JP3496490B2 - Method of blowing hydrocarbon gas into molten metal - Google Patents

Method of blowing hydrocarbon gas into molten metal

Info

Publication number
JP3496490B2
JP3496490B2 JP34001097A JP34001097A JP3496490B2 JP 3496490 B2 JP3496490 B2 JP 3496490B2 JP 34001097 A JP34001097 A JP 34001097A JP 34001097 A JP34001097 A JP 34001097A JP 3496490 B2 JP3496490 B2 JP 3496490B2
Authority
JP
Japan
Prior art keywords
gas
tube
tuyere
hydrocarbon gas
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34001097A
Other languages
Japanese (ja)
Other versions
JPH11172319A (en
Inventor
善彦 樋口
亨 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP34001097A priority Critical patent/JP3496490B2/en
Publication of JPH11172319A publication Critical patent/JPH11172319A/en
Application granted granted Critical
Publication of JP3496490B2 publication Critical patent/JP3496490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、溶融金属中への二
重管を使用した炭化水素ガスの吹き込み方法に関する。 【0002】 【従来の技術】転炉で脱炭精錬を効率よく進行させるた
めに、溶鋼の攪拌を強化するのが有効であることは広く
知られている。そのため、現在の転炉は主な酸素供給源
である上吹きランスに加えて、溶鋼の攪拌を目的として
底吹き羽口を設置し、酸素、炭化水素ガス、不活性ガス
を底吹き羽口を通して溶鋼に吹き込んでいる。 【0003】発明者らは先に3重管構造の羽口を特開平
5−214420号公報にて提案し、内管と外管に炭化
水素ガスを、中管に酸素を吹き込むことにより、脱炭時
の溶鋼攪拌を増加する手段として高価な不活性ガスに代
えて安価な炭化水素ガスを大量に吹き込むことが可能と
なることを示したが、下記の問題点がある。 【0004】(1)1羽口当たり、ガス流量制御系が3
系統必要であり設備費が高くなる。 (2)ガス通過面積が大きく、ガス量をあまり必要とし
ない吹錬の初期および中期でも、羽口地金湯差し防止用
(地金入り込み防止用にガス圧をかける)の必要ガス量
が単管、二重管羽口の場合よりも多く、ガスコストの上
昇を招く。 【0005】 【発明が解決しようとする課題】本発明の目的は、二重
管羽口を用いて炭化水素ガスを大量に吹き込み、溶融金
属の攪拌を行い、三重管羽口と同等以上の効果を得る方
法を提供することにある。 【0006】 【課題を解決するための手段】吹錬前期に、三重管の全
管Ar吹きを行い、吹錬後期に炭化水素ガスとしてLPGを
使用し、内管LPG-中管O2- 外管LPG に切り替えた後の温
度推移を調査した。 【0007】温度推移は、三重管の溶銑と接する面から
手前50mmの内管内側部に熱電対を埋め込み、温度測定を
行う方法で求めた。 【0008】温度推移の調査結果から下記(A)の知
見、(B)の着想を得た。(A)内管のLPG は、中管の
O2および外管のLPG によって二重に断熱されており、内
管のLPG が分解温度までに至っていない。 【0009】(B)三重管のように二重の断熱作用がな
くても、一重(単層)の断熱で内管の炭化水素ガスが分
解温度以下に保持できれば、二重管を使用しても、同様
な炭化水素ガス吹きが可能である。 【0010】(B)の着想を実現する手段として、内管
の炭化水素ガスが羽口内で分解しない臨界的な条件を下
記のように見出し、本発明が完成した。 【0011】 すなわち、本発明は、溶融金属中へ炭化
水素ガスを内管、外管からなる2重管羽口を用いて吹き
込む方法において、内管から炭化水素ガスを、外管から
断熱性ガスをそれぞれ吹込み、内管の炭化水素ガス流量
0 と外管の断熱性ガス流量Q の比Q/Q0が0.05〜1.0 の
範囲であることを特徴とする炭化水素ガスの吹き込み方
法である。 【0012】 【発明の実施の形態】本発明の好適態様としては、上・
底吹き精錬に際しての炉底羽口からの炭化水素ガスの吹
き込みが例示される。 【0013】図1は、転炉底吹き用の二重管羽口の一例
であって、転炉の炉底部に設置した内管1、外管2の2
つのパイプ(ステンレス製)から構成されている。 【0014】本発明では、この内管に炭化水素ガス3、
外管に断熱性ガス4あるいは断熱性ガスと炭化水素ガス
の混合ガスを導入する。各ガスは流路別、ガス種別に独
立に流量コントロールすることが望ましい。 【0015】炭化水素ガスは、CH4 、C2H6、C3H8、C4H
10 などを単独あるいは混合ガスとして用いる。断熱性
ガスは、Ar、N2などの不活性ガスが含まれるが、本発明
の狙いとする断熱効果が期待できるCO、CO2 なども単独
あるいは混合ガスとしてそれぞれ用いることができる。 【0016】内管(LPG=3 〜12Nm3/min )外管(Ar=0.1
〜15Nm3/min)の流量(以下、流量は全て羽口1本当たり
の流量を示す)をそれぞれ変えた試験結果を図2に示
す。 【0017】図2に示すように、内管の炭化水素ガス
(LPG )流量をQo(Nm3/min) 、外管の断熱性ガス(Ar)
流量をQ(Nm3/min)とし、流量比Q/Qoで整理するとQ/Qoを
0.05〜1.0 に制御することにより、羽口損耗速度を低く
抑え、安定操業が可能となる。 【0018】なお、図2に示す「羽口前圧」は、羽口手
前のガス圧力の値を示し、羽口の閉塞状況を示す指標で
あり、値が低いほど圧損が小さく、ガスの元圧10kg/c
m2に近づくほど閉塞状況が悪化していることを示す。閉
塞のない通常の「羽口前圧」は、約6kg/cm2である。 【0019】流量比Q/Qoが0.05未満になると、外管ガス
による断熱効果が著しく低下し、内管の炭化水素ガス
(LPG )温度が分解温度以上に上昇し、内管の炭化水素
ガス(LPG )が分解反応を起こし、この吸熱反応と外管
ガス断熱効果が小さいことが重なり、外管金物温度が低
下し外管金物に接する耐火物温度も低下し、熱スポール
に起因する耐火物剥離が生じて、羽口寿命が著しく悪化
する。 【0020】また、過冷のため溶鉄が凝固して生成する
マッシュルームが過大に成長し、羽口前圧力が増大し安
定操業が不可能となる。 【0021】流量比Q/Qoが1.0 を超えると、溶銑の飛散
粒子の転炉炉口への付着量が増大し、また飛散粒子が排
気系にまで到達し集塵水中のFe濃度が急激に増大する。
転炉の炉口への地金付着量が増大すると、溶銑の転炉へ
の注銑が困難となり、炉口地金を専用ランスにより溶解
したり、スクレイパーにより地金をはぎ取るといった操
作が頻繁に必要となり、転炉の生産性が低下する問題を
生じる。また、飛散粒子が排気系に到達する量が増大す
ると溶銑歩留まりが低下し生産コストが増大する問題も
生じる。 【0022】流量比Q/Qoは、好ましくは0.1〜0.5
である。また、この間は、効果の差がほとんど無いた
