JPH0660343B2 - Method of protecting bottom blown tuyere in refining vessel - Google Patents

Method of protecting bottom blown tuyere in refining vessel

Info

Publication number
JPH0660343B2
JPH0660343B2 JP30772387A JP30772387A JPH0660343B2 JP H0660343 B2 JPH0660343 B2 JP H0660343B2 JP 30772387 A JP30772387 A JP 30772387A JP 30772387 A JP30772387 A JP 30772387A JP H0660343 B2 JPH0660343 B2 JP H0660343B2
Authority
JP
Japan
Prior art keywords
tuyere
blowing
gas
refining
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30772387A
Other languages
Japanese (ja)
Other versions
JPH01149914A (en
Inventor
徹也 藤井
敏和 桜谷
嘉英 加藤
康夫 岸本
幸雄 高橋
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP30772387A priority Critical patent/JPH0660343B2/en
Publication of JPH01149914A publication Critical patent/JPH01149914A/en
Publication of JPH0660343B2 publication Critical patent/JPH0660343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、吹錬用の酸素ガスの一部又は全部を溶融金
属浴の浴面下に位置する羽口を通して底吹きする形式の
転炉製鋼法において、吹錬作業に支障をきたすことなく
該羽口の効果的な寿命延長を実現しようとするものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a converter in which a part or all of oxygen gas for blowing is bottom-blown through a tuyere located below the bath surface of a molten metal bath. In the steelmaking method, it is intended to effectively extend the life of the tuyere without hindering the blowing work.

(従来の技術) 溶銑のような溶融金属の精錬を行う転炉において、とく
に転炉の底部に設けた羽口から精錬用の酸素ガスを吹き
込み溶融金属の撹拌を行う、いわゆる底吹き形式になる
転炉では、該羽口の溶損等が不可避であり、耐久性に問
題があった。そのため従来では、羽口を同心円状の二重
管とし、内管から酸素ガスを吹込み、一方内管と外管と
の間にはプロパンガスなどの炭化水素を流し、該炭化水
素の熱分解による吸熱反応熱を利用して羽口を冷却する
のが一般的であった。
(Prior Art) In a converter for refining molten metal such as hot metal, a so-called bottom blowing method is used, in which oxygen gas for refining is blown from the tuyere provided at the bottom of the converter to stir the molten metal. In the converter, melting and the like of the tuyere were unavoidable, and there was a problem in durability. Therefore, conventionally, the tuyere is a concentric double tube, oxygen gas is blown from the inner tube, while hydrocarbon such as propane gas is flown between the inner tube and the outer tube to thermally decompose the hydrocarbon. It was common to cool the tuyere by utilizing the heat of endothermic reaction.

上記の方法は、純酸素ガスを、転炉の底部に設けた羽口
を通して溶融浴中に安定して吹き込むことを可能とした
優れた方法であり、我国では底吹形式になる転炉のすべ
てがこの方法を採用している。しかしながら、転炉の耐
火物にかかる費用の削減、とくに炉底耐火物に要する費
用の削減を図るためには、該炉底耐火物の寿命を決定す
る羽口の寿命を向上させることが強く望まれ、この点に
関し従来の技術では満足のいくレベルに至っていないの
が現状であった。
The above method is an excellent method that allows stable blowing of pure oxygen gas into the molten bath through the tuyere provided at the bottom of the converter. Has adopted this method. However, in order to reduce the cost of the refractory of the converter, especially the cost of the bottom refractory, it is strongly desired to improve the life of the tuyere that determines the life of the bottom refractory. Rarely, the conventional technology has not reached a satisfactory level in this respect.

羽口の寿命延長を図る試みとして、発明者らは先に、酸
素又は酸素を含む気体を羽口入口において少なくとも30
kgf/cm2の高圧下に供給する気体吹き込み方法を提案し
た(特開昭61-87810号公報参照)。
In an attempt to extend the life of the tuyere, the present inventors have previously proposed that oxygen or a gas containing oxygen be at least 30% at the tuyere inlet.
A method of blowing gas under a high pressure of kgf / cm 2 has been proposed (see Japanese Patent Laid-Open No. 61-87810).

(発明が解決しようとする問題点) ところで、上記公報に開示の技術は、溶融金属中へ吹き
込むべき気体を、吹き込みの全期間にわたり高圧に維持
する方式なので、昇圧のための設備費が増大しまたエル
ネギー消費量が大きいので、羽口の寿命を延長させるの
には有利であるが経済性に問題を残していた。
(Problems to be Solved by the Invention) By the way, the technique disclosed in the above publication is a system in which the gas to be blown into the molten metal is maintained at a high pressure over the entire blowing period, so the equipment cost for pressurization increases. Moreover, the large amount of energy consumption is advantageous for extending the life of the tuyere, but there is a problem in economic efficiency.

上述したような従来の問題を解消し、精錬容器の底部に
設けた羽口の耐久性の向上を図ることが可能で、しかも
溶融金属の精錬効果にも良好な結果を与える効果的な方
法を提案することがこの発明の目的である。
It is possible to solve the above-mentioned conventional problems and to improve the durability of tuyere provided at the bottom of the refining vessel, and to provide an effective method that also gives good results on the refining effect of molten metal. It is the object of the invention to propose.

(問題点を解決するための手段) 発明者らは、転炉の如き精錬容器の底部における羽口の
耐久性を、設備コストやエルネギー消費量の増大を招く
ことなしに向上させるべく種々実験、検討を重ねた結果
吹錬中において、羽口における供給ガス圧を適正範囲に
調整することが極めて有効であることを突き止めた。
(Means for Solving Problems) The inventors have conducted various experiments to improve the durability of tuyere at the bottom of a refining vessel such as a converter without increasing equipment costs and energy consumption. As a result of repeated studies, it was found that it is extremely effective to adjust the supply gas pressure at the tuyere to an appropriate range during blowing.

すなわちこの発明は、容器底部に設けた羽口から精錬容
器内の溶融金属浴中に精錬ガスを底吹きする精錬方法に
おいて、吹錬の後期における溶融金属の温度が、すくな
くとも1500℃になった時点で、上記羽口からその入口に
おける気圧が絶対圧で30気圧以上の酸素ガスを供給する
ことを特徴とする精錬容器における底吹き羽口の保護方
法(第1発明)であり、また、この発明容器底部に設け
た羽口から精錬容器内の溶融金属浴中に精錬ガスを底吹
きする精錬方法において、 吹錬の前期は上記羽口から不活性ガスを供給し、次いで
吹錬後期において溶融金属の温度が少なくとも1500℃に
なった時点で該羽口からその入口における気圧が絶対圧
で30気圧以上の酸素ガスを供給することを特徴とする精
錬容器における底吹き羽口の保護方法(第2発明)であ
る。
That is, the present invention is a refining method of bottom blowing a refining gas into a molten metal bath in a refining vessel from a tuyere provided at the bottom of the vessel, when the temperature of the molten metal at the latter stage of blowing reaches at least 1500 ° C. A method for protecting a bottom-blown tuyere in a refining vessel (first invention), characterized in that oxygen gas having an absolute pressure of 30 atm or more is supplied from the tuyere at an absolute pressure. In the refining method in which the refining gas is bottom-blown into the molten metal bath in the refining vessel from the tuyere provided at the bottom of the vessel, the inert gas is supplied from the tuyere in the first period of blowing, and then the molten metal is blown in the latter stage of blowing. At a temperature of at least 1500 ° C., oxygen gas having an absolute pressure of 30 atm or more at the inlet is supplied from the tuyere to protect the bottom-blown tuyere in the refining vessel (second invention) Is.

羽口の耐久性を決定する因子は、溶融金属の温度、羽口
の寸法、酸素ガスと炭化水素ガスの流量比あるいは酸素
ガスの圧力、流量等があるが、なかでも羽口の寸法と酸
素ガスの吹込圧力は羽口寿命に大きな影響を及ぼすこと
が下記に説明する実験より明らかになった。勿論吹錬中
の溶融金属の温度が羽口の耐久性を決定する一番大きな
因子であるけれども、溶融金属の温度は、精錬と鋳造の
工程全体から決まるので、羽口の耐久性を向上させるた
めだけに該温度を低下させることはできない。また酸素
ガス流量については精錬反応特性を改善するために所望
の撹拌を行う観点からきまるものであり、上記同様、羽
口の耐久性の点で一義的にきまるものではない。
Factors that determine the durability of the tuyere include the temperature of the molten metal, the size of the tuyere, the flow ratio of oxygen gas to hydrocarbon gas, the pressure of oxygen gas, and the flow rate. It was revealed from the experiments described below that the gas injection pressure has a great influence on the tuyere life. Of course, the temperature of the molten metal during blowing is the most important factor that determines the durability of the tuyere, but since the temperature of the molten metal is determined by the entire refining and casting process, it improves the durability of the tuyere. The temperature cannot be lowered just because of this. Further, the oxygen gas flow rate is determined from the viewpoint of performing desired stirring in order to improve refining reaction characteristics, and is not uniquely determined in terms of the tuyere durability as described above.

そこで、この発明においては、まず容器の底部にサイズ
の異なる羽口を種々取付けた5トン規模の試験転炉を用
いて、代表成分がC:4.3%,Si:0.23%,Mn:0.32
%、P:0.11%、S:0.021%になる高炉溶銑を、炭素濃
度が0.08%以下、温度が1670〜1780℃の溶鋼にすべく比
較的高温な精錬を25チャージ連続的に行い、精錬の終了
後羽口を回収してその残長を測定し25チャージの平均と
して、1チャージ当りの羽口の損耗量を調査した。ま
た、これと同様の吹錬であるが、吹錬後期の溶鋼温度が
上昇する時期に、転炉の上方からスクラップを投入し、
該温度が過度に上昇することを防止しつつ吹錬して吹錬
終了時の溶鋼温度が1580〜1610℃といたって比較的低温
な吹錬を25チャージ連続的に実施した場合の羽口損耗量
についても調査した。
Therefore, in the present invention, first, using a 5 ton scale test converter in which various sizes of tuyere are attached to the bottom of the container, the representative components are C: 4.3%, Si: 0.23%, Mn: 0.32.
%, P: 0.11%, S: 0.021%, blast furnace hot metal with a carbon concentration of 0.08% or less and a temperature of 1670 to 1780 ℃ is continuously smelted at a relatively high temperature for 25 charges. After the completion, the tuyere was collected, the remaining length was measured, and the average amount of 25 charges was used to investigate the amount of wear of the tuyere per charge. Also, although the same blowing as this, when the molten steel temperature rises in the latter stage of blowing, scrap is put in from above the converter,
The amount of tuyere wear when blowing is carried out continuously for 25 charges at a relatively low temperature, with the temperature of the molten steel at the end of blowing being 1580 to 1610 ° C, while preventing the temperature from rising excessively. Was also investigated.

なお、実験に使用した羽口は、全て同心円状の2重管羽
口であって、内管からは酸素ガスを、外管と内管の間に
は羽口保護用として流量が酸素ガス流量の5%になるプ
ロパンガスを流した。
The tuyeres used in the experiments were all concentric double-tube tuyeres. Oxygen gas flowed from the inner tube and the oxygen gas flow rate between the outer tube and the inner tube was to protect the tuyere. Propane gas of 5% was flowed.

その結果を羽口サイズおよび酸素ガス圧力とともに表−
1に示す。
The results are shown in table with tuyere size and oxygen gas pressure.
Shown in 1.

第1図は、実験において得られたデータをグラフとして
示したものであるが、図より、高温吹錬では羽口1本当
たりの酸素ガス流量が一定の場合(1.5Nm3/min)には、羽
口の直径を小さくするなどしてガス圧力を増大させるこ
とが羽口の耐久性の向上に有利であり、とくに供給圧力
が30気圧以上では、10気圧未満の通常の吹込み方法と比
較して羽口損耗量が約50%以下になることがわかり、ま
た、溶鋼温度を1580℃〜1610℃に調整する低温吹錬で
は、供給圧力3.8〜45気圧の範囲において損耗量が0.65
〜0.40であり、羽口損耗量に対するガス圧力の依存性が
小さいことがわかった。
Figure 1 shows the data obtained in the experiment as a graph. From the figure, it can be seen that in high temperature blowing, when the oxygen gas flow rate per tuyere is constant (1.5 Nm 3 / min). However, increasing the gas pressure by reducing the diameter of the tuyere is advantageous for improving the durability of the tuyere, especially when the supply pressure is 30 atm or more, compared with the normal blowing method of less than 10 atm. It was found that the tuyere loss amount was about 50% or less, and in low temperature blowing where the molten steel temperature was adjusted to 1580 ℃ to 1610 ℃, the wear amount was 0.65 in the supply pressure range of 3.8 to 45 atmospheres.
It was found to be ~ 0.40, and the dependence of gas pressure on the tuyere wear amount was small.

従って、溶融金属の温度が上昇する吹錬に気圧の高い酸
素ガスを用いるのが極めて有効である。
Therefore, it is extremely effective to use oxygen gas having a high atmospheric pressure for blowing in which the temperature of the molten metal rises.

(作用) この発明では、溶融金属の温度が上昇し、とくに羽口の
寿命に大きな影響を与える吹錬後期においてのみ所定の
気圧(30気圧)以上になる酸素ガスを、また羽口の寿命
に対する影響が比較的小さい吹錬前期から中期に至るま
での比較的低温の区間では通常の気圧になる酸素ガス又
はこれに換えて不活性ガスを供給するので、所期した目
的を有利に達成し得るのである。
(Operation) In the present invention, the temperature of the molten metal rises, and oxygen gas which has a predetermined atmospheric pressure (30 atm) or higher only in the latter stage of blowing, which has a great effect on the life of the tuyere, In the relatively low temperature section from the first half to the middle term of blowing, where the influence is relatively small, the oxygen gas that becomes the normal pressure or the inert gas instead of this is supplied, so that the intended purpose can be achieved advantageously. Of.

ここに、高圧酸素ガスを、吹錬後期における溶融金属の
温度が少なくとも1500℃になった時期に吸込むのは、溶
融金属の炭素温度が0.5%以下まで低減し、炭素の酸化
反応に加え鉄の酸化反応が活発になり溶融金属の温度が
急上昇する時期であり、これにより羽口の損耗等に影響
を与えるのを防止する他、撹拌効果を高めて溶融金属の
精錬に良好な結果を与えるのに有利だからである。
Suction of high-pressure oxygen gas into the molten metal when the temperature of the molten metal reaches at least 1500 ° C in the latter half of the blowing is that the carbon temperature of the molten metal is reduced to 0.5% or less, and the addition of iron It is the time when the oxidation reaction becomes active and the temperature of the molten metal rises sharply, which prevents damage to the tuyere etc. and also enhances the stirring effect to give good results for refining the molten metal. Because it is advantageous to.

また、この発明では、吹錬後期に至るまでの間に通常の
気圧になる酸素ガスに換えて不活性ガスを用いるが、そ
の理由は、後述の実施例で示すように羽口の損耗量が一
番少なく、また、スラグ中の酸化鉄量も少ないといった
利点がある。ただし、この場合には、酸素ガスと比較し
て直接の精錬作用のない不活性ガスを用いるので、不活
性ガスの費用を要することとなる。
Further, in the present invention, the inert gas is used in place of the oxygen gas that reaches a normal atmospheric pressure until the latter half of the blowing, because the amount of wear of the tuyere is as shown in Examples described later. It is the smallest and has the advantage that the amount of iron oxide in the slag is also small. However, in this case, since an inert gas that does not have a direct refining action as compared with oxygen gas is used, the cost of the inert gas is required.

(実施例) 炉底に内径が6.5mmの酸素ガス流路を有し、羽口保護用
のプロパンガスを酸素流量の5%の流量で流す仕組にな
る同心二重管羽口を4本備えた容量100tonの上底吹き転
炉に、スクラップを5〜8tonと高炉からの溶銑を95〜9
8ton装入し、下記に述べる条件にて通常の脱炭精錬を行
い、吹錬終了後に羽口の損耗量を調査した。なお、上記
精錬における溶銑の吹錬開始温度は1230〜1260℃、吹錬
終了時の溶鋼温度は1650〜1710℃、また溶鋼の炭素濃度
は0.02〜0.05%に、さらに上吹きランスからの酸素ガス
流量は0.5%Cまでは200Nm3/minとし、0.5%C以下にお
いては150Nm3/minとした。まず、処理No.1として溶銑
温度が比較的低い吹錬開始から吹錬中期に至るまでの区
間において、羽口入口の酸素ガス圧力を3〜7気圧、羽
口1本当りの流量1.5〜2.1Nm3/minの範囲に設定し、そ
して、溶銑の炭素濃度が0.5%以下となり、温度が1500
℃以上になったと予想される時期に上記ガス圧を35〜41
気圧、羽口1本当りの酸素流量を11〜12Nm3/minに設定
した。このような吹錬の実施率が93%であった250チャ
ージの連続的な吹錬後に、羽口の長さを測定したところ
1チャージ当りの羽口の損耗量が、0.65mmであった。
(Example) Four concentric double tube tuyere which has an oxygen gas passage with an inner diameter of 6.5 mm at the bottom of the furnace and is a mechanism for flowing propane gas for tuyere protection at a flow rate of 5% of the oxygen flow rate 5 to 8 tons of scrap and 95 to 9 of hot metal from the blast furnace in a 100 ton top and bottom blowing converter.
After charging 8 tons, normal decarburization refining was performed under the conditions described below, and the amount of tuyere wear was investigated after the completion of blowing. The blowing temperature of molten pig iron in the refining is 1230 to 1260 ° C, the molten steel temperature at the end of blowing is 1650 to 1710 ° C, the carbon concentration of the molten steel is 0.02 to 0.05%, and the oxygen gas from the upper blowing lance is further. The flow rate was 200 Nm 3 / min up to 0.5% C, and 150 Nm 3 / min below 0.5% C. First, as treatment No. 1, the oxygen gas pressure at the tuyere inlet was 3 to 7 atm, and the flow rate per tuyere was 1.5 to 2.1 in the section from the start of blowing, where the hot metal temperature was relatively low, to the middle stage of blowing. Set in the range of Nm 3 / min, and the carbon concentration of the hot metal is 0.5% or less, the temperature is 1500
When the temperature is expected to rise above ℃, increase the gas pressure to 35-41
The atmospheric pressure and the oxygen flow rate per tuyere were set to 11 to 12 Nm 3 / min. The tuyere length was measured after continuous blowing of 250 charges at which the blowing rate was 93%, and the amount of wear of the tuyere per charge was 0.65 mm.

次に、処理No.2として、上記処理No.1と同様の条件
で、吹錬の全期間にわたり羽口入口の圧力を3〜7気
圧、羽口1本当りの酸素流量を1.5〜2.1Nm3/minに設定
した場合の吹錬では、250チャージの平均損耗量が0.93m
m/チャージであった。
Next, as the treatment No. 2, under the same conditions as the treatment No. 1, the pressure at the tuyere inlet was 3 to 7 atm and the oxygen flow rate per tuyere was 1.5 to 2.1 Nm over the entire blowing period. In blowing with the setting of 3 / min, the average loss of 250 charges is 0.93 m
It was m / charge.

以上の結果から、この発明に従い溶鋼温度が高くなる吹
錬後期とくに末期において羽口入口の酸素ガス圧力を増
大させると羽口保護効果が高いことが確かめられた。次
に、処理No.3として吹錬の全期間にわたり羽口入口の
酸素ガス圧力を35〜41気圧、羽口1本当りの酸素流量を
11〜12Nm3/minに設定した場合では、250チャージの連続
的な吹錬後の羽口損耗量が0.59mm/チャージであった。
処理No.3を適用した場合では、昇圧に要するエネルギ
ーを消費する高圧力の酸素ガスを多量に使用するにもか
かわらず、羽口損耗量の改善効果は処理No.1と比較し
て小さいことが明らかである。
From the above results, it was confirmed that according to the present invention, the tuyere protection effect is high when the oxygen gas pressure at the tuyere inlet is increased in the latter stage of blowing, particularly the last stage, when the molten steel temperature becomes high. Next, as treatment No. 3, the oxygen gas pressure at the tuyere inlet was 35 to 41 atm, and the oxygen flow rate per tuyere was changed over the entire blowing period.
When set to 11 to 12 Nm 3 / min, the tuyere loss amount after continuous blowing of 250 charges was 0.59 mm / charge.
When treatment No. 3 is applied, the effect of improving tuyere wear amount is smaller than that of treatment No. 1, despite the large amount of high-pressure oxygen gas that consumes energy required for pressurization. Is clear.

さらに処理No.4として、吹錬開始から溶銑の温度が150
0℃になるまでの間に、羽口入口圧力を6〜9気圧、羽
口1本当りの流量を1.5〜2.1Nm3/minに設定した窒素ガ
スを用い、その後窒素ガスを35〜41気圧、羽口1本当り
の流量が11〜12Nm3/minになる酸素ガスに変更した場合
につき、同じく250チャージの平均損耗量を調査したと
ころ0.51mm/チャージであった。なお、処理No.4で
は、窒素ガスの吹込み中は羽口冷却用のプロパンガスに
換え、内管流量の5〜10%相当の窒素ガスを流した。
Furthermore, as treatment No. 4, the hot metal temperature is 150 after the start of blowing.
By the time the temperature reaches 0 ° C, nitrogen gas with the tuyere inlet pressure of 6-9 atm and the flow rate per tuyere of 1.5-2.1 Nm 3 / min was used, and then the nitrogen gas was 35-41 atm. Also, when the oxygen flow rate was changed to 11 to 12 Nm 3 / min per tuyere, the average wear amount of 250 charges was also investigated and found to be 0.51 mm / charge. In treatment No. 4, while blowing the nitrogen gas, the propane gas for cooling the tuyere was replaced with the nitrogen gas equivalent to 5 to 10% of the inner pipe flow rate.

処理No.4は、羽口の損耗量が上記No.1〜3と比較し一
番小さく優れた方法であることが確かめられた。これは
不活性ガスの吹込み期間が長いために、羽口の溶損が少
ないこと、及び高温吹錬時には、酸素ガス圧力が高いの
で羽口の損耗が防止されることによる。
It was confirmed that the treatment No. 4 was the smallest method in which the amount of wear on the tuyere was the smallest as compared with the above Nos. This is because the blowing time of the inert gas is long, so that the tuyere is less likely to be melted and damaged, and at the time of high temperature blowing, the oxygen gas pressure is high, so that the tuyere is prevented from being worn.

なお処理No.1〜4では底吹きの酸素流量がそれぞれ異
なるために当然の結果として鋼浴の撹拌力も異なり、ま
た冶金反応効果も異なる。冶金反応効果の代表特性値と
して吹錬終了時のスラグ中の鉄酸化物としての鉄濃度
(%T.Fe)を比較すると、No.1では16.7%、No.2では
19.5%、No.3では15.9%、No.4では16.1%であった。
It should be noted that in Treatment Nos. 1 to 4, since the oxygen flow rates of bottom blowing are different, the stirring force of the steel bath is different as a natural result, and the metallurgical reaction effect is also different. As a representative characteristic value of the metallurgical reaction effect, when comparing the iron concentration (% T.Fe) as iron oxide in the slag at the end of blowing, No. 1 was 16.7% and No. 2 was
19.5%, No. 3 was 15.9%, and No. 4 was 16.1%.

以上の結果をわかりやすく表−2にまとめて示す。The above results are summarized in Table 2 for easy understanding.

スラグ中の鉄濃度は、各処理No.における底吹きガスの
流量に対応しているが、処理No.1及び4は高圧の酸素
ガスの使用量が比較的少ないのにもかかわらず、羽口の
保護効果、酸化鉄の生成抑制効果においてNo.2より優
れ、しかも高圧の酸素ガスの使用量が多い反面、比較的
良好な結果が得られるNo.3に非常に近いことがわか
る。なお、この発明を実施するに当たっては、冶金反応
の改善効果の観点から必要な底吹きガスの流量が得られ
るよう羽口の直径や本数を適切に選び30気圧以上の圧力
においても所望のガス流量が得られるようにすることが
肝要である。
The iron concentration in the slag corresponds to the flow rate of the bottom-blown gas in each treatment No., but in treatment Nos. 1 and 4, the amount of high-pressure oxygen gas used is relatively small, but the tuyere Although it is superior to No. 2 in the protection effect of No. 2 and the effect of suppressing the production of iron oxide, and the amount of high-pressure oxygen gas used is large, it can be seen that it is very close to No. 3, which gives relatively good results. In practicing the present invention, the diameter and number of tuyere are appropriately selected so that the required flow rate of the bottom-blown gas can be obtained from the viewpoint of the effect of improving the metallurgical reaction. It is essential to obtain

また、この発明では第2発明として、低圧力のガスを用
いる吹錬の大部分の期間において、不活性ガスを用いる
が、この期間に酸素ガスを用いるか不活性ガスを用いる
かについてはそのコストおよび羽口寿命の延長効果を勘
案して決定すべきである。すなわち酸素ガスは溶鋼の脱
炭用のガスとして使用されるので撹拌用のガスとしての
費用増加はないが、窒素ガスなどの不活性ガスは鋼浴と
の反応がないので撹拌用のガスとして費用を要すること
となるからである。
Further, in the present invention, as the second invention, an inert gas is used in most of the period of blowing using a low-pressure gas, but the cost depends on whether oxygen gas or inert gas is used in this period. And the effect of extending tuyere life should be taken into consideration. That is, since oxygen gas is used as a gas for decarburizing molten steel, there is no increase in cost as a gas for stirring, but inert gas such as nitrogen gas does not react with the steel bath, so there is no cost as a gas for stirring. Because it will be necessary.

なお、吹錬の後期において用いる高圧酸素ガスに換え、
不活性ガスを用いることも考えられるがこのような方法
では、吹錬の後期とくにその末期においては吹込むべき
ガスは大流量を必要とする時期にあるので不活性ガスの
使用量が増大すること、また価格の比較的安価な窒素ガ
スを用いた場合には溶鋼の窒素濃度が上昇する懸念か
ら、高価なアルゴンガスを用いる必要があり、経済性の
点に問題がある。
In addition, change to high pressure oxygen gas used in the latter stage of blowing,
Although it is possible to use an inert gas, in such a method, the amount of the inert gas used increases because the gas to be blown requires a large flow rate at the latter stage of blowing, especially at the latter stage. Further, when nitrogen gas which is relatively inexpensive is used, it is necessary to use expensive argon gas from the fear that the nitrogen concentration of the molten steel will increase, which is a problem in terms of economy.

(発明の効果) かくしてこの発明によれば、溶融金属中へ吹込むガスの
高圧化のための設備費やエネルギー費用の大幅な増大を
伴うことなしに底吹き羽口の耐久性を有利に高めること
ができる。しかもこの発明によれば溶融金属の精錬にお
いて、酸化鉄の生成抑制効果が極めて高い。
(Effects of the Invention) Thus, according to the present invention, the durability of the bottom blown tuyere can be advantageously increased without significantly increasing the equipment cost and energy cost for increasing the pressure of the gas blown into the molten metal. be able to. Moreover, according to the present invention, the effect of suppressing the production of iron oxide is extremely high in the refining of molten metal.

【図面の簡単な説明】[Brief description of drawings]

第1図は、羽口入口におけるガス圧力と羽口損耗量の関
係を示すグラフである。
FIG. 1 is a graph showing the relationship between the gas pressure at the tuyere inlet and the tuyere wear amount.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸本 康夫 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 高橋 幸雄 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuo Kishimoto 1 Kawasaki-cho, Chiba City, Chiba Prefecture Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Yukio Takahashi 1 Kawasaki-cho, Chiba City Chiba Prefecture Kawasaki Steel Co., Ltd. Research headquarters

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】容器底部に設けた羽口から精錬容器内の溶
融金属浴中に精錬ガスを底吹きする精錬方法において、 吹錬の後期における溶融金属の温度が、すくなくとも15
00℃になった時点で、上記羽口からその入口における気
圧が絶対圧で30気圧以上の酸素ガスを供給することを特
徴とする精錬容器における底吹き羽口の保護方法。
1. A refining method in which a refining gas is bottom-blown from a tuyere provided at the bottom of a container into a molten metal bath in a refining container, and the temperature of the molten metal in the latter stage of blowing is at least 15
A method for protecting a bottom-blown tuyere in a refining vessel, which comprises supplying oxygen gas having an absolute pressure of 30 atm or more from the tuyere at the time of reaching 00 ° C.
【請求項2】容器底部に設けた羽口から精錬容器内の溶
融金属浴中に精錬ガスを底吹きする精錬方法において、 吹錬の前期は上記羽口から不活性ガスを供給し、次いで
吹錬後期において溶融金属の温度が少なくとも1500℃に
なった時点で該羽口からその入口における気圧が絶対圧
で30気圧以上の酸素ガスを供給することを特徴とする 精錬容器における底吹き羽口の保護方法。
2. A refining method in which a refining gas is bottom-blown into a molten metal bath in a refining vessel from a tuyere provided at the bottom of the vessel, wherein an inert gas is supplied from the tuyere in the first half of blowing and then blown. At the time when the temperature of the molten metal reaches at least 1500 ° C in the latter stage of smelting, oxygen gas whose atmospheric pressure at the inlet is 30 atm or more in absolute pressure is supplied from the tuyere. How to protect.
JP30772387A 1987-12-07 1987-12-07 Method of protecting bottom blown tuyere in refining vessel Expired - Fee Related JPH0660343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30772387A JPH0660343B2 (en) 1987-12-07 1987-12-07 Method of protecting bottom blown tuyere in refining vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30772387A JPH0660343B2 (en) 1987-12-07 1987-12-07 Method of protecting bottom blown tuyere in refining vessel

Publications (2)

Publication Number Publication Date
JPH01149914A JPH01149914A (en) 1989-06-13
JPH0660343B2 true JPH0660343B2 (en) 1994-08-10

Family

ID=17972476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30772387A Expired - Fee Related JPH0660343B2 (en) 1987-12-07 1987-12-07 Method of protecting bottom blown tuyere in refining vessel

Country Status (1)

Country Link
JP (1) JPH0660343B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2585351B2 (en) * 1988-03-16 1997-02-26 川崎製鉄株式会社 Top and bottom blown converter steelmaking method
DE4238970C1 (en) * 1992-11-19 1994-04-21 Kct Tech Gmbh Process for blowing oxidizing gases into metal melts

Also Published As

Publication number Publication date
JPH01149914A (en) 1989-06-13

Similar Documents

Publication Publication Date Title
CA2010357C (en) Method for smelting reduction of ni ore
EP0308925B1 (en) Method and apparatus for smelting and reducing iron ores
US5190577A (en) Replacement of argon with carbon dioxide in a reactor containing molten metal for the purpose of refining molten metal
US3323907A (en) Production of chromium steels
JP2006249569A (en) Method for producing molten iron having low phosphorus
US4001009A (en) Process for the manufacture of steels with a high chromium content
JPH0660343B2 (en) Method of protecting bottom blown tuyere in refining vessel
KR850000927B1 (en) Method for preventing slopping during subsurface pneumatic refining steel
JPH0723494B2 (en) Method and apparatus for refining molten metal
EP0290650A1 (en) Method for manufacturing steel through smelting reduction
JPH0987722A (en) Method for refining molten crude stainless steel
JPS6063307A (en) Converter steel making method of dead soft steel
EP0099713B1 (en) A method for protecting tuyères for refining a molten iron
JP2964861B2 (en) Stainless steel manufacturing method
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JPH0959708A (en) Method for efficently decarburization-blowing stainless steel
KR100225249B1 (en) Remaining slag control method of of slopping control
SU1044641A1 (en) Method for alloying steel with manganese
JPH0471965B2 (en)
JPH093517A (en) Method for decarburization-refining stainless steel by blowing oxygen
JP3788392B2 (en) Method for producing high Cr molten steel
CA2267776A1 (en) A method and an apparatus for producing metals and metal alloys
JP2001032009A (en) Method for refining molten steel containing chromium
JP2003155515A (en) METHOD FOR PRODUCING MOLTEN HIGH Cr STEEL
JP3509128B2 (en) Operating method of converter type smelting reduction furnace and oxygen blowing lance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees