JP2001207207A - Double pipe tuyere for blowing hydrocarbon - Google Patents

Double pipe tuyere for blowing hydrocarbon

Info

Publication number
JP2001207207A
JP2001207207A JP2000016049A JP2000016049A JP2001207207A JP 2001207207 A JP2001207207 A JP 2001207207A JP 2000016049 A JP2000016049 A JP 2000016049A JP 2000016049 A JP2000016049 A JP 2000016049A JP 2001207207 A JP2001207207 A JP 2001207207A
Authority
JP
Japan
Prior art keywords
tuyere
ratio
tube
pipe
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000016049A
Other languages
Japanese (ja)
Other versions
JP3788158B2 (en
Inventor
Yoshihiko Higuchi
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000016049A priority Critical patent/JP3788158B2/en
Publication of JP2001207207A publication Critical patent/JP2001207207A/en
Application granted granted Critical
Publication of JP3788158B2 publication Critical patent/JP3788158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shape of a double pipe tuyere which is capable of suppressing the flow rate of the inert gas to be passed to an outer pipe of the double pipe tuyere as far as possible. SOLUTION: (1) The double pipe tuyere for blowing hydrocarbon from an inner pipe and the inert gas from the outer pipe, respectively, into molten metal is 0.08 to 2.0 in the ratio S/So of the flow passage sectional area So (m2) of the inner pipe and the flow passage sectional area S (m2) of the outer pipe and (2) the (S+/So)/St determined by using the total sectional area St (m2) of the tuyere satisfies 0.08 to 0.8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融金属中に炭化
水素を吹き込むための二重管羽口に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double tube tuyere for blowing hydrocarbons into molten metal.

【0002】[0002]

【従来の技術】転炉で脱炭精錬を効率よく進行させるた
めに、溶鋼の攪拌を強化するのが有効であることは広く
知られている。そのため、現在の転炉は主な酸素供給源
である上吹きランスに加えて、溶鋼の攪拌を目的として
底吹き羽口を設置し、酸素、炭化水素、不活性ガス(A
r、N2 、CO、CO2 等)をこの底吹き羽口を通して
溶鋼に吹き込んでいる。底吹き羽口から酸素を吹き込む
場合は多量の反応熱が発生しノズル溶損のおそれがある
ので、ノズル溶損を防止するために酸素流量の10%以
下の流量のメタン、プロパン、ブタンなどの炭化水素を
併用して、二重管の内管から酸素、外管から炭化水素を
吹き込むのが一般的である。
2. Description of the Related Art It is widely known that it is effective to enhance the stirring of molten steel in order to efficiently advance decarburization refining in a converter. For this reason, the current converter is equipped with a bottom-blowing tuyere for the purpose of stirring molten steel in addition to the top-blowing lance, which is the main oxygen supply source, to provide oxygen, hydrocarbons, and inert gas (A
r, N 2 , CO, CO 2, etc.) are blown into the molten steel through the tuyere. When oxygen is blown from the bottom tuyere, a large amount of reaction heat is generated and there is a risk of nozzle erosion. To prevent nozzle erosion, methane, propane, butane, etc. with a flow rate of 10% or less of the oxygen flow rate is used. Generally, oxygen is blown from the inner tube and hydrocarbons are blown from the outer tube of the double tube in combination with hydrocarbons.

【0003】この炭化水素が分解する際の吸熱反応を利
用することにより、酸素による発熱反応を熱収支上相殺
することが可能となり、底吹き羽口の溶損を防止するこ
とができる。したがって、従来技術では炭化水素を大量
に吹き込むことは試みられておらず、たとえ吹き込んだ
としても過冷却により羽口耐火物が熱応力を受けて割れ
たり、羽口先端部に溶融金属の凝固塊が生成することが
原因で羽口が詰まったりするため安定して炭化水素を吹
き込むことが困難であった。
[0003] By utilizing the endothermic reaction when the hydrocarbon is decomposed, the exothermic reaction due to oxygen can be offset on the heat balance, and the bottom blown tuyere can be prevented from being damaged. Therefore, the prior art does not attempt to inject a large amount of hydrocarbons, and even if it is injected, the tuyere refractory receives thermal stress due to supercooling and breaks, or a molten metal solidified mass at the tuyere tip. It is difficult to stably inject hydrocarbons because the tuyere is clogged due to the formation of ash.

【0004】発明者らは特開平11−172319号公
報に、二重管羽口の内管から炭化水素を、外管から不活
性ガスなどの断熱性ガスを吹き込む方法を提案した。こ
の提案により高価な不活性ガスに代えて安価な炭化水素
を大量に吹き込むことが可能となり、溶融金属の混合が
促進され、精錬の高速化を図ることが可能となった。
The present inventors have proposed in Japanese Patent Application Laid-Open No. H11-172319 a method in which hydrocarbon is blown from the inner tube of a double-tube tuyere and a heat-insulating gas such as an inert gas is blown from an outer tube. According to this proposal, a large amount of inexpensive hydrocarbons can be blown in place of expensive inert gas, the mixing of molten metal is promoted, and the speed of refining can be increased.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、精錬の
高速化ニーズがさらに高まり、炭化水素の吹き込み量が
増加傾向にあり、内管の炭化水素の断熱に必要な外管の
不活性ガスの吹き込み量もコストの面から限界にきてお
り、外管の不活性ガス流量を可能な限り抑制することが
望まれていた。
However, the need for high-speed refining has further increased, and the amount of hydrocarbon injected has been increasing, and the amount of inert gas injected into the outer pipe required for heat insulation of the inner pipe hydrocarbons has been increasing. Has also reached its limit in terms of cost, and it has been desired to suppress the flow rate of the inert gas in the outer tube as much as possible.

【0006】本発明の目的は、二重管羽口の外管に流す
不活性ガス流量を可能な限り抑制できる二重管羽口の形
状を提供することにある。
An object of the present invention is to provide a shape of a double tube tuyere capable of suppressing the flow rate of an inert gas flowing through the outer tube of the double tube tuyere as much as possible.

【0007】[0007]

【課題を解決するための手段】本発明者は、下記の知見
を得た。
The present inventors have obtained the following findings.

【0008】(A)内管に流す炭化水素(以下、単に内
管炭化水素ともいう、また同様に外管に流す不活性ガス
を外管不活性ガスともいう)は炭化水素供給元配管から
流量調節弁を通過した後に羽口へ導入され、最終的に羽
口先端部から溶鉄内部に吹き込まれる。この流量調節弁
出口から羽口にかけての圧力を羽口前圧と定義する。し
たがって、同一流量の内管炭化水素を流していても、羽
口先端部に巨大なマッシュルームが形成された場合に
は、羽口前圧は上昇する。
(A) The hydrocarbon flowing through the inner pipe (hereinafter simply referred to as the inner pipe hydrocarbon, and the inert gas flowing through the outer pipe is also referred to as the outer pipe inert gas) flows from the hydrocarbon supply pipe. After passing through the control valve, it is introduced into the tuyere and finally blown into the molten iron from the tuyere tip. The pressure from the flow control valve outlet to the tuyere is defined as the tuyere pre-pressure. Therefore, even when the inner pipe hydrocarbons having the same flow rate are flowing, if a huge mushroom is formed at the tuyere tip, the tuyere pre-pressure increases.

【0009】(B)内管炭化水素の羽口前圧を約0.6
MPaに維持できる内管断面積Soと外管断面積Sとの
比(S/So)と、外管不活性ガス流量Qと内管炭化水
素流量Qoとの比(Q/Qo)との関係を試験調査し
た。
(B) The tuyere pre-pressure of the inner pipe hydrocarbon is set to about 0.6
Relationship between the ratio (S / So) of the inner pipe cross-sectional area So and the outer pipe cross-sectional area S that can be maintained at MPa, and the ratio (Q / Qo) of the outer pipe inert gas flow rate Q and the inner pipe hydrocarbon flow rate Qo Was investigated.

【0010】なお、内管炭化水素の羽口前圧を約0.6
MPaに維持できると、羽口が安定することが事前の試
験結果でわかっており、羽口前圧を約0.6MPa一定
とした。
The tuyere pre-pressure of the inner pipe hydrocarbon is set to about 0.6.
It is known from preliminary test results that the tuyere is stable when the tuyere can be maintained, and the tuyere pre-pressure was kept constant at about 0.6 MPa.

【0011】また、内管断面積Soと外管断面積Sとの
比(S/So)を以下、単に流路面積比ともいう。
The ratio (S / So) of the inner pipe cross-sectional area So to the outer pipe cross-sectional area S is hereinafter simply referred to as a flow path area ratio.

【0012】さらに、外管不活性ガス流量Qと内管炭化
水素流量Qoとの比(Q/Qo)を以下、単に外管流量
比ともいう。
Further, the ratio (Q / Qo) between the outer pipe inert gas flow rate Q and the inner pipe hydrocarbon flow rate Qo is hereinafter simply referred to as the outer pipe flow rate ratio.

【0013】図1は、流路面積比(S/So)と外管流
量比(Q/Qo)との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the flow path area ratio (S / So) and the outer pipe flow rate ratio (Q / Qo).

【0014】同図に示すように、流路面積比(S/S
o)が0.08未満ではPを約0.6MPaに維持する
ための外管流量比が大きく、S/Soが2を超えると外
管の断面積が大きくなり過ぎてPを約0.6MPaに維
持するための外管流量比はやはり増大することがわかっ
た。
As shown in FIG. 1, the flow path area ratio (S / S
When o) is less than 0.08, the outer pipe flow ratio for maintaining P at about 0.6 MPa is large, and when S / So exceeds 2, the cross-sectional area of the outer pipe becomes too large and P becomes about 0.6 MPa. It was also found that the outer pipe flow ratio for maintaining the pressure increased.

【0015】図2は、羽口前圧が約0.6MPa一定、
外管流量比(Q/Qo)が0.05一定条件下における
流路面積比(S/So)と羽口損耗速度指数との関係を
示すグラフである。
FIG. 2 shows that the tuyere front pressure is constant at about 0.6 MPa,
It is a graph which shows the relationship between the flow path area ratio (S / So) and the tuyere wear rate index under the condition that the outer pipe flow rate ratio (Q / Qo) is constant at 0.05.

【0016】なお、羽口損耗速度指数は流路面積比(S
/So)が0.5であり、外管流量比(Q/Qo)が
0.0035であるときの羽口損耗速度(mm/チャー
ジ)を1とした指数である。
It should be noted that the tuyere wear rate index is determined by the flow path area ratio (S
/ So) is 0.5 and the tuyere wear rate (mm / charge) is 1 when the outer tube flow ratio (Q / Qo) is 0.0035.

【0017】同図に示すように、比(S/So)が2以
下では羽口損耗速度指数は、約1であったが、2を超え
ると急激に大きくなった。
As shown in FIG. 1, when the ratio (S / So) is 2 or less, the tuyere wear rate index is about 1, but when it exceeds 2, the tuyere abrasion rate index increases rapidly.

【0018】図1および2から、羽口損耗を抑制しなが
ら外管流量比を抑制するためには流路面積比(S/S
o)が0.08〜2.0とするのが良いことがわかっ
た。また、流路面積比(S/So)の好ましい範囲は
0.1〜1.2である。
From FIGS. 1 and 2, it can be seen that the flow path area ratio (S / S
It has been found that o) is preferably set to 0.08 to 2.0. The preferable range of the flow path area ratio (S / So) is 0.1 to 1.2.

【0019】また、金物を含む全断面積:Stと羽口断
面積:S+Soとの比((S+So)/St)と、羽口
損耗速度指数とが関係することを見出した。
Further, it has been found that the ratio ((S + So) / St) of the total cross-sectional area including the hardware: St to the tuyere cross-sectional area: S + So is related to the tuyere wear rate index.

【0020】なお、金物を含む全断面積:Stと羽口断
面積:S+Soとの比((S+So)/St)を以下、
単に流路断面比ともいう。
The ratio ((S + So) / St) of the total cross-sectional area including hardware: St to the tuyere cross-sectional area: S + So is as follows.
It is simply referred to as a flow path cross-sectional ratio.

【0021】図3は、流路面積比(S/So)が0.5
一定、外管流量比(Q/Qo)が0.05一定条件下に
おける流路断面比((S+So)/St)と羽口損耗速
度指数との関係を示すグラフである。
FIG. 3 shows that the flow path area ratio (S / So) is 0.5
It is a graph which shows the relationship between the flow path cross-sectional ratio ((S + So) / St) and the tuyere wear rate index under the condition that the outer pipe flow rate ratio (Q / Qo) is constant at 0.05.

【0022】同図に示すように、比((S+So)/S
t)が0.08〜0.8の範囲でさらに羽口損耗速度指
数が低下することがわかった。
As shown in the figure, the ratio ((S + So) / S
It was found that the tuyere wear rate index further decreased when t) was in the range of 0.08 to 0.8.

【0023】図4は、外管流量比(Q/Qo)が0.0
5一定条件下における羽口損耗速度指数と、流路面積比
(S/So)および流路断面比((S+So)/St)
との関係を示すグラフである。
FIG. 4 shows that the outer pipe flow rate ratio (Q / Qo) is 0.0
5 Tuyere wear rate index under constant conditions, flow path area ratio (S / So) and flow path cross-sectional ratio ((S + So) / St)
6 is a graph showing a relationship with the graph.

【0024】なお、図中×印は、羽口損耗速度指数が3
以上であることを、図中○印は羽口損耗速度指数が0.
7以上1.5未満であることを、図中◎印は羽口損耗速
度(指数)0.7未満であることをそれぞれ示す。
In the figure, the x mark indicates that the tuyere wear rate index is 3
The circles in the figure indicate that the tuyere attrition rate index is 0.
In the drawing, the symbol ◎ indicates that the tuyere is worn and the rate of wear (index) is less than 0.7.

【0025】以上から、羽口損耗速度指数を1.5未満
に低下するには流路面積比(S/So)を0.08〜
2.0とする必要があること、さらに羽口損耗速度指数
を0.7未満に低下するには、流路断面比((S+S
o)/St)を0.08〜0.8とすることが有効であ
ることがわかった。
From the above, in order to reduce the tuyere wear rate index to less than 1.5, the flow path area ratio (S / So) must be 0.08 to 0.08.
In order to reduce the tuyere wear rate index to less than 0.7, it is necessary to set the flow path cross-sectional ratio ((S + S
It was found that setting o) / St) to 0.08 to 0.8 was effective.

【0026】本発明は、以上の知見に基づいてなされた
もので、その要旨は、下記のとおりである。 (1)炭化水素を内管から、不活性ガスを外管からそれ
ぞれ溶融金属中に吹き込むための二重管羽口であって、
内管の流路断面積So(m2)と外管の流路断面積S
(m2)との比S/Soが0.08〜2.0であることを
特徴とする炭化水素吹き込み用二重管羽口。 (2)羽口全断面積St(m2)を用いて求まる(S+S
o)/Stが0.08〜0.8を満足することを特徴と
する上記(1)に記載の炭化水素吹込み用二重管羽口。
The present invention has been made based on the above findings, and the gist thereof is as follows. (1) A double tube tuyere for blowing a hydrocarbon from an inner tube and an inert gas from an outer tube into a molten metal,
Channel cross-sectional area So (m 2 ) of inner pipe and channel cross-sectional area S of outer pipe
A double-tube tuyere for blowing hydrocarbons, wherein the ratio S / So to (m 2 ) is 0.08 to 2.0. (2) It is obtained using the tuyere's total cross-sectional area St (m 2 ) (S + S
o) The double-tube tuyere for hydrocarbon injection according to the above (1), wherein / St satisfies 0.08 to 0.8.

【0027】[0027]

【発明の実施の形態】本発明の二重管は、例えば上底吹
き転炉の炉底羽口に適用される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The double tube of the present invention is applied to, for example, a bottom tuyere of a top-bottom blowing converter.

【0028】図5(a)、(b)は、本発明の二重管の
構成を概念的に示す断面図であり、図5(a)は通常型
二重管羽口を、図5(b)は外管分割型二重管をそれぞ
れ示す。
FIGS. 5 (a) and 5 (b) are cross-sectional views conceptually showing the structure of the double pipe of the present invention. FIG. 5 (a) shows a normal double pipe tuyere, and FIG. b) shows an outer tube split type double tube, respectively.

【0029】なお、黒色で示した範囲は炭化水素および
不活性ガスの流路を、白色で示した範囲は羽口の金物を
それぞれ示す。
The range shown in black represents the flow path of the hydrocarbon and the inert gas, and the range shown in white represents the hardware of the tuyere.

【0030】図5(a)に示す通常型二重管は、内管お
よび外管から構成される。
The ordinary double pipe shown in FIG. 5A is composed of an inner pipe and an outer pipe.

【0031】図5(b)に示す外管分割型二重管は、内
管とその回りに外管に相当する衛星状に存在する小径管
で構成される。
The outer tube split type double tube shown in FIG. 5B is composed of an inner tube and a small-diameter tube surrounding the inner tube corresponding to the outer tube.

【0032】本発明によれば内管と外管はそれぞれ流量
調節弁を介して炭化水素供給元配管および不活性ガス供
給元配管に連結されている。
According to the present invention, the inner pipe and the outer pipe are respectively connected to the hydrocarbon supply pipe and the inert gas supply pipe via the flow control valves.

【0033】本発明の内管の流路断面積So(m2)は、
図5(a)の中心部にある黒色の円を、図5(b)の中
心部にある黒色円をそれぞれ示す。
The flow passage cross-sectional area So (m 2 ) of the inner tube of the present invention is:
A black circle at the center of FIG. 5A is shown, and a black circle at the center of FIG. 5B is shown.

【0034】本発明の外管の流路断面積S(m2)は、図
5(a)の黒色リング面積を、 図5(b)の黒色衛星
状の円の総面積をそれぞれ示す。
The flow path cross-sectional area S (m 2 ) of the outer tube of the present invention indicates the black ring area in FIG. 5A and the total area of the black satellite-like circle in FIG. 5B, respectively.

【0035】また、本発明の羽口全断面積St(m2
は、図5(a)、(b)の黒色で示した範囲の炭化水素
および不活性ガスの流路面積と白色で示した範囲の羽口
金物面積との合計面積である。
Further, the tuyere total cross-sectional area St (m 2 ) of the present invention.
5A and 5B are the total area of the flow channel area of the hydrocarbon and the inert gas in the range shown in black and the tuyere hardware area in the range shown in white.

【0036】本発明の二重管羽口では、内管に炭化水
素、外管に不活性ガスを導入する。
In the double tube tuyere of the present invention, hydrocarbon is introduced into the inner tube and inert gas is introduced into the outer tube.

【0037】使用する炭化水素はCH4 、C26 、C
38 、C410などを単独あるいは混合して用いるこ
とができる。
The hydrocarbons used are CH 4 , C 2 H 6 , C
3 H 8 , C 4 H 10 and the like can be used alone or as a mixture.

【0038】使用する不活性ガスはAr、N2 、CO、
CO2 などを単独あるいは混合して用いることができ
る。
The inert gas used is Ar, N 2 , CO,
CO 2 or the like can be used alone or as a mixture.

【0039】本発明の二重管羽口は、羽口前圧を約0.
6MPaに維持するように操業管理することが好ましい
が、0.3〜0.9MPaの範囲であればよい。
The double-tube tuyere of the present invention has a tuyere pre-pressure of about 0.5.
The operation management is preferably performed so as to maintain the pressure at 6 MPa, but may be in the range of 0.3 to 0.9 MPa.

【0040】羽口前圧の測定は、流量調節弁出口から羽
口にかけての配管圧力を測定できる気体の圧力測定機器
なら何でも可能であり、例えばブルドン管圧力計、ダイ
ヤフラム型圧力計が使用できる。
The tuyere pre-pressure can be measured by any gas pressure measuring device capable of measuring the pipe pressure from the flow control valve outlet to the tuyere. For example, a Bourdon tube pressure gauge or a diaphragm type pressure gauge can be used.

【0041】また、本発明の二重管羽口は、上底吹き転
炉の底吹き羽口、各種精錬炉の横吹き・底吹き羽口また
はインジェクションランスのノズル等に適用できる。
The double-tube tuyere of the present invention can be applied to a bottom-blowing tuyere of an upper-bottom-blowing converter, a side-blowing / bottom-blowing tuyere of various refining furnaces, or a nozzle of an injection lance.

【0042】[0042]

【実施例】表1に示す代表成分の溶銑250質量トン
(温度:1200〜1300℃)を転炉に装入し、酸素
ガスを850m3(標準状態)/minでランス(6孔、傾斜
角15度、スロート径48mm、ランス高さ2.5m)か
ら溶鉄に上吹き吹錬した。
EXAMPLE A 250 mass ton (temperature: 1200 to 1300 ° C.) of hot metal of a representative component shown in Table 1 was charged into a converter, and oxygen gas was supplied at 850 m 3 (standard condition) / min by a lance (6 holes, inclination angle). (15 degrees, throat diameter 48 mm, lance height 2.5 m).

【0043】[0043]

【表1】 [Table 1]

【0044】上吹き吹錬時に転炉炉底に設けた4本の羽
口から各羽口毎に内管に炭化水素としてLPGを5m
3(標準状態)/min、外管に不活性ガスとしてCO2
外管断面積1m2当たりの流量で9000m3(標準状態)
/minを流し、[C]:0.05%になるまで吹錬した。
At the time of the upper blowing, four tuyeres provided at the bottom of the converter furnace provided 5 m of LPG as hydrocarbons in the inner tube for each tuyere.
3 (standard state) / min, CO 2 as an inert gas in the outer pipe is 9000 m 3 (standard state) at a flow rate per 1 m 2 of outer pipe cross-sectional area
/ min, and blown until [C]: 0.05%.

【0045】表2に、上記条件下で試験を行ったときの
試験結果を示す。
Table 2 shows the test results when the test was performed under the above conditions.

【0046】[0046]

【表2】 [Table 2]

【0047】表中の流路面積比(S/So)の評価は、
適正範囲の0.08〜2.0に入る試験番号に○を、こ
の適正範囲に外れた試験番号に×を付けた。
The evaluation of the flow path area ratio (S / So) in the table is as follows.
A test number that falls within the appropriate range of 0.08 to 2.0 is marked with a circle, and a test number that falls outside the proper range is marked with a cross.

【0048】流路断面比((S+So)/St)の評価
は、適正範囲の0.08〜0.8に入る試験番号に○
を、この適正範囲に外れた試験番号に×を付けた。
The evaluation of the flow path cross-sectional ratio ((S + So) / St) is based on the test numbers that fall within the appropriate range of 0.08 to 0.8.
, A test number out of this appropriate range was marked with a cross.

【0049】外管流量比が0.05以上の場合に減量効
果不良として×を、0.05未満の場合に減量効果良好
として○を付けた。
When the outer pipe flow rate ratio was 0.05 or more, the weight loss effect was poor, and when it was less than 0.05, the weight loss effect was good.

【0050】なお、羽口損耗速度指数は、試験番号1の
羽口損耗速度を1とした相対値である。
The tuyere attrition rate index is a relative value with the tuyere attrition rate of test No. 1 as 1.

【0051】また、羽口損耗速度指数は、1.0超に損
耗が悪化したとして×を、0.8〜1.0に現状レベル
として○を、0.8未満に現状改善レベルとして◎をそ
れぞれ付けた。
The tuyere abrasion rate index indicates that the abrasion has deteriorated to more than 1.0, indicates that the abrasion has deteriorated. I attached each.

【0052】総合評価では、外管流量比が○で、かつ羽
口損耗速度指数が○である試験番号に○を付けた。
In the overall evaluation, the test number in which the outer tube flow rate ratio was ○ and the tuyere wear rate index was ○ was marked with ○.

【0053】また、外管流量比○で、かつ羽口損耗速度
指数の評価が◎である試験番号に◎を付けた。
In addition, ◎ was given to the test number in which the outer tube flow rate ratio was ○ and the tuyere wear rate index was evaluated as ◎.

【0054】表2に示すように、流路面積比(S/S
o)が0.08〜2.0である試験番号4〜9および1
4〜20は、外管流量比を0.5未満にすることがで
き、、試験番号17〜19を除く羽口損耗速度指数を
0.8〜1.0の現状レベルに維持できた。
As shown in Table 2, the flow path area ratio (S / S
Test numbers 4 to 9 and 1 where o) is 0.08 to 2.0
In Nos. 4 to 20, the outer pipe flow ratio was less than 0.5, and the tuyere wear rate index excluding Test Nos. 17 to 19 was maintained at the current level of 0.8 to 1.0.

【0055】また、流路面積比(S/So)が0.08
〜2.0であり、流路断面比((S+So)/St)が
0.08〜0.8である試験番号17〜19は、外管流
量比を0.05未満にすることができると共に、羽口損
耗速度指数を0.8未満の現状改善レベルにすることが
できた。
Further, the flow path area ratio (S / So) is 0.08
Test numbers 17 to 19, in which the flow path cross-sectional ratio ((S + So) / St) is 0.08 to 0.8, can reduce the outer pipe flow ratio to less than 0.05. The tuyere attrition rate index was able to be improved to the present level of less than 0.8.

【0056】[0056]

【発明の効果】本発明により、二重管羽口の外管に流す
不活性ガス流量を可能な限り抑制することが可能となっ
た。さらに、羽口損耗速度も低減することも可能となっ
た。
According to the present invention, the flow rate of the inert gas flowing through the outer tube of the double tube tuyere can be suppressed as much as possible. Further, the tuyere wear rate can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】流路面積比(S/So)と外管流量比(Q/Q
o)との関係を示すグラフである。
FIG. 1: Flow area ratio (S / So) and outer pipe flow rate ratio (Q / Q)
6 is a graph showing the relationship with o).

【図2】羽口前圧が約0.6MPa一定、外管流量比
(Q/Qo)が0.05一定条件下における流路面積比
(S/So)と羽口損耗速度指数との関係を示すグラフ
である。
FIG. 2 shows the relationship between the channel area ratio (S / So) and the tuyere wear rate index under the condition that the tuyere pre-pressure is constant at about 0.6 MPa and the outer pipe flow rate ratio (Q / Qo) is constant at 0.05. FIG.

【図3】流路面積比(S/So)が0.5一定、外管流
量比(Q/Qo)が0.05一定条件下における流路断
面比((S+So)/St)と羽口損耗速度指数との関
係を示すグラフである。
FIG. 3 shows the flow path cross-sectional ratio ((S + So) / St) and the tuyere when the flow path area ratio (S / So) is constant at 0.5 and the outer pipe flow rate ratio (Q / Qo) is constant at 0.05. It is a graph which shows the relationship with a wear rate index.

【図4】外管流量比(Q/Qo)が0.05一定条件下
における羽口損耗速度指数と、流路面積比(S/So)
および流路断面比((S+So)/St)との関係を示
すグラフである。
FIG. 4 is a tuyere wear rate index and a flow path area ratio (S / So) under the condition that an outer pipe flow ratio (Q / Qo) is constant at 0.05.
6 is a graph showing a relationship between the flow rate and a flow path cross-sectional ratio ((S + So) / St).

【図5】図5(a)、(b)は、本発明の二重管の構成
を概念的に示す断面図であり、図5(a)は通常型二重
管羽口を、図5(b)は外管分割型二重管をそれぞれ示
す。
5 (a) and 5 (b) are cross-sectional views conceptually showing the structure of the double pipe of the present invention. FIG. 5 (a) shows a normal double pipe tuyere, and FIG. (B) shows an outer tube split type double tube, respectively.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素を内管から、不活性ガスを外管
からそれぞれ溶融金属中に吹き込むための二重管羽口で
あって、内管の流路断面積So(m2)と外管の流路断面
積S(m2)との比S/Soが0.08〜2.0であるこ
とを特徴とする炭化水素吹き込み用二重管羽口。
1. A double tube tuyere for blowing a hydrocarbon from an inner tube and an inert gas from an outer tube into a molten metal, wherein the cross-sectional area of the flow passage of the inner tube is So (m 2 ). channel cross-sectional area S (m 2) and the ratio S / So. double tube tuyere for blowing a hydrocarbon which is a 0.08 to 2.0 of the tube.
【請求項2】 羽口全断面積St(m2)を用いて求まる
(S+So)/Stが0.08〜0.8を満足すること
を特徴とする請求項1に記載の炭化水素吹込み用二重管
羽口。
2. The hydrocarbon injection according to claim 1, wherein (S + So) / St determined using the tuyere total cross-sectional area St (m 2 ) satisfies 0.08 to 0.8. For double tube tuyere.
JP2000016049A 2000-01-25 2000-01-25 Double pipe tuyere for hydrocarbon injection Expired - Fee Related JP3788158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000016049A JP3788158B2 (en) 2000-01-25 2000-01-25 Double pipe tuyere for hydrocarbon injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000016049A JP3788158B2 (en) 2000-01-25 2000-01-25 Double pipe tuyere for hydrocarbon injection

Publications (2)

Publication Number Publication Date
JP2001207207A true JP2001207207A (en) 2001-07-31
JP3788158B2 JP3788158B2 (en) 2006-06-21

Family

ID=18543253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000016049A Expired - Fee Related JP3788158B2 (en) 2000-01-25 2000-01-25 Double pipe tuyere for hydrocarbon injection

Country Status (1)

Country Link
JP (1) JP3788158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071852A (en) * 2015-10-05 2017-04-13 Jfeスチール株式会社 Method for gas blowing by bottom-blown tuyere and refining method of steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071852A (en) * 2015-10-05 2017-04-13 Jfeスチール株式会社 Method for gas blowing by bottom-blown tuyere and refining method of steel

Also Published As

Publication number Publication date
JP3788158B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
US3706549A (en) Method for refining pig-iron into steel
US11155890B2 (en) Tuyere for a basic oxygen furnace
AU2009236006A1 (en) Refining ferroalloys
WO2011049240A1 (en) Top lance for refining and method for refining molten iron using same
EP3514248B1 (en) Bottom stirring tuyere and method for operating a basic oxygen furnace
KR100604768B1 (en) Metal refining method using differing refining oxygen sequence
JP2001207207A (en) Double pipe tuyere for blowing hydrocarbon
JPS6152213B2 (en)
JP2006283065A (en) Gas-blowing tuyere
TWI830137B (en) Top blowing lance of converter, method of adding auxiliary raw materials and refining method of molten iron
JP3630003B2 (en) Method of injecting hydrocarbon gas into molten metal
JP4244546B2 (en) Top blowing lance for converter smelting
JPH1129804A (en) Method for injecting pulverized fine coal in blast furnace
JPH11181514A (en) Bottom-blown tuyere in converter
JPH01283312A (en) Method for melting iron-contained cold material
JP4218234B2 (en) Converter blowing method
JP4015873B2 (en) Hot metal Si control method in pulverized coal injection operation
JP3496490B2 (en) Method of blowing hydrocarbon gas into molten metal
JPS60177114A (en) Dephosphorizing method of molten iron
JPH0517811A (en) Multiple pipe tuyere cooling method for metallurgical reaction furnace
US3583865A (en) Refining of molten iron
JPH09227921A (en) Method for blowing gas into molten iron
JP2004169070A (en) Method for protecting bottom-blown double-tube tuyere in molten metal refining furnace
JP2018070975A (en) Refining method for molten iron
JPH05214420A (en) Method for injecting gaseous hydrocarbon from tuyere

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees