowering the power consumption.

特開2010−196912号公報JP 2010-196912 A 特開2012−13396号公報JP 2012-13396 A 特開2017−15269号公報JP 2017-15269 A

そこで、本発明が前述の状況に鑑み、解決しようとするところは、優れた冷却性能を備え、近年の電子機器や電気自動車又はハイブリッド車のインバータの冷却にも十分に対応できる沸騰冷却装置を提供する点にある。   Therefore, in view of the above-described situation, the present invention intends to provide a boiling cooling device that has excellent cooling performance and can sufficiently cope with cooling of inverters of recent electronic devices, electric vehicles, or hybrid vehicles. There is in point to do.

本発明は、以下の発明を包含する。
(1) 互いに連通した内部空間を備える受熱部と放熱部とを備え、内部に冷媒が封入されるとともに受熱部の外壁面に発熱体が取り付けられ、受熱部の内部に液相状態で貯留された前記冷媒が、相変化により潜熱として放熱部に熱を輸送する沸騰冷却装置であって、前記受熱部の前記発熱体の位置に対応する伝熱壁部に、受熱部の内壁面に沿って延びる複数の凹条を有する凹凸面と、該凹凸面に対し、該凹凸面の前記凹条の少なくとも一部が内部空間に開放された状態で重ねるように取り付けられる金属製多孔体であり、一方向に延びる複数の貫通孔が形成され、該貫通孔の一方の開口が前記凹凸面に対面し、他方の開口が内部空間に開放されるように取り付けられる金属製多孔体とを設けてなることを特徴とする沸騰冷却装置。
The present invention includes the following inventions.
(1) A heat receiving portion and a heat radiating portion each having an internal space communicating with each other, a refrigerant is enclosed inside, and a heating element is attached to the outer wall surface of the heat receiving portion, and stored in a liquid phase state inside the heat receiving portion. The refrigerant is a boiling cooling device that transports heat to the heat radiating portion as latent heat due to phase change, and is arranged along the inner wall surface of the heat receiving portion on the heat transfer wall portion corresponding to the position of the heating element of the heat receiving portion. An uneven surface having a plurality of recesses extending, and a porous metal body attached to the uneven surface so that at least a part of the recesses of the uneven surface is open to the internal space. A plurality of through-holes extending in the direction are formed, and a metal porous body is provided so that one opening of the through-hole faces the uneven surface and the other opening is opened to the internal space. Boiling cooler characterized by.

(2) 前記凹凸面が、平行或いは格子状に延びる複数の前記凹条より構成されており、各凹条の両端部が前記内部空間に開放された状態に、前記金属製多孔体が取り付けられる(1)記載の沸騰冷却装置。   (2) The said uneven surface is comprised from the said several groove | channel extended in parallel or a grid | lattice form, and the said metal porous body is attached in the state by which the both ends of each groove | channel were open | released to the said internal space. (1) The boiling cooling device according to the above.

(3) 前記金属製多孔体が、金属凝固法で成形された一方向に伸びた複数の気孔を有するロータス型ポーラス金属成形体を、気孔の伸びる方向に交差する方向に切断加工したものからなり、前記貫通孔が前記切断により分断された前記気孔である(1)記載の沸騰冷却装置。   (3) The metal porous body is formed by cutting a lotus-type porous metal molded body having a plurality of pores extending in one direction formed by a metal solidification method in a direction intersecting with the direction in which the pores extend. The boiling cooling device according to (1), wherein the through hole is the pore divided by the cutting.

以上にしてなる本願発明に係る沸騰冷却装置によれば、金属製多孔体と凹凸面の凹条の寸法設計によって、金属製多孔体からの沸騰、蒸発の促進、或いは凹凸面の凹条からの沸騰、蒸発の促進の何れかが生じることになる。金属製多孔体からの沸騰、蒸発が促進される場合は、金属製多孔体の上部(或いは凹条の開放部)から蒸気が排出されるとともに、凹凸面の凹条(或いは金属製多孔体)を通じて冷媒液が自発的に金属製多孔体へ供給され、当該金属製多孔体からの沸騰、蒸発が持続的に促進される。また、凹条からの沸騰、蒸発が促進される場合は、当該凹条の開放部(或いは金属製多孔体)から蒸気が排出されるとともに、金属製多孔体の貫通孔(或いは凹条の開放部)を通じて冷却液が自発的に凹条へ供給され、当該凹条からの沸騰、蒸発が持続的に促進される。   According to the boiling cooling apparatus according to the present invention as described above, by the dimensional design of the metal porous body and the concave and convex surfaces, the boiling from the metal porous body, acceleration of evaporation, or from the concave and convex surfaces of the concave and convex surfaces. Either boiling or evaporation will occur. When boiling and evaporation from the metal porous body are promoted, the vapor is discharged from the upper part of the metal porous body (or the open part of the groove), and the concave and convex surfaces (or the metal porous body) are formed. Thus, the refrigerant liquid is spontaneously supplied to the metal porous body, and boiling and evaporation from the metal porous body are continuously promoted. In addition, when boiling and evaporation from the groove are promoted, the vapor is discharged from the opening (or the metal porous body) of the groove and the through hole (or the groove opening) of the metal porous body. The cooling liquid is spontaneously supplied to the concave line through the part), and boiling and evaporation from the concave line are continuously promoted.

このように、いずれの場合にも、従来よりも伝熱壁部における沸騰・蒸発が促進され、冷却性能が著しく向上する。その具体的な冷却性能は、大気圧環境の沸騰冷却限界である110W/cmを大きく超え、約280W/cmを達成したことを確認している。したがって、近年の電子機器や、電気自動車又はハイブリッド車のインバータの冷却にも十分に対応できる沸騰冷却装置を提供することができる。特にインバータの冷却に対応することで、従来の冷却用循環ポンプや配管系を排除した自立型の超小型冷却デバイスとして提供することができ、次世代電気自動車、ハイブリッド車の走行マイレージの向上と低電費化へ大きく貢献できる。 Thus, in any case, boiling / evaporation in the heat transfer wall is promoted more than before, and the cooling performance is remarkably improved. It has been confirmed that the specific cooling performance greatly exceeded 110 W / cm 2 , which is the boiling cooling limit of the atmospheric pressure environment, and achieved about 280 W / cm 2 . Therefore, it is possible to provide a boiling cooling device that can sufficiently cope with cooling of an electronic device in recent years and an inverter of an electric vehicle or a hybrid vehicle. In particular, by supporting inverter cooling, it can be provided as a self-supporting ultra-compact cooling device that eliminates conventional cooling circulation pumps and piping systems, improving and reducing the driving mileage of next-generation electric vehicles and hybrid vehicles. It can greatly contribute to electricity consumption.

また、前記凹凸面が、平行或いは格子状に延びる複数の前記凹条より構成されており、各凹条の両端部が前記内部空間に開放された状態に、前記金属製多孔体が取り付けられるものでは、凹条の両端が開放されることで冷媒がよりスムーズに供給され(或いは蒸気排出がスムーズに行われ)、冷却効率がより向上する。   Further, the uneven surface is constituted by a plurality of the concave ridges extending in parallel or in a lattice shape, and the metal porous body is attached in a state where both end portions of the concave ridges are open to the internal space. Then, by opening both ends of the groove, the refrigerant is supplied more smoothly (or the steam is discharged smoothly), and the cooling efficiency is further improved.

また、前記金属製多孔体が、金属凝固法で成形された一方向に伸びた複数の気孔を有するロータス型ポーラス金属成形体を、気孔の伸びる方向に交差する方向に切断加工したものからなり、前記貫通孔が前記切断により分断された前記気孔であるものでは、ドリル加工等で各貫通孔を機械加工することに比べ、より低コスト且つ容易に製作できる。さらに、このような金属製多孔体は、周端部に前記成形に用いられる型内壁によって前記気孔の存在しないスキン領域が形成される。したがって、当該端面において多孔体同士を接合面積が確保された状態で容易に接合することができ、このように端面同士で複数の当該成形体を接合することにより一つの多孔体を構成することも容易となり、接合部分での伝熱性の低下も防止できる。   Further, the metal porous body is formed by cutting a lotus-type porous metal molded body having a plurality of pores extending in one direction formed by a metal solidification method in a direction crossing the direction in which the pores extend, In the case where the through hole is the pore divided by the cutting, it can be manufactured at a lower cost and more easily than machining each through hole by drilling or the like. Further, in such a metal porous body, a skin region in which no pores are present is formed at the peripheral end portion by the mold inner wall used for the molding. Accordingly, the porous bodies can be easily joined to each other in a state where the joining area is ensured at the end faces, and thus a single porous body can be configured by joining a plurality of the shaped bodies at the end faces in this way. This makes it easy to prevent a decrease in heat transfer at the joint.

本発明の代表的実施形態にかかる沸騰冷却装置を示す凹条の延びる方向にみた断面図。Sectional drawing seen in the direction where the concave strip shows the boiling cooling device concerning typical embodiment of this invention. 図1の方向に対して直交する方向にみた、同じく沸騰冷却装置の断面図。Sectional drawing of a boiling cooling device similarly seen in the direction orthogonal to the direction of FIG. (a),(b)は同じく沸騰冷却装置の伝熱壁部における作用を示す説明図。(A), (b) is explanatory drawing which shows the effect | action in the heat-transfer wall part of a boiling cooling device similarly. 変形例を示す説明図。Explanatory drawing which shows a modification. (a),(b)は実験装置を示す説明図。(A), (b) is explanatory drawing which shows an experimental apparatus. 実験結果の沸騰曲線を示すグラフ。The graph which shows the boiling curve of an experimental result.

次に、本発明の実施形態を添付図面に基づき詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本発明の沸騰冷却装置1は、図1に示すように、互いに連通した内部空間を備える受熱部2と放熱部3とを備え、内部に冷媒4が封入されるとともに受熱部2の外壁面21に発熱体9が取り付けられ、受熱部2の内部に液相状態で貯留された前記冷媒4が、相変化により潜熱として放熱部3に熱を輸送する。   As shown in FIG. 1, the boiling cooling device 1 of the present invention includes a heat receiving portion 2 and a heat radiating portion 3 having internal spaces communicating with each other, and a refrigerant 4 is enclosed therein and an outer wall surface 21 of the heat receiving portion 2. The heat generating element 9 is attached to the refrigerant 4, and the refrigerant 4 stored in a liquid phase state inside the heat receiving part 2 transports heat to the heat radiating part 3 as latent heat by phase change.

特に、受熱部2の前記発熱体9の位置に対応する伝熱壁部22は、受熱部2の内壁面に沿って延びる複数の凹条50を有する凹凸面5と、該凹凸面5に対し、該凹凸面5の前記凹条50の少なくとも一部が内部空間に開放された状態で重ねるように取り付けられる金属製多孔体6であり、一方向に延びる複数の貫通孔60が形成され、該貫通孔60の一方の開口60aが前記凹凸面5に対面し、他方の開口60bが内部空間に開放されるように取り付けられる金属製多孔体6とより構成されている。   In particular, the heat transfer wall portion 22 corresponding to the position of the heating element 9 of the heat receiving portion 2 has an uneven surface 5 having a plurality of recesses 50 extending along the inner wall surface of the heat receiving portion 2, and the uneven surface 5. The metal porous body 6 is attached so that at least a part of the concave stripe 50 of the uneven surface 5 is opened to the internal space, and a plurality of through holes 60 extending in one direction are formed, One opening 60a of the through hole 60 faces the uneven surface 5, and the metal opening 6 is attached so that the other opening 60b is opened to the internal space.

受熱部2と放熱部3とは、一つの収納容器7より構成されているが、互いに連通した内部空間を備えたものであれば、各部を構成する各容器が配管等で連結されたものでもよく、その場合は、受熱部2から放熱部3に向けて気化した冷媒が通る流路と放熱部3で液体に戻った冷媒が受熱部2に還流する流路の2流路で連通したものでもよく、その他、従来から公知の沸騰冷却装置の連通形態を広く適用できる。   Although the heat receiving part 2 and the heat radiating part 3 are comprised from the one storage container 7, as long as it was provided with the internal space connected mutually, even if each container which comprises each part was connected by piping etc. Well, in that case, the flow path through which the refrigerant vaporized from the heat receiving section 2 toward the heat radiating section 3 and the flow path through which the refrigerant returned to the liquid at the heat radiating section 3 flows back to the heat receiving section 2 are communicated. In addition, the communication form of a conventionally known boiling cooling device can be widely applied.

放熱部3は、本例では内部に冷却水が流れる凝縮パイプ8が設けられ、気化した冷媒がこの凝縮パイプ8に接して熱を奪われ、液化するように構成されている。ただし、本発明はこのような放熱形態に何ら限定されず、放熱部の外壁に送風等で放熱される放熱フィンを設け、内壁を通じて冷媒から熱を吸熱するものなど、従来から公知の沸騰冷却装置の放熱形態を広く採用できる。また、冷媒4についても、受熱部2や放熱部3の容器の素材等に応じて、水、アルコール、炭化フッ素系冷媒など、従来から公知の冷媒を適宜用いることができる。   In this example, the heat dissipating unit 3 is provided with a condensing pipe 8 through which cooling water flows, and the vaporized refrigerant comes into contact with the condensing pipe 8 to remove heat and liquefy. However, the present invention is not limited to such a heat dissipation mode, and a conventionally known boiling cooling device, such as a device that dissipates heat from the refrigerant through the inner wall by providing a heat dissipating fin that dissipates heat by blowing or the like on the outer wall of the heat dissipating part. The heat radiation form can be widely adopted. Also for the refrigerant 4, conventionally known refrigerants such as water, alcohol, and fluorocarbon refrigerant can be appropriately used depending on the material of the container of the heat receiving unit 2 and the heat radiating unit 3.

金属製多孔体6とともに伝熱壁部22を構成する凹凸面5は、本例では良熱伝導性材料よりなる容器の底壁の内面(底面)に凹条50を直接形成して構成されているが、容器とは別に良熱伝導性材料よりなる伝熱部材として構成したものでもよい。凹凸面5の凹凸面5は、平行に延びる複数の凹条50より構成されている。   The concave / convex surface 5 constituting the heat transfer wall portion 22 together with the metal porous body 6 is configured by directly forming the concave stripe 50 on the inner surface (bottom surface) of the bottom wall of the container made of a highly heat conductive material in this example. However, it may be configured as a heat transfer member made of a highly heat conductive material separately from the container. The concavo-convex surface 5 of the concavo-convex surface 5 is composed of a plurality of recesses 50 extending in parallel.

金属製多孔体6は、この凹凸面5の上に重着されており、各凹条50の両端部が、収納容器7の内部空間に開放されるように、凹凸面5より小さい寸法に設定されている。この凹条50端部の内部空間に開放された開放部51を通じて、冷媒がよりスムーズに供給され、或いは蒸気がスムーズに排出される。本例では互いに独立した凹条50を所定間隔をおいて平行に形成した例を示しているが、これに限らず、例えば凹条を縦横に格子状に形成することも好ましい。   The metallic porous body 6 is layered on the uneven surface 5 and is set to a size smaller than the uneven surface 5 so that both end portions of each concave strip 50 are opened to the internal space of the storage container 7. Has been. Through the open part 51 opened to the internal space at the end of the concave line 50, the refrigerant is supplied more smoothly or the steam is discharged smoothly. In this example, the concave stripes 50 that are independent from each other are formed in parallel at a predetermined interval. However, the present invention is not limited to this.

金属製多孔体6と凹凸面5の凹条50の寸法設計によって、金属製多孔体6からの沸騰、蒸発の促進、或いは沸騰、蒸発の促進の何れかが生じることになる。発生する蒸気は、図3(a)の図中矢印に示すように、金属製多孔体6の上部の貫通孔開口60bから排出されるか、或いは図3(b)に示すように凹条開放部51から排出される。そして、貫通孔開口60bから排出される場合は、凹条50の開放部51から凹条50を通じて冷媒4の液が自発的に金属製多孔体6の下面側へ供給され、沸騰、蒸発が持続的に促進されるし、凹条の開放部51から蒸気が排出される場合は、金属製多孔体6の上部の貫通孔開口60bを通じて冷媒4の液が自発的に金属製多孔体6内部に供給され、沸騰、蒸発が持続的に促進される。   Depending on the dimensional design of the metal porous body 6 and the recess 50 of the concavo-convex surface 5, either boiling or evaporation from the metal porous body 6 or promotion of boiling or evaporation occurs. The generated steam is discharged from the through-hole opening 60b in the upper part of the metal porous body 6 as shown by the arrow in FIG. 3A, or the groove is opened as shown in FIG. 3B. Discharged from the unit 51. And when discharged | emitted from the through-hole opening 60b, the liquid of the refrigerant | coolant 4 is spontaneously supplied to the lower surface side of the metal porous body 6 through the groove 50 from the open part 51 of the groove 50, and boiling and evaporation continue. When the steam is discharged from the opening 51 of the concave stripe, the liquid of the refrigerant 4 spontaneously enters the inside of the metal porous body 6 through the through-hole opening 60b in the upper part of the metal porous body 6. It is supplied and boiling and evaporation are continuously promoted.

金属製多孔体6は、凹凸面5に対して凹条50の両端を解放させた状態でその他の部位をすべて覆うように一つのみ設けられているが、図4に示すように、隙間をあけて複数並設したものでもよい。これにより、凹条50の開放部を両端のみでなく途中にも設けることができ、冷却効率をより高めることが可能となる。   Although only one metal porous body 6 is provided so as to cover all other parts in a state where both ends of the groove 50 are released with respect to the uneven surface 5, as shown in FIG. A plurality of them may be arranged side by side. Thereby, the open part of the groove 50 can be provided not only at both ends but also in the middle, and the cooling efficiency can be further increased.

金属製多孔体に用いる材料としては、アルミニウムや鉄、銅など従来の熱交換器の配管やフィンに使用される良熱伝導性の金属材料を広く適用できる。一方向に延びる貫通孔は、ドリル加工やレーザ加工など公知の方法で形成することができるが、本例では、貫通孔を有する金属製多孔体は、金属凝固法で成形された一方向に伸びた複数の気孔を有するロータス型ポーラス金属成形体を、気孔の伸びる方向に交差する方向に切断加工してなる多孔材で構成されている。   As a material used for a metal porous body, a metal material having good heat conductivity, such as aluminum, iron, copper, and the like used for piping and fins of conventional heat exchangers can be widely applied. A through hole extending in one direction can be formed by a known method such as drilling or laser processing. In this example, a metal porous body having a through hole extends in one direction formed by a metal solidification method. The porous porous metal molded body having a plurality of pores is made of a porous material obtained by cutting in a direction crossing the direction in which the pores extend.

このようなロータス型ポーラス金属成形体は、高圧ガス法(Pressurized Gas Method)(例えば特許第4235813号公報開示の方法)や、熱分解法(Thermal Decomposition Method)など、公知の方法で成形することができる。このようにロータス型ポーラス金属成形体から切り出した多孔材よりなる金属製多孔体6の周端部には、成形に用いられる型内壁によって前記気孔の存在しないスキン領域が形成されている。貫通孔60は、前記切断により分断された前記気孔である。   Such a Lotus-type porous metal molded body can be formed by a known method such as a high pressure gas method (for example, a method disclosed in Japanese Patent No. 423581) or a thermal decomposition method. it can. In this way, a skin region free from the pores is formed by the inner wall of the mold used for molding at the peripheral end portion of the metal porous body 6 made of the porous material cut out from the lotus-type porous metal molded body. The through hole 60 is the pore divided by the cutting.

このようにロータス型ポーラス金属成形体から切り出した多孔材を用いることで、一方向に延びる多数の貫通孔を有する金属製多孔体6を低コスト且つ容易に得ることができ、しかもその周囲にスキン領域が形成されることから、複数の多孔材の端面同士をろう付け等で接合して金属製多孔体6を構成する場合に接合強度を十分に維持できるとともにろう付け等の作業も容易であり、且つ、互いの間の熱伝導も良好に維持できる。   Thus, by using the porous material cut out from the lotus-type porous metal molded body, the metal porous body 6 having a large number of through-holes extending in one direction can be easily obtained at low cost, and the skin around it can be obtained. Since the region is formed, when the metal porous body 6 is constructed by joining the end faces of a plurality of porous materials by brazing or the like, the joining strength can be sufficiently maintained and the brazing operation is also easy. And heat conduction between each other can be maintained well.

ロータス型ポーラス金属成形体から切り出した金属製多孔体6には、貫通孔60以外に貫通していない有底の孔も存在するが、このような有底の孔も表面積を増大させる効果があり、冷媒の蒸発を促進する効果がある。金属製多孔体6の形状は、貫通孔60の延びている方向の寸法が比較的小さい扁平な板状とされているが、その他の種々の形状に構成しても勿論よい。   In the metal porous body 6 cut out from the lotus-type porous metal molded body, there are bottomed holes that do not penetrate other than the through holes 60. Such a bottomed hole also has an effect of increasing the surface area. There is an effect of promoting the evaporation of the refrigerant. The shape of the metal porous body 6 is a flat plate shape having a relatively small dimension in the direction in which the through hole 60 extends, but may be configured in various other shapes.

以上、本発明の実施形態について説明したが、本発明はこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。   Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and can of course be implemented in various forms without departing from the gist of the present invention.

次に、凹凸面上に金属製多孔体を載置した本発明に係る伝熱壁部(実施例1)、凹条が存在しない平面に金属製多孔体を載置した伝熱壁部(比較例1)、比較例1から金属製多孔体を省略し、凹条が存在しない平面のみとした伝熱壁部(比較例2)について、冷却効果を確認するための沸騰冷却実験を行った結果について説明する。   Next, the heat transfer wall portion according to the present invention in which the metal porous body is placed on the uneven surface (Example 1), the heat transfer wall portion in which the metal porous body is placed on a flat surface where no concave stripe exists (comparison) Example 1), the result of conducting a boiling cooling experiment for confirming the cooling effect on the heat transfer wall portion (Comparative Example 2) in which the metal porous body is omitted from Comparative Example 1 and only the flat surface without the concave stripes is present. Will be described.

(実験装置)
実験装置を図5(a)に示す。実験装置は、内径63mmの沸騰容器の底面に、銅ブロックを上面が冷却面(10mm角)として容器内部空間に露出した状態に取り付けた。銅ブロックの底面には、ヒータを内装した加熱ブロックを接触状態で取り付けた。沸騰容器の上面には、気体蒸気になった冷媒蒸気を冷却水と熱交換させて凝縮液化させるコンデンサ(熱交換器)を設けた。沸騰容器内の冷媒は水(蒸留水)とし、沸騰容器の周囲に巻き付けたヒータにより飽和温度(100℃)に維持した。図5(b)は冷却面を構成する銅ブロックの拡大図であり、冷却面から3mm、7mm、11mm、15mm離れた位置にそれぞれ熱電対を設置した。
(Experimental device)
The experimental apparatus is shown in FIG. In the experimental apparatus, a copper block was attached to the bottom surface of a boiling vessel having an inner diameter of 63 mm so that the upper surface was exposed to the inner space of the vessel as a cooling surface (10 mm square). On the bottom surface of the copper block, a heating block equipped with a heater was attached in contact. On the upper surface of the boiling vessel, a condenser (heat exchanger) was provided for heat-exchanging the refrigerant vapor, which became gas vapor, with the cooling water to condense and liquefy it. The refrigerant in the boiling vessel was water (distilled water), and was maintained at a saturation temperature (100 ° C.) by a heater wound around the boiling vessel. FIG. 5 (b) is an enlarged view of the copper block constituting the cooling surface, and thermocouples were respectively installed at positions 3 mm, 7 mm, 11 mm, and 15 mm away from the cooling surface.

(電熱壁部)
実施例1は、冷却面に複数の平行な凹条を直接形成し、凹凸面としたうえ、金属製多孔体を載置した。凹条は、深さ0.4mm、幅0.4mm、ピッチ1mmとした。金属製多孔体は、ロータス型ポーラス金属成形体から切り出した銅製の多孔体であり、10mm角、厚さ2mmの板材とした。厚さ方向に多数の貫通孔が設けられ、その平均気孔(貫通孔)直径は0.26mm、気孔数は355であった。凹条の端面は容器内部に開放された状態とした。比較例1は、上記のとおりフラットのままの冷却面に、上記金属製多孔体を取り付けたものであり、比較例2は、フラットの冷却面のみとした。
(Electric heating wall)
In Example 1, a plurality of parallel concave stripes were directly formed on the cooling surface to form an uneven surface, and a metal porous body was placed thereon. The concave stripes had a depth of 0.4 mm, a width of 0.4 mm, and a pitch of 1 mm. The metal porous body was a copper porous body cut out from the lotus-type porous metal molded body, and was a 10 mm square and 2 mm thick plate material. A number of through-holes were provided in the thickness direction, the average pore (through-hole) diameter was 0.26 mm, and the number of pores was 355. The end surface of the concave line was opened to the inside of the container. In Comparative Example 1, the metal porous body was attached to the flat cooling surface as described above, and in Comparative Example 2, only the flat cooling surface was used.

(実験方法)
上記実験装置を用いて、実施例1、比較例1、2の各伝熱壁部を冷却面上に構成し、各場合について、それぞれ加熱ブロックをヒータで加熱するとともに、コンデンサを作動させ、伝熱壁部を冷媒で沸騰冷却しつつ、銅ブロック内の4箇所に設置した上記熱電対で各部の温度を測定した。そして、温度測定結果から公知のフーリエ則を用いて各場合の熱流束を算出し、沸騰曲線を得た。実施例1は、再現性を確認するために2度(Run1,Run2)実験を行った。図6は、各場合について実験の結果得られた沸騰曲線である。
(experimental method)
Using the above experimental apparatus, the heat transfer wall portions of Example 1 and Comparative Examples 1 and 2 were configured on the cooling surface, and in each case, the heating block was heated with a heater and the condenser was operated to transfer power. While the hot wall portion was boiled and cooled with a refrigerant, the temperature of each portion was measured with the thermocouples installed at four locations in the copper block. And the heat flux in each case was computed from the temperature measurement result using the well-known Fourier rule, and the boiling curve was obtained. In Example 1, experiments (Run 1 and Run 2) were performed twice in order to confirm reproducibility. FIG. 6 is a boiling curve obtained as a result of the experiment for each case.

図6の結果から分かるように、本発明に係る実施例1の冷却壁部によれば、フラットな面の場合(比較例2)に比べて最大性能が約140W/cm上昇し、フラットな面に金属製多孔体を取り付けた場合(比較例1)と比較しても、最大性能が約50W/cm上昇し、優れた冷却性能を有している。実施例1の最大性能は276W/cmであったが、実験時の加熱の限界が原因であり、沸騰冷却限界としては、これ以上の可能性がある。 As can be seen from the results of FIG. 6, according to the cooling wall portion of Example 1 according to the present invention, the maximum performance increases by about 140 W / cm 2 compared to the case of the flat surface (Comparative Example 2), and is flat. Even when compared with the case where a metal porous body is attached to the surface (Comparative Example 1), the maximum performance is increased by about 50 W / cm 2 and has excellent cooling performance. Although the maximum performance of Example 1 was 276 W / cm 2, it was caused by the heating limit during the experiment, and the boiling cooling limit could be more than this.

1 沸騰冷却装置
2 受熱部
3 放熱部
4 冷媒
5 凹凸面
6 金属製多孔体
7 収納容器
8 凝縮パイプ
9 発熱体
21 外壁面
22 伝熱壁部
50 凹条
51 開放部
60 貫通孔
60a、60b 開口
DESCRIPTION OF SYMBOLS 1 Boiling cooler 2 Heat receiving part 3 Heat radiating part 4 Refrigerant 5 Uneven surface 6 Metal porous body 7 Storage container 8 Condensation pipe 9 Heat generating body 21 Outer wall surface 22 Heat transfer wall part 50 Concave 51 Open part 60 Through-hole 60a, 60b Opening

Claims (3)

互いに連通した内部空間を備える受熱部と放熱部とを備え、内部に冷媒が封入されるとともに受熱部の外壁面に発熱体が取り付けられ、受熱部の内部に液相状態で貯留された前記冷媒が、相変化により潜熱として放熱部に熱を輸送する沸騰冷却装置であって、
前記受熱部の前記発熱体の位置に対応する伝熱壁部に、
受熱部の内壁面に沿って延びる複数の凹条を有する凹凸面と、
該凹凸面に対し、該凹凸面の前記凹条の少なくとも一部が内部空間に開放された状態で重ねるように取り付けられる金属製多孔体であり、一方向に延びる複数の貫通孔が形成され、該貫通孔の一方の開口が前記凹凸面に対面し、他方の開口が内部空間に開放されるように取り付けられる金属製多孔体と、
を設けてなることを特徴とする沸騰冷却装置。
The refrigerant having a heat receiving portion and a heat radiating portion having an internal space communicating with each other, in which a refrigerant is enclosed, a heating element is attached to an outer wall surface of the heat receiving portion, and stored in a liquid phase inside the heat receiving portion Is a boiling cooling device that transports heat to the heat dissipating part as latent heat by phase change,
In the heat transfer wall portion corresponding to the position of the heating element of the heat receiving portion,
An irregular surface having a plurality of concave stripes extending along the inner wall surface of the heat receiving portion;
It is a metallic porous body that is attached so as to be overlapped with at least a part of the concave and convex surfaces of the concave and convex surface in an open state in the internal space, and a plurality of through holes extending in one direction are formed, A metal porous body attached so that one opening of the through hole faces the uneven surface and the other opening is opened to the internal space;
A boiling cooling device characterized by comprising:
前記凹凸面が、平行或いは格子状に延びる複数の前記凹条より構成されており、各凹条の両端部が前記内部空間に開放された状態に、前記金属製多孔体が取り付けられる請求項1記載の沸騰冷却装置。   2. The metal porous body is attached in a state in which the uneven surface is composed of a plurality of the concave stripes extending in a parallel or lattice shape, and both end portions of the concave stripes are open to the internal space. The boiling cooling device as described. 前記金属製多孔体が、金属凝固法で成形された一方向に伸びた複数の気孔を有するロータス型ポーラス金属成形体を、気孔の伸びる方向に交差する方向に切断加工したものからなり、前記貫通孔が前記切断により分断された前記気孔である請求項1又は2記載の沸騰冷却装置。   The metal porous body is formed by cutting a lotus-type porous metal molded body having a plurality of pores extending in one direction formed by a metal solidification method in a direction crossing the direction in which the pores extend. The boiling cooling device according to claim 1 or 2, wherein the hole is the pore divided by the cutting.
JP2017111759A 2017-06-06 2017-06-06 Boiling cooling device Active JP7022402B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017111759A JP7022402B2 (en) 2017-06-06 2017-06-06 Boiling cooling device
JP2021109983A JP7220434B2 (en) 2017-06-06 2021-07-01 Boiling cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017111759A JP7022402B2 (en) 2017-06-06 2017-06-06 Boiling cooling device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021109983A Division JP7220434B2 (en) 2017-06-06 2021-07-01 Boiling cooling structure

Publications (2)

Publication Number Publication Date
JP2018204882A true JP2018204882A (en) 2018-12-27
JP7022402B2 JP7022402B2 (en) 2022-02-18

Family

ID=64955530

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017111759A Active JP7022402B2 (en) 2017-06-06 2017-06-06 Boiling cooling device
JP2021109983A Active JP7220434B2 (en) 2017-06-06 2021-07-01 Boiling cooling structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021109983A Active JP7220434B2 (en) 2017-06-06 2021-07-01 Boiling cooling structure

Country Status (1)

Country Link
JP (2) JP7022402B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10955733B2 (en) 2019-03-14 2021-03-23 Seiko Epson Corporation Cooling device and projector
WO2022244621A1 (en) * 2021-05-18 2022-11-24 株式会社ロータス・サーマル・ソリューション Ebullition cooling device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024030766A (en) * 2022-08-25 2024-03-07 株式会社ロータス・サーマル・ソリューション Thermally conductive bonding structure, thermally conductive bonding method, heat sink having thermally conductive bonding structure, and semiconductor device having thermally conductive bonding structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022379A (en) * 2000-07-06 2002-01-23 Showa Denko Kk Heat pipe
JP2007315745A (en) * 2005-09-01 2007-12-06 Fuchigami Micro:Kk Heat pipe and its manufacturing method
JP2008522129A (en) * 2004-12-01 2008-06-26 コンバージェンス テクノロジーズ リミテッド Steam chamber with boil-enhancing multi-wick structure
JP2008153423A (en) * 2006-12-18 2008-07-03 Yaskawa Electric Corp Vapor chamber, and electronic device using it
JP2010162573A (en) * 2009-01-15 2010-07-29 Hitachi Cable Ltd Method for producing porous metal and method for producing heat sink

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6353682B2 (en) 2014-04-01 2018-07-04 昭和電工株式会社 Boiling cooler
JP2016023866A (en) 2014-07-22 2016-02-08 株式会社フジクラ Loop type thermo-siphon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022379A (en) * 2000-07-06 2002-01-23 Showa Denko Kk Heat pipe
JP2008522129A (en) * 2004-12-01 2008-06-26 コンバージェンス テクノロジーズ リミテッド Steam chamber with boil-enhancing multi-wick structure
JP2007315745A (en) * 2005-09-01 2007-12-06 Fuchigami Micro:Kk Heat pipe and its manufacturing method
JP2008153423A (en) * 2006-12-18 2008-07-03 Yaskawa Electric Corp Vapor chamber, and electronic device using it
JP2010162573A (en) * 2009-01-15 2010-07-29 Hitachi Cable Ltd Method for producing porous metal and method for producing heat sink

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10955733B2 (en) 2019-03-14 2021-03-23 Seiko Epson Corporation Cooling device and projector
WO2022244621A1 (en) * 2021-05-18 2022-11-24 株式会社ロータス・サーマル・ソリューション Ebullition cooling device
DE112022002628T5 (en) 2021-05-18 2024-03-14 Lotus Thermal Solution Inc. Evaporative cooling

Also Published As

Publication number Publication date
JP7022402B2 (en) 2022-02-18
JP7220434B2 (en) 2023-02-10
JP2021165628A (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP7220434B2 (en) Boiling cooling structure
JP6606267B1 (en) heatsink
JP6688863B2 (en) Cooling device and cooling system using the cooling device
JP2011047616A (en) Cooling system and electronic device using the same
CN112710180A (en) Steam chamber
JP6047752B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
US20130255920A1 (en) Ebullient cooling device
JP2022519266A (en) Boiling enhancement device
WO2020235217A1 (en) Heat exchange structure extracting heat of coolant in cooling device, and cooling device provided with said heat exchange structure
JP7444704B2 (en) Heat transfer member and cooling device having heat transfer member
JP2007081375A (en) Cooling device
US10685901B2 (en) Boiling cooling device
JP2012112373A (en) Multi-cooling device for vehicle
WO2020054752A1 (en) Cooling device and cooling system using same
JP6764765B2 (en) Heat transfer member
JP7444703B2 (en) Heat transfer member and cooling device having heat transfer member
WO2022244621A1 (en) Ebullition cooling device
WO2013102974A1 (en) Cooling system
JPH0897338A (en) Cooler for power semiconductor device
JP2014138060A (en) Cooling device
CN218353007U (en) Radiator and communication equipment
WO2021152668A1 (en) Heat-pipe-type cooler, and method for manufacturing heat-pipe-type cooler
WO2024090236A1 (en) Heat transfer member and heat transfer member manufacturing method
KR101749927B1 (en) Fast Heat Transferring Device Using Refrigerant
CN211575950U (en) Heat radiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220128

R150 Certificate of patent or registration of utility model

Ref document number: 7022402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150