JP6047752B2 - COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR - Google Patents

COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR Download PDF

Info

Publication number
JP6047752B2
JP6047752B2 JP2012136610A JP2012136610A JP6047752B2 JP 6047752 B2 JP6047752 B2 JP 6047752B2 JP 2012136610 A JP2012136610 A JP 2012136610A JP 2012136610 A JP2012136610 A JP 2012136610A JP 6047752 B2 JP6047752 B2 JP 6047752B2
Authority
JP
Japan
Prior art keywords
heat
heat receiving
working fluid
groove
receiving plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012136610A
Other languages
Japanese (ja)
Other versions
JP2013032904A (en
Inventor
郁 佐藤
郁 佐藤
彩加 鈴木
彩加 鈴木
杉山 誠
誠 杉山
俊司 三宅
俊司 三宅
雅人 小竹
雅人 小竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012136610A priority Critical patent/JP6047752B2/en
Publication of JP2013032904A publication Critical patent/JP2013032904A/en
Application granted granted Critical
Publication of JP6047752B2 publication Critical patent/JP6047752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/08Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes pressed; stamped; deep-drawn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、冷却装置およびこれを搭載した電子機器、および電気自動車に関するものである。    The present invention relates to a cooling device, an electronic device equipped with the cooling device, and an electric vehicle.

従来この種の冷却装置は、電気自動車の電力変換回路に搭載されたものが知られている。電気自動車では、駆動動力源となる電動モータを電力変換回路であるインバータ回路でスイッチング駆動していた。インバータ回路には、パワートランジスタを代表とする半導体スイッチング素子が複数個使われていて、それぞれの素子に数十アンペアの大電流が流れていた。そのため半導体スイッチング素子は大きく発熱し、冷却することが必要であった。    Conventionally, this type of cooling device is known to be mounted on a power conversion circuit of an electric vehicle. In an electric vehicle, an electric motor serving as a driving power source is switched by an inverter circuit that is a power conversion circuit. A plurality of semiconductor switching elements represented by power transistors are used in the inverter circuit, and a large current of several tens of amperes flows through each element. Therefore, the semiconductor switching element generates a large amount of heat and needs to be cooled.

そこで、従来は、例えば特許文献1のように、上下に冷媒放熱器と冷媒タンクを備えた沸騰冷却装置にて、下部に配したインバータ回路の冷却を行っていた。    Therefore, conventionally, as in Patent Document 1, for example, a boil cooling device having a refrigerant radiator and a refrigerant tank at the top and bottom has cooled an inverter circuit arranged at the bottom.

特開平8−126125号公報JP-A-8-126125

このような従来の冷却装置においては、半導体スイッチング素子に接触して冷媒(以下、作動流体)タンクを配置し、同タンク内の作動流体を気化させてスイッチング素子からの熱を奪わせる。そして、気化した作動流体は、上部に配置した放熱器へ上昇し、放熱器内壁で凝縮することで潜熱を放熱器へ送り放熱させる。次に、凝縮により液化した作動流体は、再び装置内壁を伝わって下部のタンクへ戻る。実際の冷却は、この一連の流体循環サイクルを繰り返すことで行われていた。    In such a conventional cooling device, a refrigerant (hereinafter referred to as working fluid) tank is disposed in contact with the semiconductor switching element, and the working fluid in the tank is vaporized to remove heat from the switching element. Then, the vaporized working fluid rises to the radiator disposed at the upper part, and condenses on the inner wall of the radiator, thereby sending latent heat to the radiator to dissipate heat. Next, the working fluid liquefied by the condensation travels again through the inner wall of the apparatus and returns to the lower tank. Actual cooling was performed by repeating this series of fluid circulation cycles.

ただ、このような従来の流体循環では、受熱表面での高速な流体移動を伴わない自然対流であるため、熱伝達係数も低く、結果的に高い冷却効果を得ることは出来なかった。    However, in such conventional fluid circulation, natural convection is not accompanied by high-speed fluid movement on the heat receiving surface, so the heat transfer coefficient is low, and as a result, a high cooling effect cannot be obtained.

また、上記自然対流型の作動流体の循環に対し、圧縮機を用いず、作動流体の膨張によって循環経路内を作動流体が循環するループ型のヒートパイプの技術が実現されている。    Further, for the circulation of the natural convection type working fluid, a loop type heat pipe technique is realized in which the working fluid circulates in the circulation path by expansion of the working fluid without using a compressor.

このループ型のヒートパイプにおいては、受熱表面において、作動流体を効率的に蒸発させて大きな圧力を発生させ、作動流体が循環経路内をスムーズに循環することが冷却効果を高める上で重要になる。    In this loop heat pipe, it is important for enhancing the cooling effect that the working fluid is efficiently evaporated on the heat receiving surface to generate a large pressure and the working fluid circulates smoothly in the circulation path. .

そこで、本発明は、受熱表面における熱伝達係数を高めることで、冷却装置の冷却性能を高めることを目的とするものである。    In view of this, an object of the present invention is to improve the cooling performance of the cooling device by increasing the heat transfer coefficient on the heat receiving surface.

そして、この目的を達成するために、本発明は、発熱体からの熱を作動流体に伝える受熱板を備えた受熱部と、前記作動流体の熱を放出する放熱部と、前記受熱部と前記放熱部とを接続する放熱経路と帰還経路とで構成し、前記作動流体を、前記受熱部、放熱経路、放熱部、帰還経路、受熱部へと循環させて熱の移動を行う冷却装置であって、前記受熱部は、前記作動流体を受ける受熱板とこの受熱板を覆って受熱空間を形成する受熱板カバーとで構成され、前記受熱板には、前記作動流体を受ける部分を始点として断面がV字型またはU字型の溝を複数形成し、前記帰還経路の前記受熱部側には、前記受熱部内に前記作動流体を供給する案内管を前記受熱空間内に突出させた状態で接続し、前記受熱部と前記案内管の接続部に逆止弁を設け、前記逆止弁上に溜まった液化した前記作動流体の水頭による圧力によって前記逆止弁が押し下げられることにより前記作動流体が前記受熱板上に供給され、供給された前記作動流体は前記案内管の先端と前記受熱板の隙間から外周部へ拡散され前記溝の内壁面に膜として広がり前記受熱板の熱を受けて気化する構成としたものであり、これにより所期の目的を達成するものである。 In order to achieve this object, the present invention provides a heat receiving portion including a heat receiving plate that transfers heat from the heating element to the working fluid, a heat radiating portion that releases the heat of the working fluid, the heat receiving portion, and the heat receiving portion. A cooling device that includes a heat dissipation path and a return path connecting the heat dissipation section, and circulates the working fluid to the heat receiving section, the heat dissipation path, the heat dissipation section, the return path, and the heat receiving section to transfer heat. The heat receiving portion includes a heat receiving plate that receives the working fluid and a heat receiving plate cover that covers the heat receiving plate and forms a heat receiving space, and the heat receiving plate has a cross-section starting from a portion that receives the working fluid. A plurality of V-shaped or U-shaped grooves are formed , and a guide tube that supplies the working fluid into the heat receiving portion is connected to the heat receiving portion side of the return path in a state of protruding into the heat receiving space. And a check valve is provided at the connection between the heat receiving portion and the guide tube. When the check valve is pushed down by the pressure of the liquefied working fluid accumulated on the check valve, the working fluid is supplied onto the heat receiving plate, and the supplied working fluid is supplied to the guide pipe. It is configured to diffuse from the gap between the tip and the heat receiving plate to the outer peripheral portion and spread as a film on the inner wall surface of the groove to receive the heat of the heat receiving plate and vaporize , thereby achieving the intended purpose. is there.

本発明によれば、発熱体からの熱を作動流体に伝える受熱板を備えた受熱部と、前記作動流体の熱を放出する放熱部と、前記受熱部と前記放熱部とを接続する放熱経路と帰還経路とで構成し、前記作動流体を、前記受熱部、放熱経路、放熱部、帰還経路、受熱部へと循環させて熱の移動を行う冷却装置であって、前記受熱部は、前記作動流体を受ける受熱板とこの受熱板を覆って受熱空間を形成する受熱板カバーとで構成され、前記受熱板には、前記作動流体を受ける部分を始点として断面がV字型またはU字型の複数の溝を形成し、前記帰還経路の前記受熱部側には、前記受熱部内に前記作動流体を供給する案内管を前記受熱空間内に突出させた状態で接続し、前記受熱部と前記案内管の接続部に逆止弁を設け、前記逆止弁上に溜まった液化した前記作動流体の水頭による圧力によって前記逆止弁が押し下げられることにより前記作動流体が前記受熱板上に供給され、供給された前記作動流体は前記案内管の先端と前記受熱板の隙間から外周部へ拡散され前記溝の内壁面に膜として広がり前記受熱板の熱を受けて気化する構成とすることで、冷却性能を高めることが出来る。 According to the present invention, a heat receiving portion including a heat receiving plate that transfers heat from the heat generating element to the working fluid, a heat radiating portion that releases the heat of the working fluid, and a heat radiating path that connects the heat receiving portion and the heat radiating portion. And a return path, and the working fluid is circulated to the heat receiving part, the heat radiating path, the heat radiating part, the return path, and the heat receiving part to move the heat, and the heat receiving part A heat receiving plate that receives the working fluid and a heat receiving plate cover that covers the heat receiving plate to form a heat receiving space, and the heat receiving plate has a V-shaped or U-shaped cross section starting from the portion that receives the working fluid. And a guide tube for supplying the working fluid into the heat receiving portion is connected to the heat receiving portion side of the return path so as to protrude into the heat receiving space, and the heat receiving portion and the heat receiving portion A check valve is provided at the connection part of the guide tube, and the liquid accumulated on the check valve When the check valve is pushed down by the pressure of the working fluid head, the working fluid is supplied onto the heat receiving plate, and the supplied working fluid is surrounded by a gap between the tip of the guide tube and the heat receiving plate. is diffused into parts in a structure and child to vaporize by the heat spread the heat receiving plate as a film on the inner wall surface of the groove, it is possible to enhance the cooling performance.

すなわち、本発明においては、受熱板上に滴下された作動流体は、前記V字型またはU字型の溝の内壁面を膜状に広がり、溝の内壁面全体から熱を効率よく受けとることで、受熱板上で瞬時に気化する。その結果、受熱板から効率的に気化潜熱を奪うことができるため、高い冷却効果が得られることになる。    That is, in the present invention, the working fluid dropped on the heat receiving plate spreads in a film shape on the inner wall surface of the V-shaped or U-shaped groove, and efficiently receives heat from the entire inner wall surface of the groove. Vaporizes instantly on the heat receiving plate. As a result, the latent heat of vaporization can be efficiently taken away from the heat receiving plate, so that a high cooling effect can be obtained.

本発明の実施の形態1の電気自動車の概略図Schematic of the electric vehicle according to the first embodiment of the present invention. 同放熱体の構成を示す図Diagram showing the structure of the radiator 同冷却装置を示す概略図Schematic showing the cooling system 同冷却装置の受熱部斜視図Heat receiving part perspective view of the cooling device 同冷却装置の受熱部の詳細図(a)受熱板カバーの平面図、(b)断面図、(c)受熱部の平面図Detailed view of heat receiving part of cooling device (a) plan view of heat receiving plate cover, (b) sectional view, (c) plan view of heat receiving part 同冷却装置の受熱部の溝の説明図(a)溝の断面図、(b)溝の切削概略図Explanatory drawing of the groove | channel of the heat receiving part of the cooling device (a) Cross-sectional view of a groove, (b) Cutting schematic diagram of the groove 本発明の実施の形態2の受熱部の詳細図(a)受熱板カバーの平面図、(b)断面図、(c)受熱部の平面図Detailed view of heat receiving part of Embodiment 2 of the present invention (a) Plan view of heat receiving plate cover, (b) Cross section, (c) Plan view of heat receiving part 同冷却装置の受熱部の溝の説明図(a)V字溝の断面図、(b)U字溝の断面図Explanatory drawing of the groove | channel of the heat receiving part of the cooling device (a) Cross-sectional view of V-shaped groove, (b) Cross-sectional view of U-shaped groove 同冷却装置の受熱部の溝の鍛造方法による成形概略図(a)初期状態図、(b)鍛造型が当たったときの図、(c)ほぼ溝が形成されたときの図、(d)出来上がった溝の図Schematic diagram of forming by groove forging method of heat receiving portion of cooling device (a) initial state diagram, (b) diagram when forging die hits, (c) diagram when almost groove is formed, (d) Finished groove diagram 同冷却装置の受熱部の溝の他の形態の図(a)受熱板カバーの平面図、(b)断面図、(c)受熱部の平面図The figure of the other form of the groove | channel of the heat receiving part of the cooling device (a) The top view of a heat receiving plate cover, (b) Sectional drawing, (c) The top view of a heat receiving part 同冷却装置の受熱部の溝の他の形態の図(a)受熱板カバーの平面図、(b)断面図、(c)受熱部の平面図The figure of the other form of the groove | channel of the heat receiving part of the cooling device (a) The top view of a heat receiving plate cover, (b) Sectional drawing, (c) The top view of a heat receiving part 同冷却装置の受熱部の溝の他の形態の図(a)受熱板カバーの平面図、(b)断面図、(c)受熱部の平面図The figure of the other form of the groove | channel of the heat receiving part of the cooling device (a) The top view of a heat receiving plate cover, (b) Sectional drawing, (c) The top view of a heat receiving part 同冷却装置の受熱部の溝の他の形態の図(a)受熱板カバーの平面図、(b)断面図、(c)受熱部の平面図The figure of the other form of the groove | channel of the heat receiving part of the cooling device (a) The top view of a heat receiving plate cover, (b) Sectional drawing, (c) The top view of a heat receiving part 同冷却装置の受熱部の詳細図(a)受熱板カバーの平面図、(b)断面図、(c)受熱部の平面図、(d)受熱部の平面図Detailed view of heat receiving part of cooling device (a) Plan view of heat receiving plate cover, (b) Cross section, (c) Plan view of heat receiving part, (d) Plan view of heat receiving part 同冷却装置の受熱部の詳細図(a)受熱板カバーの平面図、(b)断面図、(c)受熱部の平面図Detailed view of heat receiving part of cooling device (a) plan view of heat receiving plate cover, (b) sectional view, (c) plan view of heat receiving part 本発明の実施の形態4の受熱部の詳細図(a)受熱板カバーの平面図、(b)断面図、(c)受熱部の平面図、(d)受熱部の平面図Detailed view of heat receiving part of embodiment 4 of the present invention (a) Plan view of heat receiving plate cover, (b) Cross-sectional view, (c) Plan view of heat receiving part, (d) Plan view of heat receiving part 本発明の実施の形態5の受熱部の詳細図Detailed view of heat receiving portion of embodiment 5 of the present invention

以下、本発明の実施の形態について図面を参照しながら説明する。    Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1に示すように、電気自動車1の車軸(図示せず)を駆動する電動機(図示せず)は、電気自動車1の内に配置した電力変換装置であるインバータ回路2に接続されている。
(Embodiment 1)
As shown in FIG. 1, an electric motor (not shown) that drives an axle (not shown) of an electric vehicle 1 is connected to an inverter circuit 2 that is a power conversion device arranged in the electric vehicle 1.

インバータ回路2は、電動機に電力を供給するもので、複数の半導体スイッチング素子10(図3に記載)を備えおり、この半導体スイッチング素子10が動作中に発熱する。    The inverter circuit 2 supplies electric power to the electric motor, and includes a plurality of semiconductor switching elements 10 (described in FIG. 3), and the semiconductor switching elements 10 generate heat during operation.

このため、この半導体スイッチング素子10を冷却するために、冷却装置3を備えている。冷却装置3は、受熱部4と、この受熱部4で吸収した熱を放熱する放熱部5を備え、受熱部4と放熱部5の間で熱媒体となる作動流体12(図3に記載。例えば水)を循環させる放熱経路6、帰還経路7を設ける。そして、受熱部4、放熱経路6、放熱部5、帰還経路7、受熱部4の順に作動流体12が循環する循環経路を構成している。    For this reason, in order to cool this semiconductor switching element 10, the cooling device 3 is provided. The cooling device 3 includes a heat receiving portion 4 and a heat radiating portion 5 that radiates heat absorbed by the heat receiving portion 4, and a working fluid 12 (described in FIG. 3) that serves as a heat medium between the heat receiving portion 4 and the heat radiating portion 5. For example, a heat radiation path 6 for circulating water) and a return path 7 are provided. And the circulating path through which the working fluid 12 circulates in the order of the heat receiving part 4, the heat radiating path 6, the heat radiating part 5, the return path 7, and the heat receiving part 4.

つまり、この循環経路においては、作動流体12が、蒸気や液体の状態で、受熱部4、放熱経路6、放熱部5、帰還経路7、前記受熱部4の順に一方向に、循環するようになっている。    That is, in this circulation path, the working fluid 12 circulates in one direction in the order of the heat receiving part 4, the heat radiating path 6, the heat radiating part 5, the return path 7, and the heat receiving part 4 in a vapor or liquid state. It has become.

放熱部5は、図2に示すように、外気に熱を放出する放熱体8を備えている。この放熱体8は、アルミニウムを短冊状に薄く形成したフィンを所定の間隔をあけて積層したブロック体と、積層したフィンを貫通する放熱経路6とで構成されている。そして、この放熱体8の表面に送風機9から外気を送風することで、放熱をさせている。なお、この放熱体8の表面からの放熱は、電気自動車1車内の暖房に活用することも出来る。    As shown in FIG. 2, the heat radiating unit 5 includes a heat radiating body 8 that releases heat to the outside air. The heat dissipating body 8 includes a block body in which fins formed by thinly forming aluminum in a strip shape are stacked at a predetermined interval, and a heat dissipating path 6 penetrating the stacked fins. And heat is radiated by blowing outside air from the blower 9 onto the surface of the radiator 8. The heat radiation from the surface of the heat radiating body 8 can also be utilized for heating in the electric vehicle 1.

また、受熱部4は、図3に示すように、半導体スイッチング素子10に接触させて熱を吸収する受熱板11と、この受熱板11の表面を覆い、流れ込んだ作動流体12を蒸発させる受熱空間13を形成する受熱板カバー14とを備えている。さらに、受熱板カバー14には、受熱空間13に液化した作動流体12を流し込む流入口15と、受熱空間13から作動流体12を気体にして排出する排出口16が設けられている。    Further, as shown in FIG. 3, the heat receiving section 4 is in contact with the semiconductor switching element 10 to absorb heat and a heat receiving space that covers the surface of the heat receiving plate 11 and evaporates the flowing working fluid 12. And a heat-receiving plate cover 14 that forms 13. Furthermore, the heat receiving plate cover 14 is provided with an inlet 15 for flowing the liquefied working fluid 12 into the heat receiving space 13 and an outlet 16 for discharging the working fluid 12 from the heat receiving space 13 as a gas.

図3においては、受熱部4を模式的に示したが、具体的には図4、図5に示すような構造となっている。すなわち、受熱板カバー14の上面に、流入口15と排出口16を設けており、流入口15には帰還経路7を接続し、また排出口16には放熱経路6を接続している。    In FIG. 3, although the heat receiving part 4 was typically shown, it has a structure as specifically shown in FIG. 4, FIG. That is, the inlet 15 and the outlet 16 are provided on the upper surface of the heat receiving plate cover 14, the return path 7 is connected to the inlet 15, and the heat dissipation path 6 is connected to the outlet 16.

さらに、帰還経路7の受熱部4側には、受熱部4内に作動流体12を供給する案内管17を、受熱空間13内に突出させた状態で接続し、また受熱部4の流入口15と、案内管17の接続部に逆止弁18を設けている。    Further, a guide pipe 17 for supplying the working fluid 12 into the heat receiving part 4 is connected to the heat receiving part 4 side of the return path 7 in a state of protruding into the heat receiving space 13, and the inlet 15 of the heat receiving part 4 is connected. A check valve 18 is provided at the connection portion of the guide tube 17.

続いて、このような構成による冷却装置3の作用について説明する。    Then, the effect | action of the cooling device 3 by such a structure is demonstrated.

上記構成において、インバータ回路2の半導体スイッチング素子10が動作を開始すると電動機に電力が供給されて、電気自動車1は、動きだすこととなる。このとき、半導体スイッチング素子10には大電流が流れることにより、少なくとも全電力の数%が損失となって大きく発熱する。    In the above configuration, when the semiconductor switching element 10 of the inverter circuit 2 starts to operate, electric power is supplied to the electric motor, and the electric vehicle 1 starts to move. At this time, when a large current flows through the semiconductor switching element 10, at least several percent of the total power is lost and a large amount of heat is generated.

一方で、半導体スイッチング素子10から受熱板11へ伝わった熱は、受熱空間13の受熱板11上に供給された液状の作動流体12を加熱し、瞬時に気化させる。受熱板11から気化潜熱を奪った蒸気は、排出口16から放熱経路6へと流れ、放熱体8で凝縮する ことで熱を外気に放出する。    On the other hand, the heat transferred from the semiconductor switching element 10 to the heat receiving plate 11 heats the liquid working fluid 12 supplied onto the heat receiving plate 11 in the heat receiving space 13 and vaporizes it instantaneously. The steam that has taken the latent heat of vaporization from the heat receiving plate 11 flows from the discharge port 16 to the heat radiation path 6 and is condensed by the heat radiator 8 to release heat to the outside air.

放熱体8の作用によって熱を放出した作動流体12は、凝縮により液化して帰還経路7へと流れ、流入口15の逆止弁18上に溜まることとなる。液化した作動流体12は、徐々に帰還経路7内で増加し、その水頭による圧力によって逆止弁18を押し下げると、再び受熱空間13内の受熱板11上に供給される。    The working fluid 12 that has released heat by the action of the radiator 8 liquefies by condensation, flows to the return path 7, and accumulates on the check valve 18 at the inlet 15. The liquefied working fluid 12 gradually increases in the return path 7, and is supplied again onto the heat receiving plate 11 in the heat receiving space 13 when the check valve 18 is pushed down by the pressure of the water head.

このようにして作動流体12が冷却装置3内を循環することで、半導体スイッチング素子10の冷却を行なうことになる。    In this way, the working fluid 12 circulates in the cooling device 3 to cool the semiconductor switching element 10.

ここで、受熱空間13内の冷却のメカニズムについて図3を用いて説明を加える。    Here, the cooling mechanism in the heat receiving space 13 will be described with reference to FIG.

受熱空間13内では、帰還経路7から供給された作動流体12は、受熱板11上に液滴となって滴下される。この作動流体12は、帰還経路7の端部開口(案内管17の先端部分)と受熱板11の隙間から外周部へ拡散される。このとき、受熱板11の表面では、作動流体12が放射状に形成した溝21の内壁面に薄い膜として広がり、高熱の受熱板11の熱を受けて一瞬にして気化することとなる。    In the heat receiving space 13, the working fluid 12 supplied from the return path 7 is dropped as droplets on the heat receiving plate 11. The working fluid 12 is diffused from the gap between the end opening of the return path 7 (the tip portion of the guide tube 17) and the heat receiving plate 11 to the outer peripheral portion. At this time, on the surface of the heat receiving plate 11, the working fluid 12 spreads as a thin film on the inner wall surface of the groove 21 formed in a radial pattern, and vaporizes in response to the heat of the high heat receiving plate 11.

なお、受熱空間13を含む循環経路内の圧力は、使用する作動流体12によって異なるが、例えば作動流体12として水を使用した場合、大気圧よりも低く設定することで、大気圧中の水の沸騰に比べて低い温度で気化させることができる。    The pressure in the circulation path including the heat receiving space 13 varies depending on the working fluid 12 to be used. For example, when water is used as the working fluid 12, the water in the atmospheric pressure is set by setting the pressure lower than the atmospheric pressure. It can be vaporized at a lower temperature than boiling.

本実施の形態では、循環経路内に所望量の水を作動流体12として封入し、系内をほぼ真空に減圧することで、外気温+数10度程度の温度でも容易に水を気化させることができる飽和状態とし、これにより半導体スイッチング素子10からの熱を作動流体12(この場合、水)の気化潜熱として奪い、効率的な冷却が可能となる。    In this embodiment, a desired amount of water is sealed as a working fluid 12 in the circulation path, and the inside of the system is depressurized to a nearly vacuum, so that the water can be easily vaporized even at a temperature of about the outside temperature + several tens of degrees. Thus, the heat from the semiconductor switching element 10 is taken away as the latent heat of vaporization of the working fluid 12 (in this case, water), thereby enabling efficient cooling.

また、作動流体12が気化するときに受熱空間13内の圧力は増加するが、逆止弁18の作用により作動流体12は逆流して帰還経路7側へ戻ることはなく、確実に排出口16から放熱経路6へ放出させることができる。    Further, when the working fluid 12 is vaporized, the pressure in the heat receiving space 13 increases. However, the working fluid 12 does not flow back to the return path 7 due to the action of the check valve 18, and the discharge port 16 is reliably connected. To the heat dissipation path 6.

このように冷却装置3を動作させることで、規則的な受熱と放熱のサイクルができ、連続して作動流体12を受熱空間13内で気化させて半導体スイッチング素子10からの熱を効率的に除熱し、大きな冷却効果を実現することができる。    By operating the cooling device 3 in this manner, a regular heat receiving and releasing cycle can be performed, and the working fluid 12 is continuously vaporized in the heat receiving space 13 to efficiently remove the heat from the semiconductor switching element 10. It can be heated and a great cooling effect can be realized.

ここで、本発明の最も特徴的な部分について説明する。    Here, the most characteristic part of the present invention will be described.

図5に示すように、受熱板11の表面には、案内管17に対向した部分(作動流体滴下部20)を中央部として、放射状に溝21が形成されているのである。    As shown in FIG. 5, grooves 21 are formed radially on the surface of the heat receiving plate 11 with a portion (working fluid dropping portion 20) facing the guide tube 17 as a central portion.

この溝21は、作動流体滴下部20を中央部として周方向に断面がV字型になっている。さらに詳しく説明すると、作動流体滴下部20は、案内管17とほぼ同径に円形状に形成されている。そして、溝21は、その作動流体滴下部20を中央部として放射状に形成されている。図6では、作動流体滴下部20を受熱板11の受熱板表面22よりも凹ませて形成している。そして、この凹んだ作動流体滴下部20と溝21の始点側(作動流体滴下部20側)とが連通するようになっているのである。    The groove 21 has a V-shaped cross section in the circumferential direction with the working fluid dropping portion 20 as a central portion. More specifically, the working fluid dropping section 20 is formed in a circular shape with substantially the same diameter as the guide tube 17. And the groove | channel 21 is radially formed by making the working fluid dripping part 20 into the center part. In FIG. 6, the working fluid dropping portion 20 is formed to be recessed from the heat receiving plate surface 22 of the heat receiving plate 11. The recessed working fluid dropping part 20 communicates with the starting point side of the groove 21 (the working fluid dropping part 20 side).

溝21は、図6(b)に示すように、始点側(作動流体滴下部20側)の溝深さよりも中央部の溝深さを深くし、終点では、深さがなくなるように溝21の底部に連続した傾斜を設けている。また、溝21は、図5(c)に示すように始点側(作動流体滴下部20側 )の幅w1(作動流体滴下部20側を中央部とした周方向の幅)よりも中央部w2が広くなるように形成されている。そして、終点部では、その幅がゼロになるように形成している。    As shown in FIG. 6B, the groove 21 has a groove depth deeper at the center than the groove depth on the start point side (working fluid dropping part 20 side), and the groove 21 has no depth at the end point. A continuous slope is provided at the bottom. Further, as shown in FIG. 5C, the groove 21 has a central portion w2 that is wider than the width w1 on the starting point side (the working fluid dropping portion 20 side) (the circumferential width with the working fluid dropping portion 20 side being the central portion). Is formed to be wide. And in the end point part, it forms so that the width may become zero.

このような溝21は、図6(b)に示すように、切削工法にて成形される。すなわち、銅板等を成形し、おおまかに形をつくった受熱板11の表面に、円形の切削刃23を当てて削ることによって溝21が形成されるのである。    Such a groove | channel 21 is shape | molded by the cutting method, as shown in FIG.6 (b). That is, a groove 21 is formed by shaping a copper plate or the like and scraping the surface of the heat receiving plate 11 roughly formed by applying a circular cutting blade 23.

このような溝21によれば、作動流体滴下部20に滴下された作動流体12は、周方向に広がるのであるが、そのとき、作動流体滴下部20と連通した溝21の内部を、その内壁に薄い膜を形成しながら通っていく。そして、溝21によって、伝熱面積が大きく確保されると共に、気化による体積膨張が高速の蒸気流を形成し、高い伝達係数を実現することが可能となるのである。言い換えれば、これにより、半導体スイッチング素子10からの熱を大容量の気化潜熱という形で効率的に奪うことができ、高い冷却性能を実現することが可能となる。    According to such a groove 21, the working fluid 12 dropped on the working fluid dropping portion 20 spreads in the circumferential direction. At that time, the inside of the groove 21 communicating with the working fluid dropping portion 20 is disposed on the inner wall thereof. Pass through while forming a thin film. The groove 21 secures a large heat transfer area, and volume expansion due to vaporization forms a high-speed steam flow, thereby realizing a high transfer coefficient. In other words, this makes it possible to efficiently remove the heat from the semiconductor switching element 10 in the form of large-capacity latent heat of vaporization and realize high cooling performance.

また、周縁部に向かって深さが浅くなり、幅の細くなる溝21の形状によって、溝21内部を通過する作動流体12が、溝21内で滞ることなく外周部に広がり排出口16へと効率よく流れていくことになる。    Moreover, the working fluid 12 that passes through the inside of the groove 21 spreads to the outer peripheral portion without stagnation in the groove 21 due to the shape of the groove 21 that becomes shallower toward the periphery and becomes narrower. It will flow efficiently.

なお、案内管17を上に、受熱板11を下に配した状態であれば、作動流体滴下部20は、椀状にくぼみを設けても良い。このくぼみにより、作動流体12が受熱板11上で一時的に適量だけ溜まることになるので、溝21に連続的に作動流体12を供給することができるのである。    In addition, as long as the guide tube 17 is on the upper side and the heat receiving plate 11 is on the lower side, the working fluid dropping unit 20 may be provided with a recess in a bowl shape. Due to this depression, the working fluid 12 is temporarily stored on the heat receiving plate 11 by an appropriate amount, so that the working fluid 12 can be continuously supplied to the groove 21.

(実施の形態2)
次に、図7、図8、図9を用いて本発明の第2の実施の形態について説明する。
(Embodiment 2)
Next, a second embodiment of the present invention will be described with reference to FIG. 7, FIG. 8, and FIG.

全体の構成は、第1の実施の形態と同じであり、その詳細な説明を省略する。    The overall configuration is the same as that of the first embodiment, and a detailed description thereof is omitted.

第2の実施の形態において特徴的な部分は、図7の受熱板11に形成した鍛造溝24である。すなわち、鍛造溝24は、第1の実施の形態と同様、受熱板11の表面には、流入口15に対向した部分(作動流体滴下部20)を中央部として、放射状に鍛造溝24が形成されている。この鍛造溝24は、作動流体滴下部20を中央部として周方向に断面が図8に示すようにV字型またはU字型になっている。そして、第2の実施の形態における特徴的な部分は、このV字型またはU字型に形成された鍛造溝24の頂部が受熱板表面22よりも突出した形状(突部25)になっている点である。その詳細は、図8(a),(b)において示されている様なV字または、U字の形状となる。なお、図8において、破線26の部分は、受熱板表面22と突部25の麓部分との境界である。    A characteristic part in the second embodiment is a forged groove 24 formed in the heat receiving plate 11 of FIG. That is, the forged grooves 24 are formed radially on the surface of the heat receiving plate 11 with the portion facing the inlet 15 (the working fluid dropping portion 20) as the central portion, as in the first embodiment. Has been. The forged groove 24 has a V-shaped or U-shaped cross section in the circumferential direction with the working fluid dropping portion 20 as a central portion as shown in FIG. And the characteristic part in 2nd Embodiment becomes the shape (projection 25) which the top part of the forge groove | channel 24 formed in this V shape or U shape protruded from the heat-receiving-plate surface 22. It is a point. The details are V-shaped or U-shaped as shown in FIGS. 8A and 8B. In FIG. 8, a portion indicated by a broken line 26 is a boundary between the heat receiving plate surface 22 and the flange portion of the protrusion 25.

このような構成により、鍛造溝24は、作動流体12の流れる方向(作動流体滴下部20から外側へ向かう方向)の左右に大きな壁が形成され大きな受熱面積を確保できることになる。従って、鍛造溝24内を流れる作動流体12は、壁面から効率よく熱を受けて蒸発することになる。すなわち、受熱板11が受けた熱を効率よく作動流体12に伝えて気化するため、冷却装置3内の作動流体12の循環量も大きく確保でき、冷却装置3の冷却効率を高くすることができる。    With such a configuration, the forged groove 24 has a large wall formed on the left and right in the direction in which the working fluid 12 flows (the direction from the working fluid dropping portion 20 to the outside), and can secure a large heat receiving area. Therefore, the working fluid 12 flowing in the forged groove 24 is efficiently evaporated by receiving heat from the wall surface. That is, since the heat received by the heat receiving plate 11 is efficiently transmitted to the working fluid 12 and vaporized, a large amount of circulation of the working fluid 12 in the cooling device 3 can be secured, and the cooling efficiency of the cooling device 3 can be increased. .

また、このような鍛造溝24は、図9に示すように、鍛造工法にて成形される。すなわち、図9(a)に示すように、成形前の受熱板11(例えば、材料として銅を用いた銅板11a)に、鍛造溝24を成形するための鍛造型27でたたくように成形を行う。図9( b)では、鍛造型27が銅板11aに当たって少しへこんだ状態を示している。そして、図9(c)は、鍛造型27が銅板11aに鍛造溝24を形作ったところである。    Further, such forged grooves 24 are formed by a forging method as shown in FIG. That is, as shown in FIG. 9A, the heat receiving plate 11 before molding (for example, a copper plate 11a using copper as a material) is molded so as to be struck with a forging die 27 for molding the forged groove 24. . FIG. 9B shows a state in which the forging die 27 is slightly depressed by hitting the copper plate 11a. FIG. 9C shows that the forging die 27 has formed the forging groove 24 in the copper plate 11a.

この図9(c)で示すように、銅板11aのもとの表面(受熱板表面22)に対し、鍛造溝24は凹んだ状態、突部25は突出した状態になる。鍛造溝24で凹んだ体積と突部25で突出した体積とはほぼ同じになる。すなわち、鍛造溝24をへこませた分だけ突部25が突出し、鍛造溝24の壁面を形成するのである。    As shown in FIG. 9C, the forged groove 24 is recessed and the protrusion 25 is protruded with respect to the original surface (heat receiving plate surface 22) of the copper plate 11a. The volume recessed by the forged groove 24 and the volume projected by the protrusion 25 are substantially the same. That is, the protrusion 25 protrudes as much as the forged groove 24 is dented to form the wall surface of the forged groove 24.

なお、本実施の形態2の受熱板11の成形方法は、鍛造工法に限られるものではなく、切削工法あるいは他の成形方法によっても製作が可能である。    Note that the method of forming the heat receiving plate 11 of the second embodiment is not limited to the forging method, and can be manufactured by a cutting method or other forming methods.

本実施の形態では、鍛造溝24の深さは、周縁部に向かって浅くなる形態を示したが、突部25を形成する鍛造溝24の形態は、この場合に限られるものではない。    In the present embodiment, the depth of the forged groove 24 is shown as becoming shallower toward the peripheral edge, but the shape of the forged groove 24 forming the protrusion 25 is not limited to this case.

例えば、図10に示すように、幅がほぼ一定で、深さもほぼ一定の溝28であってもよい。ただし、図10では、溝28の終点部分で深さがゼロになるようにしている。    For example, as shown in FIG. 10, the groove 28 may have a substantially constant width and a substantially constant depth. However, in FIG. 10, the depth is made zero at the end point of the groove 28.

さらに、図11に示すように、幅が外周側のほうが広い溝29であってもよい。この場合、溝29の深さは一定で、そのまま外周側に設けた作動流体回収部30に流れ出す構成でも良い。    Furthermore, as shown in FIG. 11, the groove 29 may be wider on the outer peripheral side. In this case, the depth of the groove 29 may be constant, and the groove 29 may flow directly to the working fluid recovery unit 30 provided on the outer peripheral side.

また、図12で示すように、受熱板11の形状は、正方形や円形に限られるものではなく、長方形であっても良い。    Moreover, as shown in FIG. 12, the shape of the heat receiving plate 11 is not limited to a square or a circle, and may be a rectangle.

さらに、図13で示すように、受熱板11bの溝21bは、作動流体滴下部20を中央部とした放射状ではない。すなわち、作動流体滴下部20bと作動流体回収部30bは、受熱板11bの両端部近傍に設けられているのである。そして、溝21bは、作動流体滴下部20bから作動流体回収部30bまで、受熱板11bの表面を有効に使って、断面がV字または、U字に形成されている。    Further, as shown in FIG. 13, the groove 21 b of the heat receiving plate 11 b is not radial with the working fluid dropping portion 20 as a central portion. That is, the working fluid dropping part 20b and the working fluid recovery part 30b are provided in the vicinity of both ends of the heat receiving plate 11b. The groove 21b has a V-shaped or U-shaped cross section by effectively using the surface of the heat receiving plate 11b from the working fluid dropping part 20b to the working fluid recovery part 30b.

なお、上記実施の形態では、案内管17を上側に配置し、作動流体滴下部20に向けて作動流体12が落ちるイメージで説明したが、案内管17の出口から出た作動流体12が作動流体滴下部20に向けて流れる、あるいは噴射されるようにして移動するものであればよく、その案内管17、受熱板11の上下関係を限定するものではない。    In the above embodiment, the guide tube 17 is arranged on the upper side and the working fluid 12 falls toward the working fluid dropping unit 20. However, the working fluid 12 that has exited from the outlet of the guide tube 17 is the working fluid. It does not limit the vertical relationship between the guide tube 17 and the heat receiving plate 11 as long as it flows or sprays toward the dropping unit 20.

また、上記実施形態においては、冷却装置3を電気自動車1に適用したものを説明したが、他の電子機器に冷却装置3を適用することも出来る。    Moreover, in the said embodiment, although what applied the cooling device 3 to the electric vehicle 1 was demonstrated, the cooling device 3 can also be applied to another electronic device.

(実施の形態3)
次に、図14を用いて本発明の第3の実施の形態について説明する。
(Embodiment 3)
Next, a third embodiment of the present invention will be described with reference to FIG.

全体の構成は、第1の実施の形態と同じであり、その詳細な説明を省略する。    The overall configuration is the same as that of the first embodiment, and a detailed description thereof is omitted.

図14(a)は受熱板カバー14の上面から見た図であり、図14(b)は受熱板11の溝31の形状を示す断面図であり、図14(c)および図14(d)は受熱板11の溝31、溝32の形状を示す平面図である。    14A is a view as seen from the upper surface of the heat receiving plate cover 14, and FIG. 14B is a cross-sectional view showing the shape of the groove 31 of the heat receiving plate 11, and FIGS. 14C and 14D. ) Is a plan view showing the shapes of the grooves 31 and 32 of the heat receiving plate 11.

第3の実施の形態においての特徴的な部分は、図14(a)、(b)、(c)に示すように、受熱板11は、作動流体滴下部20の放熱体8が接触する部分を最も薄く形成し、その最も薄く形成した部分を中央部として放射状に溝31が形成されている。溝31は、
図14(b)に示すように、始点部(作動流体滴下部20)の溝深さを最も深くし、終点では、その深さと幅がなくなるように溝31の底部に連続した傾斜を設け、終点部に向けて浅くなるように形成し、かつ作動流体回収部30へ連通している。
As shown in FIGS. 14A, 14B, and 14C, the characteristic part in the third embodiment is that the heat receiving plate 11 is a part where the radiator 8 of the working fluid dropping unit 20 contacts. The groove 31 is formed radially with the thinnest portion as the central portion. The groove 31 is
As shown in FIG. 14B, the groove depth of the starting point portion (working fluid dropping portion 20) is the deepest, and at the end point, a continuous slope is provided at the bottom of the groove 31 so that the depth and width disappear. It is formed so as to become shallower toward the end point and communicates with the working fluid recovery unit 30.

また、図14(b)に示すように、溝31の14b−14b断面は、中央部が最も深く端部が作動流体回収部30にそれぞれ連通するような弧形状に形成している。このような溝31は、図6(b)に示すように、切削工法にて成形される。すなわち、銅板等を成形し、おおまかに形をつくった受熱板11の表面に、円形の切削刃23を当てて削ることによって溝31が形成されるのである。    As shown in FIG. 14B, the cross section 14b-14b of the groove 31 is formed in an arc shape in which the central part is deepest and the end part is in communication with the working fluid recovery part 30, respectively. Such grooves 31 are formed by a cutting method as shown in FIG. That is, the groove 31 is formed by shaping a copper plate or the like and scraping the surface of the heat receiving plate 11 roughly formed by applying the circular cutting blade 23.

このような構成により、作動流体滴下部20に滴下された作動流体12は、周方向に広がるのであるが、そのとき、作動流体滴下部20と連通した溝31の内部を、その内壁に薄い膜を形成しながら通っていく。そして溝31によって、伝熱面積が大きく確保されると共に、気化による体積膨張が高速の蒸気流を形成し、高い熱伝達係数を実現することが可能となるのである。言い換えれば、これにより、半導体スイッチング素子10からの熱を大容量の気化潜熱という形で効率的に奪うことができ、高い冷却性能を実現することが可能となる。    With such a configuration, the working fluid 12 dropped on the working fluid dropping section 20 spreads in the circumferential direction. At that time, the inside of the groove 31 communicating with the working fluid dropping section 20 is formed on the inner wall with a thin film. Go through while forming. The groove 31 secures a large heat transfer area and forms a high-speed vapor flow by volume expansion due to vaporization, thereby realizing a high heat transfer coefficient. In other words, this makes it possible to efficiently remove the heat from the semiconductor switching element 10 in the form of large-capacity latent heat of vaporization and realize high cooling performance.

さらに、発熱体と接触する受熱部中央部が最も薄くなることにより、受熱板11に滴下された作動流体12が受熱板11の中央部にて瞬時に気化し、受熱板11の中央部からくぼみ無く平坦に連通した溝31内部を通って、作動流体回収部30へと滞ることなく広がることができ、これにより受熱板11全体から効率的に気化潜熱を奪うことができるため、気化による体積膨張がより高速の蒸気流を形成し、作動流体12の循環量も大きく確保できる。よって、熱伝達係数の向上につながり、より高い冷却性能を実現することが可能となる。    Furthermore, since the central portion of the heat receiving portion that comes into contact with the heating element is the thinnest, the working fluid 12 dropped on the heat receiving plate 11 is instantly vaporized at the central portion of the heat receiving plate 11 and is recessed from the central portion of the heat receiving plate 11. In addition, it can expand without stagnation through the inside of the groove 31 communicated flat and without any delay, thereby efficiently depriving the latent heat of vaporization from the entire heat receiving plate 11. However, it is possible to form a higher-speed steam flow and to secure a large circulation amount of the working fluid 12. Therefore, the heat transfer coefficient is improved and higher cooling performance can be realized.

なお、本実施の形態3の受熱板11の成形方法は、切削工法に限られるものではなく、鍛造工法あるいは他の成形方法によっても製作が可能である。    Note that the method of forming the heat receiving plate 11 of the third embodiment is not limited to the cutting method, and can be manufactured by a forging method or another forming method.

なお、図14(d)に示すように、幅が外周側のほうが広い溝32であってもよい。この場合、溝32の深さは一定で、そのまま外周側に設けた作動流体回収部30に流れ出す構成でも良い。    In addition, as shown in FIG.14 (d), the groove | channel 32 whose width | variety is wider on the outer peripheral side may be sufficient. In this case, the depth of the groove 32 may be constant, and the groove 32 may flow directly to the working fluid recovery unit 30 provided on the outer peripheral side.

また、図15(b)に示すように、溝31の15b−15b断面は最も深く形成した作動流体滴下部から、作動流体回収部へと一定の傾斜を設けるように形成させても良い。
なお、図16に示すように、受熱板11の形状は、正方形や円形に限られるものではなく、たとえば長方形であっても良い。
Further, as shown in FIG. 15 (b), the cross section 15b-15b of the groove 31 may be formed so as to have a certain slope from the deepest formed working fluid dropping part to the working fluid recovery part.
In addition, as shown in FIG. 16, the shape of the heat receiving plate 11 is not limited to a square or a circle, and may be, for example, a rectangle.

(実施の形態4)
図16を用いて本発明の第4の実施の形態について説明する。全体の構成は、第1の実施の形態と同じであり、その詳細な説明を省略する。
(Embodiment 4)
A fourth embodiment of the present invention will be described with reference to FIG. The overall configuration is the same as that of the first embodiment, and a detailed description thereof is omitted.

図16(a)は受熱板11が長方形状のときの受熱板カバー14を上面から見た図であり、図16(b)は作動流体滴下部20と溝33の形状を示す断面図であり、図16(c)は作動流体滴下部20と溝33の形状を示す平面図である。また、図16(b)は溝33の他の形態の図である。    16A is a view of the heat receiving plate cover 14 when the heat receiving plate 11 has a rectangular shape as viewed from above, and FIG. 16B is a cross-sectional view showing the shapes of the working fluid dropping portion 20 and the groove 33. FIG. 16C is a plan view showing the shapes of the working fluid dropping section 20 and the groove 33. FIG. 16B is a diagram of another form of the groove 33.

第4の実施の形態においての特徴的な部分は、図16に示すように、長方形状の受熱板11と、その中央部に長方形状の作動流体滴下部20と、この作動流体滴下部20の周囲に溝33を同形状に複数形成したものであり、この作動流体滴下部20の長手方向は、受 熱板11の長手方向と一致し、この溝33の始点は、作動流体滴下部20の周囲に均等に配され、かつ連通し、終点は、作動流体回収部30の内周縁に均等に配され、かつ連通しているものである。    As shown in FIG. 16, the characteristic part in the fourth embodiment is a rectangular heat receiving plate 11, a rectangular working fluid dropping part 20 at the center thereof, and a working fluid dropping part 20. A plurality of grooves 33 having the same shape are formed around the periphery, and the longitudinal direction of the working fluid dropping part 20 coincides with the longitudinal direction of the heat receiving plate 11, and the starting point of the groove 33 is the working fluid dropping part 20. The end points are evenly arranged and communicated with the inner peripheral edge of the working fluid recovery unit 30.

溝33は、図6(b)に示すように、始点側(作動流体滴下部20側)の溝深さよりも中央部の溝深さを深くし、終点では、深さがなくなるように溝33の底部に連続した傾斜を設けている。また、溝33は、図16(c)に示すように、始点側(作動流体滴下部20側)の幅w1(作動流体滴下部20側を中央部とした周方向の幅)よりも中央部w2が広くなるように形成されている。そして、終点部では、その幅がゼロになるように形成している。    As shown in FIG. 6B, the groove 33 has a groove depth deeper in the center than the groove depth on the start point side (working fluid dropping part 20 side), and at the end point, the groove 33 has no depth. A continuous slope is provided at the bottom. In addition, as shown in FIG. 16C, the groove 33 has a central portion with respect to the width w1 on the starting point side (the working fluid dropping portion 20 side) (the circumferential width with the working fluid dropping portion 20 side as the central portion). It is formed so that w2 becomes wide. And in the end point part, it forms so that the width may become zero.

このような構成により、作動流体滴下部20に滴下された作動流体12は、先ず長方形状の作動流体滴下部20を膜状に瞬時に広がり、そして溝33の内部を、その内壁に薄い膜を形成しながら通っていく。そして、溝33によって、伝熱面積が大きく確保されると共に、気化による体積膨張が高速の蒸気流を形成し、高い熱伝達係数を実現することができ、高い冷却性能を実現することが可能となるのである。    With such a configuration, the working fluid 12 dropped on the working fluid dropping section 20 first spreads the rectangular working fluid dropping section 20 instantaneously in a film shape, and then forms a thin film on the inner wall of the groove 33. Go through while forming. The groove 33 secures a large heat transfer area, and the volume expansion due to vaporization forms a high-speed steam flow, which can realize a high heat transfer coefficient and can realize high cooling performance. It becomes.

また、このとき、各溝が同形状であることにより、溝33を通る蒸気流の圧力損失が等しくなり、各溝を通る蒸気流が受熱板11の全体に均等に広がることができるので、より効果的に大容量の気化潜熱を奪うことができ、高い冷却性能を実現することが可能となる。    Moreover, at this time, since each groove | channel is the same shape, the pressure loss of the steam flow which passes along the groove | channel 33 becomes equal, Since the steam flow which passes each groove | channel can spread equally to the whole heat receiving plate 11, more It is possible to effectively take away large-capacity latent heat of vaporization and realize high cooling performance.

なお、図16(d)に示すように、作動流体滴下部20に連通する内周側よりも、作動流体回収部30と連通する外周側のほうが広くなるよう形成された溝34であってもよい。この場合、溝34の深さは一定で、そのまま外周側に設けた作動流体回収部30に作動流体12が流れ出す構成となる。    In addition, as shown in FIG. 16D, even if the groove 34 is formed so that the outer peripheral side communicating with the working fluid recovery unit 30 is wider than the inner peripheral side communicating with the working fluid dropping unit 20. Good. In this case, the depth of the groove 34 is constant, and the working fluid 12 flows out to the working fluid recovery unit 30 provided on the outer peripheral side as it is.

なお、本実施の形態では、受熱板11、作動流体滴下部20は長方形状としたが、それに限られるものではなく、図16(d)に示すようなそれぞれの形状がたとえば長丸形状でも良い。    In the present embodiment, the heat receiving plate 11 and the working fluid dropping unit 20 are rectangular, but the shape is not limited thereto, and each shape as shown in FIG. .

(実施の形態5)
図17を用いて本発明の第5の実施の形態について説明する。全体の構成は、第1の実施の形態と同じであり、その詳細な説明を省略する。図17は受熱板カバー14に設けた排出口16と放熱経路6の形状を示す断面図である。
(Embodiment 5)
A fifth embodiment of the present invention will be described with reference to FIG. The overall configuration is the same as that of the first embodiment, and a detailed description thereof is omitted. FIG. 17 is a cross-sectional view showing the shape of the discharge port 16 and the heat radiation path 6 provided in the heat receiving plate cover 14.

第5の実施の形態においての特徴的な部分は、図17に示すように、受熱空間13から作動流体12を排出する排出口16と放熱経路6の間に、排出口16と接続する排出口継目35と放熱経路と接続する放熱経路継目36とを備える放熱経路接続部37を設けたものである。    As shown in FIG. 17, the characteristic part in the fifth embodiment is that the discharge port connected to the discharge port 16 is disposed between the discharge port 16 for discharging the working fluid 12 from the heat receiving space 13 and the heat radiation path 6. A heat radiation path connecting portion 37 having a joint 35 and a heat radiation path joint 36 connected to the heat radiation path is provided.

排出口16と排出口16と接続する排出口継目35の流路断面積は等しく、排出口継目35の流路断面積は、放熱経路6よりも大きく、放熱経路6と放熱経路6と接続する放熱経路継目36の流路断面積は等しく形成され、この放熱経路接続部37の断面形状は、排出口継目35から放熱経路継目36へ向けて徐々に放熱経路6の流路断面積に近づくように形成している。    The flow path cross-sectional area of the discharge port seam 35 connected to the discharge port 16 and the discharge port 16 is equal, and the flow path cross-sectional area of the discharge port seam 35 is larger than the heat radiation path 6 and is connected to the heat radiation path 6 and the heat radiation path 6. The cross-sectional area of the heat dissipation path joint 36 is formed to be equal, and the cross-sectional shape of the heat dissipation path connection portion 37 gradually approaches the flow path cross-sectional area of the heat dissipation path 6 from the discharge port joint 35 toward the heat dissipation path joint 36. Is formed.

このような構成により、受熱空間13内で、受熱板11から気化潜熱を奪った蒸気が、放熱経路6へと流れ出るとき、受熱空間13から放熱経路6へ作動流体が移動する際の、経路の急縮小による圧力損失を放熱経路接続部37により低減させることができるため、
排出口16にて作動流体12が滞ることなく、放熱経路6へと移動することができるので、より効果的に作動流体12の循環量も確保でき、高い冷却性能を実現することが可能となる。
With such a configuration, when the steam that has lost the latent heat of vaporization from the heat receiving plate 11 flows out to the heat dissipation path 6 in the heat receiving space 13, the path of the working fluid when moving from the heat receiving space 13 to the heat dissipation path 6 is reduced. Because the pressure loss due to sudden shrinkage can be reduced by the heat dissipation path connecting portion 37,
Since the working fluid 12 can move to the heat radiation path 6 without stagnation at the discharge port 16, the amount of circulation of the working fluid 12 can be secured more effectively, and high cooling performance can be realized. .

なお、本実施の形態では、放熱経路接続部37は、排出口継目35から放熱経路継目36へ向けて徐々に放熱経路6の流路断面積に近づくような形状としたが、それに限られるものではない。    In the present embodiment, the heat radiation path connecting portion 37 has a shape that gradually approaches the flow path cross-sectional area of the heat radiation path 6 from the discharge port joint 35 toward the heat radiation path joint 36, but is not limited thereto. is not.

本発明にかかる冷却装置は、発熱体からの熱を作動流体に伝える受熱板を備えた受熱部と、前記作動流体の熱を放出する放熱部と、前記受熱部と前記放熱部とを接続する放熱経路と帰還経路とで構成し、前記作動流体を、前記受熱部、放熱経路、放熱部、帰還経路、受熱部へと循環させて熱の移動を行う冷却装置であって、前記受熱部は、前記作動流体を受ける受熱板とこの受熱板を覆って受熱空間を形成する受熱板カバーとで構成され、前記受熱板には、前記作動流体を受ける部分を始点として断面がV字型またはU字型の溝を複数形成することで、冷却効果を高めることが出来る。    The cooling device according to the present invention connects a heat receiving portion including a heat receiving plate that transmits heat from the heating element to the working fluid, a heat radiating portion that releases the heat of the working fluid, and the heat receiving portion and the heat radiating portion. A cooling device comprising a heat dissipation path and a return path, wherein the working fluid is circulated to the heat receiving part, the heat dissipation path, the heat dissipation part, the return path, and the heat receiving part to move heat, and the heat receiving part is A heat receiving plate that receives the working fluid and a heat receiving plate cover that covers the heat receiving plate and forms a heat receiving space. The heat receiving plate has a V-shaped or U-shaped cross section starting from a portion that receives the working fluid. The cooling effect can be enhanced by forming a plurality of letter-shaped grooves.

すなわち、本発明においては、作動流体が受熱板上に滴下したときに、溝の内部を膜状に広がると共に、溝の壁面から熱を効率よく受けるので、作動流体は受熱板上で気化しやすく、気化した蒸気は、放熱経路内をスムーズに移動し、放熱部で効率的に凝縮放熱するため、高い冷却効果を達成することが可能となる。    That is, in the present invention, when the working fluid drops on the heat receiving plate, the inside of the groove spreads in a film shape and heat is efficiently received from the wall surface of the groove, so that the working fluid is easily vaporized on the heat receiving plate. The vaporized vapor moves smoothly in the heat dissipation path and efficiently condenses and dissipates heat in the heat dissipation portion, so that a high cooling effect can be achieved.

このため、電気自動車の駆動装置としての電力変換装置に使用されるパワー半導体、高い発熱量を有するCPUなどの冷却に有用である。    For this reason, it is useful for cooling power semiconductors used in power conversion devices as drive devices for electric vehicles, CPUs with high heat generation, and the like.

1 電気自動車
2 インバータ回路
3 冷却装置
4 受熱部
5 放熱部
6 放熱経路
7 帰還経路
8 放熱体
9 送風機
10 半導体スイッチング素子
11 受熱板
11a 銅板
11b 受熱板
12 作動流体
13 受熱空間
14 受熱板カバー
15 流入口
16 排出口
17 案内管
18 逆止弁
20 作動流体滴下部
20b 作動流体滴下部
21 溝
21b 溝
22 受熱板表面
23 切削刃
24 鍛造溝
25 突部
26 破線
27 鍛造型
28 溝
29 溝
30 作動流体回収部
30b 作動流体回収部
31 溝
32 溝
33 溝
34 溝
35 排出口継目
36 放熱経路継目
37 放熱経路接続部
DESCRIPTION OF SYMBOLS 1 Electric vehicle 2 Inverter circuit 3 Cooling device 4 Heat receiving part 5 Heat radiating part 6 Heat radiating path 7 Return path 8 Heat radiating body 9 Blower 10 Semiconductor switching element 11 Heat receiving plate 11a Copper plate 11b Heat receiving plate 12 Working fluid 13 Heat receiving space 14 Heat receiving plate cover 15 Flow Inlet 16 Discharge port 17 Guide tube 18 Check valve 20 Working fluid dropping part 20b Working fluid dropping part 21 Groove 21b Groove 22 Heat receiving plate surface 23 Cutting blade 24 Forged groove 25 Projection 26 Broken line 27 Forging die 28 Groove 29 Groove 30 Working fluid Recovery part 30b Working fluid recovery part 31 groove 32 groove 33 groove 34 groove 35 outlet joint 36 heat radiation path joint 37 heat radiation path connection part

Claims (10)

発熱体からの熱を作動流体に伝える受熱板を備えた受熱部と、
前記作動流体の熱を放出する放熱部と、
前記受熱部と前記放熱部とを接続する放熱経路と帰還経路とで構成し、
前記作動流体を、前記受熱部、放熱経路、放熱部、帰還経路、受熱部へと循環させて熱の移動を行う冷却装置であって、
前記受熱部は、前記作動流体を受ける受熱板とこの受熱板を覆って受熱空間を形成する受熱板カバーとで構成され、
前記受熱板には、前記作動流体を受ける部分を始点として断面がV字型またはU字型の溝を複数形成し
前記帰還経路の前記受熱部側には、前記受熱部内に前記作動流体を供給する案内管を前記受熱空間内に突出させた状態で接続し、
前記受熱部と前記案内管の接続部に逆止弁を設け、
前記逆止弁上に溜まった液化した前記作動流体の水頭による圧力によって前記逆止弁が押し下げられることにより前記作動流体が前記受熱板上に供給され、
供給された前記作動流体は前記案内管の先端と前記受熱板の隙間から外周部へ拡散され前記溝の内壁面に膜として広がり前記受熱板の熱を受けて気化する構成とした冷却装置。
A heat receiving section having a heat receiving plate for transferring heat from the heating element to the working fluid;
A heat dissipating part for releasing the heat of the working fluid;
Consists of a heat dissipation path and a return path connecting the heat receiving section and the heat dissipation section,
A cooling device that circulates the working fluid to the heat receiving part, the heat radiating path, the heat radiating part, the return path, and the heat receiving part to transfer heat,
The heat receiving part is composed of a heat receiving plate that receives the working fluid and a heat receiving plate cover that covers the heat receiving plate and forms a heat receiving space,
The heat receiving plate is formed with a plurality of grooves having a V-shaped or U-shaped cross section starting from a portion that receives the working fluid ,
A guide pipe that supplies the working fluid into the heat receiving part is connected to the heat receiving part side of the return path in a state of protruding into the heat receiving space,
A check valve is provided at the connection between the heat receiving portion and the guide tube,
The working fluid is supplied onto the heat receiving plate by the check valve being pushed down by the pressure of the head of the liquefied working fluid accumulated on the check valve,
The cooling apparatus configured to diffuse the supplied working fluid from the gap between the tip of the guide tube and the heat receiving plate to the outer peripheral portion, spread as a film on the inner wall surface of the groove, and vaporize by receiving heat from the heat receiving plate .
前記溝は、始点部分が浅く、中央付近で最も深く、終点部分に向けて浅くなるように形成した請求項1記載の冷却装置。  The cooling device according to claim 1, wherein the groove has a shallow start point, is deepest near the center, and is shallow toward the end point. 前記溝の始点部分が最も深く、終点部分に向けて浅くなるように形成した請求項1記載の冷却装置。  The cooling device according to claim 1, wherein the start point portion of the groove is deepest and is shallow toward the end point portion. 前記溝の両サイドに盛り上げた壁を設けた請求項1〜3いずれか一つに記載の冷却装置。  The cooling device according to claim 1, wherein raised walls are provided on both sides of the groove. 前記受熱板の前記作動流体を受ける部分に、椀状にくぼみを設けた請求項1〜4いずれか一つに記載の冷却装置。  The cooling device as described in any one of Claims 1-4 which provided the hollow in the part which receives the said working fluid of the said heat receiving plate. 前記溝は、前記作動流体を受ける部分を中央部として放射状に設けた請求項1〜5いずれか一つに記載の冷却装置。  The cooling device according to any one of claims 1 to 5, wherein the groove is provided radially with a portion that receives the working fluid as a central portion. 前記溝は、前記作動流体を受ける部分を中央部として周囲に同形状で形成した請求項1〜いずれか一つに記載の冷却装置。 The said groove | channel is a cooling device as described in any one of Claims 1-6 formed in the circumference | surroundings by making the part which receives the said working fluid into a center part. 前記受熱板カバーは、前記放熱経路と接続する排出口を備え、前記排出口の断面積が、前記放熱経路の流路断面積よりも大きく形成したことを特徴とする請求項1〜いずれかひとつに記載の冷却装置。 The heat-receiving plate cover is provided with an outlet connected to said heat dissipation path, the cross-sectional area of the outlet, any one of claims 1-7, characterized in that is formed to be larger than the flow path cross-sectional area of the heat dissipation path The cooling device according to one. 請求項1〜いずれか一つに記載の冷却装置を備えたことを特徴とする電子機器。 An electronic apparatus comprising the cooling device according to any one claims 1-8. 請求項1〜いずれか一つに記載の冷却装置を備えたことを特徴とする電気自動車。 Electric vehicle characterized by comprising a cooling apparatus according to any one claims 1-8.
JP2012136610A 2011-06-29 2012-06-18 COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR Active JP6047752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012136610A JP6047752B2 (en) 2011-06-29 2012-06-18 COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011144037 2011-06-29
JP2011144037 2011-06-29
JP2012136610A JP6047752B2 (en) 2011-06-29 2012-06-18 COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR

Publications (2)

Publication Number Publication Date
JP2013032904A JP2013032904A (en) 2013-02-14
JP6047752B2 true JP6047752B2 (en) 2016-12-21

Family

ID=47423667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012136610A Active JP6047752B2 (en) 2011-06-29 2012-06-18 COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR

Country Status (2)

Country Link
JP (1) JP6047752B2 (en)
WO (1) WO2013001735A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5957686B2 (en) * 2012-01-13 2016-07-27 パナソニックIpマネジメント株式会社 COOLING DEVICE AND ELECTRONIC DEVICE AND ELECTRIC CAR HAVING THE SAME
WO2018043442A1 (en) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 Cooling device and electronic equipment using same
WO2018047530A1 (en) 2016-09-09 2018-03-15 株式会社デンソー Device temperature adjusting apparatus
DE112017004529T5 (en) 2016-09-09 2019-05-29 Denso Corporation DEVICE TEMPERATURE REGULATOR
JP2020106209A (en) * 2018-12-27 2020-07-09 川崎重工業株式会社 Evaporator and loop-type heat pipe
CN111520930B (en) * 2020-05-07 2021-11-16 中国民航大学 Frozen soil area refrigerating device adopting semiconductor heat pipe
JP7535392B2 (en) * 2020-06-24 2024-08-16 川崎重工業株式会社 Evaporator and loop type heat pipe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704200B2 (en) * 2002-02-12 2004-03-09 Hewlett-Packard Development Company, L.P. Loop thermosyphon using microchannel etched semiconductor die as evaporator
JP2003307395A (en) * 2002-04-17 2003-10-31 Saginomiya Seisakusho Inc Heat pipe
JP2005019905A (en) * 2003-06-30 2005-01-20 Matsushita Electric Ind Co Ltd Cooler
US7434308B2 (en) * 2004-09-02 2008-10-14 International Business Machines Corporation Cooling of substrate using interposer channels
JP5151362B2 (en) * 2007-09-28 2013-02-27 パナソニック株式会社 COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
JP4978401B2 (en) * 2007-09-28 2012-07-18 パナソニック株式会社 Cooling system

Also Published As

Publication number Publication date
JP2013032904A (en) 2013-02-14
WO2013001735A1 (en) 2013-01-03

Similar Documents

Publication Publication Date Title
JP6047752B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
US20150181756A1 (en) Cooling device, electric automobile and electronic device equipped with said cooling device
JP2001094023A (en) Cooler for electronic device
TW200537068A (en) Multiple evaporator heat pipe assisted heat sink
JP2014143417A (en) Integrated thin film evaporation thermal spreader and planar heat pipe heat sink
US20130255920A1 (en) Ebullient cooling device
CA2907056A1 (en) Heat pipe assembly with bonded fins on the baseplate hybrid
JP7022402B2 (en) Boiling cooling device
US10982906B2 (en) Heat pipe with non-condensable gas
CN211457781U (en) Air-cooled plate type phase change radiator
JP2006310739A (en) Cooling apparatus for electronic equipment
JP6171164B2 (en) COOLING DEVICE AND ELECTRIC CAR AND ELECTRONIC DEVICE EQUIPPED WITH THE SAME
JP2014048002A (en) Cooling device, electric vehicle equipped with the same, and electronic apparatus equipped with the same
JP6028232B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
CN110678044A (en) Air-cooled plate type phase change radiator
JP5887479B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP5903549B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
KR101242612B1 (en) Thermoelectric Power Generation System
JP5994103B2 (en) COOLING DEVICE AND ELECTRIC CAR AND ELECTRONIC DEVICE EQUIPPED WITH THE SAME
JP6035513B2 (en) Cooling device and electric vehicle equipped with the same
TWI802834B (en) Fluid cooling type heat dissipation module
JP5938574B2 (en) Cooling device and electric vehicle equipped with the same
JP2018031557A (en) Cooling device and electric equipment mounting the same, and electric car
JP6205575B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP2020034257A (en) Self-excited vibration heat pipe cooling device and railway vehicle mounted with self-excited vibration heat pipe cooling device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R151 Written notification of patent or utility model registration

Ref document number: 6047752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151