め、断熱ガスの吹き込み量を減らしても特に支障が無
い。従って、ガスコスト低減の観点からは、流量比がQ/
Qo0.1に近い所が経済的である。 【0023】なお、図2に示す「鉄歩留まり」は平均的
な三重管での出鋼歩留まりを基準として、増減%を比較
した。 【0024】炭化水素ガスのガス種としてCH4 、C2H6
C3H8、C4H10 の単体あるいは混合ガスを用い、断熱性ガ
ス種としてAr、N2、CO、CO2 の単体あるいは混合ガスを
用いるが上記のQ/Qoの上限値・下限値に影響はない。 【0025】 【実施例】(実施例1)溶銑250トン(温度1200〜1300℃、
成分は表1に示す)を転炉に装入し、酸素ガスを850Nm3
/minで上吹きランス(6 孔、傾斜角15度、スロート径48
mm、ランス高さ2.5m)から溶鉄に上吹き吹錬した。 【0026】 【表1】 【0027】転炉の炉底に設けた4本の二重管羽口から
吹錬前期および中期には、内管と外管にCO2 を流し、吹
錬後期([C]=0.5% 以下) には、内管にLPG を外管にCO2
を流して、[C]=0.05% になるまで吹錬した。その結果を
表2にまとめて示す。 【0028】比較例1に示す三重管を組み込んだ試験を
行い本発明と比較し、同じく表2に示す。 【0029】また、三重管羽口とのランニングコスト、
設備費の比較を実施したが、単管での値を基準(1.
0)にした指数で表示した。 【0030】 【表2】 【0031】本発明例1(Q/Qo=0.06 )〜本発明例4
(Q/Qo=0.9)では、羽口損耗速度が三重管(比較例1の
羽口損耗速度は、0.3mm/ch)並みの0.17〜0.20mm/ch が
得られた。 【0032】また、本発明例5〜本発明例7に示すよう
に、Q/Qo=0.2が一定の条件下、断熱性ガスの種類を変え
ても羽口損耗速度は、0.17mm/ch と一定であった。 【0033】比較例2(Q/Qo=0.04 )、比較例3(Q/Qo
=1.2)では、羽口損耗速度はそれぞれ1.0 、1.1 mm/ch
と早くなった。 二重管羽口のガスコストは、三重管の
約半分、設備費は約1/3と小さかった。 【0034】 【発明の効果】本発明により、従来の三重管に比べてラ
ンニングコスト、設備費用を低下でき、しかも三重管並
に炭化水素ガスを吹き込むことができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for blowing hydrocarbon gas into a molten metal using a double pipe. It is widely known that it is effective to enhance the stirring of molten steel in order to efficiently advance decarburization refining in a converter. For this reason, current converters are equipped with a bottom blowing tuyere for the purpose of stirring molten steel in addition to the top blowing lance, which is the main oxygen supply source, and pass oxygen, hydrocarbon gas and inert gas through the bottom blowing tuyere. Injecting into molten steel. The inventors have previously proposed a tuyere having a triple tube structure in Japanese Patent Application Laid-Open No. Hei 5-214420, and degassing the tuyere by blowing hydrocarbon gas into the inner and outer tubes and oxygen into the middle tube. Although it has been shown that a large amount of inexpensive hydrocarbon gas can be blown in place of expensive inert gas as a means of increasing the stirring of molten steel during coal, there are the following problems. (1) There are three gas flow control systems per tuyere
The system is required and the equipment cost is high. (2) Even in the initial and middle stages of blowing, which has a large gas passage area and does not require a large amount of gas, the amount of gas required to prevent tuyere smelting (by applying gas pressure to prevent metal from entering) is simple. More than in the case of tube and double tube tuyere, gas cost rises. SUMMARY OF THE INVENTION An object of the present invention is to use a double tube tuyere to inject a large amount of hydrocarbon gas to stir molten metal and to obtain an effect equal to or greater than that of a triple tube tuyere. To provide a method for obtaining [0006] blowing year SUMMARY OF THE INVENTION performs blowing all tubes Ar triple tube, using LPG as the hydrocarbon gas blowing late, the inner tube LPG- middle tube O 2 - outside The temperature change after switching to the tube LPG was investigated. [0007] The temperature transition was determined by embedding a thermocouple in the inner portion of the inner tube 50 mm in front of the surface in contact with the hot metal of the triple tube and measuring the temperature. The following findings (A) and ideas (B) were obtained from the results of the investigation of the temperature transition. (A) The LPG of the inner tube is
Double insulation by O 2 and LPG in outer tube, LPG in inner tube has not reached the decomposition temperature. (B) Even if there is no double insulation as in the case of a triple tube, if the hydrocarbon gas in the inner tube can be kept at a decomposition temperature or lower by single insulation (single layer), the double tube is used. Also, similar hydrocarbon gas blowing is possible. As a means for realizing the idea of (B), a critical condition under which the hydrocarbon gas in the inner tube is not decomposed in the tuyere has been found as follows, and the present invention has been completed. That is, the present invention provides a method for blowing a hydrocarbon gas into a molten metal using a double tube tuyere comprising an inner tube and an outer tube.
Insulating gas is blown , and the ratio Q / Q 0 of the hydrocarbon gas flow rate Q 0 of the inner pipe to the insulating gas flow rate Q of the outer pipe is in the range of 0.05 to 1.0. Is the way. The preferred embodiments of the present invention include:
Injection of hydrocarbon gas from the bottom of the furnace at the time of bottom blowing refining is exemplified. FIG. 1 shows an example of a double-tube tuyere for blowing the bottom of a converter. The inner tube 1 and the outer tube 2 are installed at the bottom of the converter.
It consists of two pipes (made of stainless steel). In the present invention, the inner pipe is provided with a hydrocarbon gas 3,
An insulating gas 4 or a mixed gas of an insulating gas and a hydrocarbon gas is introduced into the outer tube. It is desirable to control the flow rate of each gas independently for each channel and gas type. The hydrocarbon gas is CH 4 , C 2 H 6 , C 3 H 8 , C 4 H
10 or the like is used alone or as a mixed gas. The heat insulating gas includes an inert gas such as Ar or N 2 , but CO, CO 2, etc., which are expected to have the heat insulating effect aimed at by the present invention, can be used alone or as a mixed gas. Inner tube (LPG = 3 to 12 Nm 3 / min) Outer tube (Ar = 0.1
FIG. 2 shows test results obtained by changing the flow rate (to 15 Nm 3 / min) (hereinafter, all flow rates indicate the flow rate per tuyere). As shown in FIG. 2, the flow rate of hydrocarbon gas (LPG) in the inner pipe is Qo (Nm 3 / min), and the heat insulating gas (Ar) in the outer pipe is
Let Q (Nm 3 / min) be the flow rate and organize Q / Qo by the flow rate ratio Q / Qo.
By controlling to 0.05 to 1.0, the tuyere wear rate can be kept low and stable operation is possible. The "pre-tuyere pressure" shown in FIG. 2 indicates the value of the gas pressure just before the tuyere, and is an index indicating the tuyere blocking condition. The lower the value, the smaller the pressure loss and the lower the gas source. Pressure 10kg / c
closer to m 2 indicate that a blockage situation has deteriorated. Usually of "feather preoral pressure" no blockage is about 6kg / cm 2. When the flow ratio Q / Qo is less than 0.05, the heat insulation effect of the outer pipe gas is significantly reduced, the temperature of the hydrocarbon gas (LPG) in the inner pipe rises above the decomposition temperature, and the hydrocarbon gas ( LPG) causes a decomposition reaction, and this endothermic reaction overlaps with the small outer tube heat insulation effect, lowering the temperature of the outer metal fittings, lowering the temperature of the refractory in contact with the outer metal fittings, and removing the refractory due to heat spall And the tuyere life is remarkably deteriorated. Further, mushrooms formed by solidification of molten iron due to supercooling grow excessively, the pressure in front of the tuyere increases, and stable operation becomes impossible. When the flow ratio Q / Qo exceeds 1.0, the amount of scattered particles of hot metal adhering to the converter furnace mouth increases, and the scattered particles reach the exhaust system, and the Fe concentration in the dust collection water rapidly increases. Increase.
If the amount of ingots attached to the furnace mouth of the converter increases, it becomes difficult to pour the hot metal into the converter. This necessitates the reduction of converter productivity. Further, when the amount of the scattered particles reaching the exhaust system increases, there arises a problem that the yield of molten iron decreases and the production cost increases. The flow ratio Q / Qo is preferably 0.1 to 0.5
It is. Also, during this time, there is almost no difference between the effects, so that there is no particular problem even if the blowing amount of the insulating gas is reduced. Therefore, from the viewpoint of gas cost reduction, the flow ratio is Q /
A place close to Qo0.1 is economical. The "iron yield" shown in FIG. 2 was compared with the increase / decrease% based on the average tapping yield in a triple pipe. CH 4 , C 2 H 6 ,
A single or mixed gas of C 3 H 8 and C 4 H 10 is used, and a single or mixed gas of Ar, N 2 , CO, and CO 2 is used as the adiabatic gas type, but the upper and lower limits of the above Q / Qo are used. Has no effect. EXAMPLES Example 1 250 tons of hot metal (temperature 1200-1300 ° C.,
Components charged are shown in Table 1) to the converter, 850 nm 3 oxygen gas
/ lance (6 holes, inclination angle 15 degrees, throat diameter 48
mm, lance height 2.5m). [Table 1] In the first and middle stages of blowing, CO 2 is passed through the inner and outer tubes from the four double tube tuyeres provided at the bottom of the converter, and the latter stage of blowing ([C] = 0.5% or less) ), LPG in the inner tube and CO 2 in the outer tube
And blown until [C] = 0.05%. Table 2 summarizes the results. A test incorporating the triple tube shown in Comparative Example 1 was conducted and compared with the present invention. Also, the running cost with the triple tube tuyere,
A comparison of equipment costs was made, but the value for a single pipe was used as a reference (1.
0). [Table 2] Invention Example 1 (Q / Qo = 0.06) to Invention Example 4
(Q / Qo = 0.9), the tuyere wear rate was 0.17 to 0.20 mm / ch, which was comparable to that of a triple pipe (the tuyere wear rate of Comparative Example 1 was 0.3 mm / ch). Further, as shown in Inventive Examples 5 to 7, under the condition that Q / Qo = 0.2 is constant, the tuyere wear rate is 0.17 mm / ch even when the type of the insulating gas is changed. It was constant. Comparative Example 2 (Q / Qo = 0.04), Comparative Example 3 (Q / Qo
= 1.2), the tuyere wear rates are 1.0 and 1.1 mm / ch, respectively.
And sooner. The gas cost of the double tube tuyere was about half that of the triple tube, and the equipment cost was as small as about 1/3. According to the present invention, the running cost and equipment cost can be reduced as compared with the conventional triple pipe, and hydrocarbon gas can be blown in at the same level as the triple pipe.

【図面の簡単な説明】 【図1】二重管の羽口の構造と使用方法を示す概念図で
ある。 【図2】Q/Q0と鉄歩留まり指数、羽口前圧力との関係を
示すグラフである。 【符号の説明】 1:内管、 2:外管、 3:炭化水素ガス、 4:断熱性ガス
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram showing a structure of a tuyere of a double pipe and a method of using the tuyere. FIG. 2 is a graph showing a relationship between Q / Q 0 , an iron yield index, and a tuyere pre-pressure. [Description of Signs] 1: Inner pipe, 2: Outer pipe, 3: Hydrocarbon gas, 4: Insulating gas

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21C 5/48 C21C 7/072 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C21C 5/48 C21C 7/072

Claims (1)

(57)【特許請求の範囲】 【請求項1】 溶融金属中へ炭化水素ガスを内管、外管
からなる2重管羽口を用いて吹き込む方法において、
管から炭化水素ガスを、外管から断熱性ガスをそれぞれ
吹込み、内管の炭化水素ガス流量Q0 と外管の断熱性ガ
ス流量Q の比Q/Q0が0.05〜1.0 の範囲であることを特徴
とする炭化水素ガスの吹き込み方法。
(57) [Claim 1] In a method of blowing a hydrocarbon gas into a molten metal using a double tube tuyere comprising an inner tube and an outer tube ,
Hydrocarbon gas from the pipe, heat insulating gas from the outer pipe
Blowing method blowing a hydrocarbon gas, wherein the hydrocarbon gas flow rate Q 0 and the ratio Q / Q 0 of the insulating gas flow rate Q of the outer tube of the inner tube is in the range of 0.05 to 1.0.
JP34001097A 1997-12-10 1997-12-10 Method of blowing hydrocarbon gas into molten metal Expired - Fee Related JP3496490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34001097A JP3496490B2 (en) 1997-12-10 1997-12-10 Method of blowing hydrocarbon gas into molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34001097A JP3496490B2 (en) 1997-12-10 1997-12-10 Method of blowing hydrocarbon gas into molten metal

Publications (2)

Publication Number Publication Date
JPH11172319A JPH11172319A (en) 1999-06-29
JP3496490B2 true JP3496490B2 (en) 2004-02-09

Family

ID=18332892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34001097A Expired - Fee Related JP3496490B2 (en) 1997-12-10 1997-12-10 Method of blowing hydrocarbon gas into molten metal

Country Status (1)

Country Link
JP (1) JP3496490B2 (en)

Also Published As

Publication number Publication date
JPH11172319A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
US4054444A (en) Method for controlling the carbon content of directly reduced iron
US6423114B1 (en) Pressure control
JP5546675B1 (en) Blast furnace operating method and hot metal manufacturing method
US3323907A (en) Production of chromium steels
JP3496490B2 (en) Method of blowing hydrocarbon gas into molten metal
US2580614A (en) Manufacture of open-hearth steel
US3859078A (en) Method of operating a basic open hearth furnace
JP2006249569A (en) Method for producing molten iron having low phosphorus
EP0059764B1 (en) Method for controlling bottom-blown gas in top-and bottom-blown converter smelting
JP3630003B2 (en) Method of injecting hydrocarbon gas into molten metal
JPH01127613A (en) Method and apparatus for refining molten metal
CA1051204A (en) Method of controlling temperature in q-bop
EP0099713B1 (en) A method for protecting tuyères for refining a molten iron
JP2725466B2 (en) Smelting reduction steelmaking method
JP3788158B2 (en) Double pipe tuyere for hydrocarbon injection
CN2310768Y (en) Direct steelmaking connection device for blast furnace
JP3536509B2 (en) Blast furnace operation method for producing low Si pig
Jiang et al. Development and application of BRP technology in Baosteel
JPH0660343B2 (en) Method of protecting bottom blown tuyere in refining vessel
JPH0913109A (en) Operation of blowing large quantity of pulverized fine coal into blast furnace
JP2014132122A (en) Method for operating blast furnace and method for manufacturing molten iron
RU2071973C1 (en) Method for washing of hearth of blast furnace
JP2541200B2 (en) Converter for preventing melting of furnace wall due to high temperature gas
HIGUCHI et al. Appropriate Operational Range for Simultaneous Injection of Oxygen and Oil in Large Quantity in the Blast Furnace
JP2005290515A (en) Blowing method for converter having high metal yield

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees