JPH01149914A - Method for protecting bottom blowing tuyere in refining vessel - Google Patents

Method for protecting bottom blowing tuyere in refining vessel

Info

Publication number
JPH01149914A
JPH01149914A JP30772387A JP30772387A JPH01149914A JP H01149914 A JPH01149914 A JP H01149914A JP 30772387 A JP30772387 A JP 30772387A JP 30772387 A JP30772387 A JP 30772387A JP H01149914 A JPH01149914 A JP H01149914A
Authority
JP
Japan
Prior art keywords
tuyere
blowing
refining
gas
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30772387A
Other languages
Japanese (ja)
Other versions
JPH0660343B2 (en
Inventor
Tetsuya Fujii
徹也 藤井
Toshikazu Sakuratani
桜谷 敏和
Yoshihide Kato
嘉英 加藤
Yasuo Kishimoto
康夫 岸本
Yukio Takahashi
幸雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30772387A priority Critical patent/JPH0660343B2/en
Publication of JPH01149914A publication Critical patent/JPH01149914A/en
Publication of JPH0660343B2 publication Critical patent/JPH0660343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To improve the durability of a tuyere and to give good refining effect by supplying oxygen gas from the bottom blowing tuyere at more than the specific pressure when molten metal reaches to the specific temp. at the latter period of blowing. CONSTITUTION:At the time of executing refining by bottom-blowing refining gas into the molten metal from the tuyere arranged at the bottom part of the vessel, when the temp. of the molten metal becomes at least 1,500 deg.C at the latter period of blowing, the oxygen gas is supplied from the bottom blowing tuyere at >=30atm. of the absolute pressure in the atm. at the inlet thereof. By this method, the durability of the tuyere is improved and the restraint effect for generating iron oxide is increased without causing to increase cost of the equipment and consumption of the energy.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、吹錬用の酸素ガスの一部又は全部を溶融金
属浴の浴面下に位置する羽口を通して底吹きする形式の
転炉製鋼法において、吹錬作業に支障をきたすことなく
該羽口の効果的な寿命延長を実現しようとするものであ
る。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a converter in which a part or all of oxygen gas for blowing is bottom-blown through tuyeres located below the bath surface of a molten metal bath. The objective is to effectively extend the life of the tuyere in the steel manufacturing process without interfering with the blowing operation.

(従来の技術) 溶銑のような溶融金属の精錬を行う転炉において、とく
に転炉の底部に設けた羽口から精錬用の酸素ガスを吹き
込み溶融金属の撹拌を行う、いわゆる底吹き形式になる
転炉では、該羽口の溶損等が不可避であり、耐久性に問
題があった。そのため従来では、羽口を同心円状の二重
管とし、内管から酸素ガスを吹込み、一方向管と外管と
の間にはプロスパンガスなどの炭化水素を流し、該炭化
水素の熱分解による吸熱反応熱を利用して羽口を冷却す
るのが一般的であった。
(Prior art) In a converter for refining molten metal such as hot metal, oxygen gas for refining is blown into the tuyere provided at the bottom of the converter to stir the molten metal, which is the so-called bottom-blowing type. In the converter, melting and damage of the tuyeres is unavoidable, and there is a problem in durability. Therefore, in the past, the tuyeres were made of concentric double tubes, oxygen gas was blown into the inner tube, and hydrocarbons such as prospane gas were flowed between the one-way tube and the outer tube, and the hydrocarbons were thermally decomposed. It was common practice to cool the tuyere using the endothermic reaction heat generated by the tuyere.

上記の方法は、純酸素ガスを、転炉の底部に設けた羽口
を通して溶融浴中に安定して吹き込むことを可能とした
優れた方法であり、我国では底吹形式になる転炉のすべ
てがこの方法を採用している。しかしながら、転炉の耐
火物にかかる費用の削減、とくに炉底耐大物に要する費
用の削減を図るためには、該炉底耐大物の寿命を決定す
る羽口の寿命を向上させることが強く望まれ、この点に
関し従来の技術では満足のいくレベルに至っていないの
が現状であった。
The above method is an excellent method that makes it possible to stably blow pure oxygen gas into the molten bath through the tuyeres installed at the bottom of the converter. has adopted this method. However, in order to reduce the cost of converter refractories, especially the cost of large hearth refractories, it is strongly desirable to improve the life of the tuyere, which determines the life of the large hearth refractories. Currently, conventional techniques have not reached a satisfactory level in this regard.

羽口の寿命延長を図る試みとして、発明者らは先に、酸
素又は酸素を含む気体を羽口入口において少なくとも3
0kgf/cm”の高圧下に供給する気体吹き込み方法
を提案した(特開昭61−87810号公報参照)。
In an attempt to extend the life of the tuyere, the inventors previously introduced at least 30% of oxygen or oxygen-containing gas at the tuyere inlet.
A method of blowing gas under high pressure of 0 kgf/cm" was proposed (see Japanese Patent Application Laid-open No. 87810/1983).

(発明が解決しようとする問題点) ところで、上記公報に開示の技術は、溶融金属中へ吹き
込むべき気体を、吹き込みの全期間にわたり高圧に維持
する方式なので、昇圧のための設備費が増大しまたエネ
ルギー消費量が大きいので、羽口の寿命を延長させるの
には有利であるが経済性に問題を残していた。
(Problems to be Solved by the Invention) By the way, the technique disclosed in the above publication is a method in which the gas to be blown into the molten metal is maintained at a high pressure throughout the period of blowing, so the equipment cost for pressurization increases. Although this method is advantageous in extending the life of the tuyere, it still poses a problem in terms of economic efficiency.

上述したような従来の問題を解消し、精錬容器の底部に
設けた羽口の耐久性の向上を図ることが可能で、しかも
溶融金属の精錬効果にも良好な結果を与える効果的な方
法を提案することがこの発明の目的である。
We have developed an effective method that solves the conventional problems mentioned above, improves the durability of the tuyeres provided at the bottom of the refining vessel, and also provides good results for refining molten metal. It is the purpose of this invention to propose.

(問題点を解決するための手段) 発明者らは、転炉の如き精錬容器の底部における羽口の
耐久性を、設備コストやエネルギー消費量の増大を招く
ことなしに向上させるべく種々実験、検討を重ねた結果
吹錬中において、羽口における供給ガス圧を適正範囲に
調整することが極めて有効であることを突き止めた。
(Means for Solving the Problems) The inventors conducted various experiments in order to improve the durability of the tuyere at the bottom of a refining vessel such as a converter without increasing equipment costs or energy consumption. As a result of repeated studies, it was found that it is extremely effective to adjust the supply gas pressure at the tuyere to an appropriate range during blowing.

すなわちこの発明は、容器底部に設けた羽口から精錬容
器内の溶融金属浴中に精錬ガスを底吹きする精錬方法に
おいて、吹錬の後期における溶融金属の温度が、すくな
くとも1500℃になった時点で、上記羽口からその入
口における気圧が絶対圧で30気圧以上の酸素ガスを供
給することを特徴とする精錬容器における底吹き羽口の
保護方法(第1発明)であり、また、この発明容器底部
に設けた羽口から精錬容器内の溶融金属浴中に精錬ガス
を底吹きする精錬方法にふいて、 吹錬の前期は上記羽口から不活性ガスを供給し、次いで
吹錬後期におりて溶融金属の温度が少なくとも1500
℃になった時点で該羽口からその入口にふける気圧が絶
対圧で30気圧以上の酸素ガスを供給することを特徴と
する精錬容器における底吹き羽口の保護方法(第2発明
)である。
That is, this invention provides a refining method in which refining gas is bottom-blown into a molten metal bath in a refining container from a tuyere provided at the bottom of the refining container. A method for protecting a bottom blowing tuyere in a refining vessel (first invention), characterized in that oxygen gas having an absolute pressure of 30 atmospheres or more at the inlet is supplied from the tuyere, and the present invention In addition to the refining method in which refining gas is bottom-blown into the molten metal bath in the refining container from a tuyere provided at the bottom of the container, inert gas is supplied from the tuyere during the first stage of blowing, and then during the latter stage of blowing. When the temperature of the molten metal is at least 1500℃
A method for protecting a bottom blowing tuyere in a refining vessel (second invention), characterized by supplying oxygen gas from the tuyere to the inlet at an absolute pressure of 30 atm or more when the temperature reaches ℃. .

羽口の耐久性を決定する因子は、溶融金属の温度、羽口
の寸法、酸素ガスと炭化水素ガスの流量比あるいは酸素
ガスの圧力、流量等があるが、なかでも羽口の寸法と酸
素ガスの吹込圧力は羽口寿命に大きな影響を及ぼすこと
が下記に説明する実験より明らかになった。勿論吹錬中
の溶融金属の温度が羽口の耐久性を決定する一番大きな
因子であるけれども、溶融金属の温度は、精錬と鋳造の
工程全体から決まるので、羽口の耐久性を向上させるた
めだけに該温度を低下させることはできない。また酸素
ガス流量については精錬反応特性を改善するために所望
の撹拌を行う観点からきまるものであり、上記同様、羽
口の耐久性の点で一義的にきまるものではない。
The factors that determine the durability of the tuyeres include the temperature of the molten metal, the dimensions of the tuyeres, the flow rate ratio of oxygen gas and hydrocarbon gas, or the pressure and flow rate of oxygen gas, among others, the dimensions of the tuyeres and the oxygen The experiments described below have revealed that the gas blowing pressure has a significant effect on the tuyere life. Of course, the temperature of the molten metal during blowing is the biggest factor determining the durability of the tuyere, but the temperature of the molten metal is determined by the entire smelting and casting process, so it improves the durability of the tuyere. It is not possible to lower the temperature just for the sake of this. Further, the oxygen gas flow rate is determined from the viewpoint of performing the desired stirring to improve the refining reaction characteristics, and is not determined primarily from the viewpoint of the durability of the tuyere, as described above.

そこで、この発明においては、まず容器の底部にサイズ
の異なる羽口を種々取付けた5トン規模の試験転炉を用
いて、代表成分がC:4.3%、S!二0.23%、 
Mn:0.32%、P:0.11%、S:0.021%
になる高炉溶銑を、炭素濃度が0.08%以下、温度が
1670〜1780℃の溶鋼にすべく比較的高温な精錬
を25チヤージ連続的に行い、精錬の終了後羽口を回収
してその残長を測定し25チヤージの平均として、1チ
ャージ当りの羽口の損耗量を調査した。また、これと同
様の吹錬であるが、吹錬後期の溶鋼温度が上昇する時期
に、転炉の上方からスクラップを投入し、該温度が過度
に上昇することを防止しつつ吹錬して吹錬終了時の溶鋼
温度が1580〜1610℃といたって比較的低温な吹
錬を25チヤージ連続的に実施した場合の羽口損耗量に
ついても調査した。
Therefore, in this invention, we first used a 5-ton scale test converter with various tuyeres of different sizes attached to the bottom of the container, and found that the typical components were C: 4.3%, S! 20.23%,
Mn: 0.32%, P: 0.11%, S: 0.021%
Blast furnace hot metal is continuously refined at a relatively high temperature for 25 charges to make it into molten steel with a carbon concentration of 0.08% or less and a temperature of 1,670 to 1,780°C. After refining, the tuyeres are collected and the The remaining length was measured and averaged over 25 charges, and the amount of wear on the tuyere per charge was investigated. In addition, in a similar blowing process, scrap is introduced from above the converter during the latter stage of blowing when the temperature of the molten steel rises, and the blowing process is carried out while preventing the temperature from rising excessively. The amount of tuyere wear was also investigated when blowing was performed continuously for 25 charges at a relatively low temperature of 1,580 to 1,610° C. at the end of blowing.

なお、実験に使用した羽口は、全て同心円状の2重管羽
口であって、内管からは酸素ガスを、外管と内管の間に
は羽口保護用として流量が酸素ガス流量の5%になるプ
ロパンガスを流した。
The tuyeres used in the experiment were all concentric double-tube tuyeres, with oxygen gas flowing from the inner tube and oxygen gas flowing between the outer tube and the inner tube to protect the tuyere. Propane gas was supplied at a concentration of 5%.

その結果を羽口サイズおよび酸素ガス圧力とともに表−
1に示す。
The results are shown along with the tuyere size and oxygen gas pressure.
Shown in 1.

第1図は、実験において得られたデーターをグラフとし
て示したものであるが、図より、高温吹錬では羽口1本
当たりの酸素ガス流量が一定の場合(1,5Nm’/m
1n)には、羽口の直径を小さくするなどしてガス圧力
を増大させることが羽口の耐久性の向上に有利であり、
とくに供給圧力が30気圧以上では、10気圧未満の通
常の吹込み方法と比較して羽口損耗量が約50%以下に
なることがわかり、また、溶鋼温度を1580℃〜16
10℃に調整する低温吹錬では、供給圧力3.8〜45
気圧の範囲において損耗量が0,65〜0.40であり
、羽口損耗量に対するガス圧力の依存性が小さいことが
わかった。
Figure 1 shows the data obtained in the experiment as a graph. From the figure, it can be seen that in high-temperature blowing, when the oxygen gas flow rate per tuyere is constant (1.5 Nm'/m
For 1n), it is advantageous to increase the gas pressure by reducing the diameter of the tuyere, etc., to improve the durability of the tuyere.
In particular, it was found that when the supply pressure is 30 atm or more, the amount of tuyere wear is about 50% or less compared to the normal blowing method at less than 10 atm.
In low-temperature blowing adjusted to 10℃, the supply pressure is 3.8-45
It was found that the loss amount was 0.65 to 0.40 in the atmospheric pressure range, indicating that the dependence of gas pressure on the tuyere loss amount was small.

従って、溶融金属の温度が上昇する吹錬に気圧の高い酸
素ガスを用いるのが極めて有効である。
Therefore, it is extremely effective to use high-pressure oxygen gas for blowing, which increases the temperature of the molten metal.

(作 用) この発明では、溶融金属の温度が上昇し、とくに羽口の
寿命に大きな影響を与える吹錬後期においてのみ所定の
気圧(30気圧)以上になる酸素ガスを、また羽口の寿
命に対する影響が比較的小さい吹錬前期から中期に至る
までの比較的低温の区間では通常の気圧になる酸素ガス
又はこれに換えて不活性ガスを供給するので、所期した
目的を有利に達成し得るのである。
(Function) In this invention, the temperature of the molten metal rises, and the oxygen gas reaches a predetermined pressure (30 atm) or higher only in the latter stage of blowing, which has a great effect on the life of the tuyere. In the relatively low-temperature section from the early to middle stages of blowing, where the influence on the temperature is relatively small, oxygen gas at normal atmospheric pressure or an inert gas instead is supplied, so that the intended purpose can be advantageously achieved. You get it.

ここに、高圧酸素ガスを、吹錬後期における溶融金属の
温度が少なくとも1500℃になった時期に吸込むのは
、溶融金属の炭素濃度が0.5%以下まで低減し、炭素
の酸化反応に加え鉄の酸化反応が活発になり溶融金属の
温度が急上昇する時期であり、これにより羽口の損耗等
に影響を与えるのを防止する他、撹拌効果を高めて溶融
金属の精錬に良好な結果を与えるのに有利だからである
The reason why high-pressure oxygen gas is inhaled in the late stage of blowing when the temperature of the molten metal reaches at least 1500°C is to reduce the carbon concentration of the molten metal to 0.5% or less, and in addition to the carbon oxidation reaction. This is the period when the oxidation reaction of iron becomes active and the temperature of the molten metal rises rapidly, which not only prevents wear and tear on the tuyere, but also improves the stirring effect and improves the refining of the molten metal. This is because it is advantageous to give.

また、この発明では、吹錬後期に至るまでの間に通常の
気圧になる酸素ガスに換えて不活性ガスを用いるが、そ
の理由は、後述の実施例で示すように羽口の損耗量が一
番受なく、また、スラグ中の酸化鉄量も少ないといった
利点がある。ただし、この場合には、酸素ガスと比較し
て直接の精錬作用のない不活性ガスを用いるので、不活
性ガスの費用を要することとなる。
In addition, in this invention, an inert gas is used instead of oxygen gas, which reaches normal pressure until the latter stage of blowing.The reason for this is that the amount of wear on the tuyere is reduced, as shown in the examples below. It has the advantage of being the least susceptible to slag, and the amount of iron oxide in the slag is also small. However, in this case, an inert gas that does not have a direct refining effect compared to oxygen gas is used, so the cost of the inert gas is increased.

(実施例) 炉底に内径が5.5mmの酸素ガス流路を有し、羽口保
護用のプロパンガスを酸素流量の5%の流量で流す仕組
になる同心二重管羽口を4本備えた容量100tonの
上底吹き転炉に、スクラップを5〜8tonと高炉から
の溶銑を95〜9gton装入し、下記に述べる条件に
て通常の脱炭精錬を行い、吹錬終了後に羽口の損耗量を
調査した。なお、上記精錬における溶銑の吹錬開始温度
は1230〜1260℃、吹錬終了時の溶鋼温度は16
50〜1710℃、また溶鋼の炭素濃度は0.02〜0
.05%に、さらに上吹きランスからの酸素ガス流量は
0.5%Cまでは20ONm’/minとし、0.5%
C以下においては15ONm3/minとした。
(Example) Four concentric double-tube tuyeres each have an oxygen gas flow path with an inner diameter of 5.5 mm at the bottom of the furnace and allow propane gas for tuyere protection to flow at a flow rate of 5% of the oxygen flow rate. 5 to 8 tons of scrap and 95 to 9 g of hot metal from the blast furnace are charged into a top-bottom blowing converter with a capacity of 100 tons, and normal decarburization and refining is performed under the conditions described below. The amount of wear and tear was investigated. In addition, the starting temperature of hot metal blowing in the above refining is 1230 to 1260°C, and the molten metal temperature at the end of blowing is 16
50~1710℃, and the carbon concentration of molten steel is 0.02~0
.. 05%, and the oxygen gas flow rate from the top blowing lance is 20ONm'/min until 0.5%C, and 0.5%
Below C, the speed was set to 15ONm3/min.

まず、処理No、 1として溶銑温度が比較的低い吹錬
開始から吹錬中期に至るまでの区間において、羽口火口
の酸素ガス圧力を3〜7気圧、羽口1本当りの流量1.
5〜2. ’lNm3/minの範囲に設定し、そして
、溶銑の炭素濃度が0.5%以下となり、温度が150
0℃以上になったと予想される時期に上記ガス圧を35
〜41気圧、羽口1本当りの酸素流量を11〜12Nm
’/minに設定した。このような吹錬の実施率が93
%であった250チヤージの連続的な吹錬後に、羽口の
長さを測定したところ1チャージ当りの羽口の損耗量が
、0.65mff1であった。
First, as treatment No. 1, in the section from the start of blowing to the middle stage of blowing, where the hot metal temperature is relatively low, the oxygen gas pressure at the tuyere crater was set at 3 to 7 atmospheres, and the flow rate per tuyere was set at 1.
5-2. 'lNm3/min, and the carbon concentration of the hot metal is 0.5% or less and the temperature is 150%.
When the temperature is expected to rise above 0°C, the above gas pressure is increased to 35°C.
~41 atm, oxygen flow rate per tuyere 11-12 Nm
'/min. The implementation rate of such blowing training is 93
After 250 charges of continuous blowing, the length of the tuyere was measured and the amount of wear of the tuyere per charge was 0.65 mff1.

次に、処理No、’ 2として、上記処理N011と同
様の条件で、吹錬の全期間にわたり羽口火口の圧力を3
〜7気圧、羽口1本当りの酸素流量を1.5〜2.lN
m37m1nに設定した場合の吹錬では、250チヤー
ジの平均損耗量が0.93mm/チャージであった。
Next, as Process No. 2, under the same conditions as the above Process No. 011, the pressure at the tuyere crater was increased to 3.
~7 atm, oxygen flow rate per tuyere 1.5~2. lN
In blowing when the setting was m37m1n, the average loss amount for 250 charges was 0.93 mm/charge.

以上の結果から、この発明に従い溶鋼温度が高くなる吹
錬後期とくに末期において羽口入口の酸素ガス圧力を増
大させると羽口保護効果が高いことが確かめられた。次
に、処理No、 3として吹錬の全期間にわたり羽口入
口の酸素ガス圧力を35〜41気圧、羽口1本当りの酸
素流量を11〜12Nm’/minに設定した場合では
、250チヤージの連続的な吹錬後の羽ロ損耗量力叩、
59mm/チャージであった。
From the above results, it was confirmed that according to the present invention, increasing the oxygen gas pressure at the tuyere inlet at the late stage of blowing, particularly at the final stage, when the molten steel temperature becomes high, provides a high tuyere protection effect. Next, as treatment No. 3, when the oxygen gas pressure at the tuyere inlet was set to 35 to 41 atm and the oxygen flow rate per tuyere was set to 11 to 12 Nm'/min throughout the blowing period, a charge of 250 After continuous blowing, the amount of wear and tear on the feathers is reduced,
It was 59mm/charge.

処理Nα3を適用した場合では、昇圧に要するエネルギ
ーを消費する高圧力の酸素ガスを多量に使用するにもか
かわらず、羽口損耗量の改善効果は処理Nα1と比較し
て小さいことが明らかである。
It is clear that when treatment Nα3 is applied, the effect of improving the amount of tuyere wear is smaller than that of treatment Nα1, despite using a large amount of high-pressure oxygen gas that consumes energy required for pressurization. .

さらに処理Nα4として、吹錬開始から溶銑の温度が1
500℃になるまでの間に、羽口入口圧力を6〜9気圧
、羽口1本当りの流量を1.5〜2. lNm3/mi
nに設定した窒素ガスを用い、その後窒素ガスを35〜
41気圧、羽口1本当りの流量が11〜12Nm37m
inになる酸素ガスに変更した場合につき、同じ<25
0チヤージの平均損耗量を調査したところ0.51mm
/チャージであった。なお、処理No、 4では、窒素
ガスの吹込み中は羽口冷却用のプロパンガスに換え、内
管流量の5〜10%相当の窒素ガスを流した。
Furthermore, as treatment Nα4, the temperature of hot metal is 1 from the start of blowing.
Until the temperature reaches 500°C, the tuyere inlet pressure is set to 6 to 9 atm, and the flow rate per tuyere is set to 1.5 to 2.0 atm. lNm3/mi
Using nitrogen gas set to n, then nitrogen gas at 35~
41 atm, flow rate per tuyere 11-12Nm37m
The same <25 when changing to oxygen gas that becomes in
When we investigated the average amount of wear at 0 charge, it was 0.51mm.
/ It was a charge. In Process No. 4, during the blowing of nitrogen gas, propane gas was used for cooling the tuyeres, and nitrogen gas equivalent to 5 to 10% of the flow rate of the inner pipe was flowed.

処理No、 4は、羽口の損耗量が上記N011〜3と
比較し一番小さく優れた方法であることが確かめられた
。これは不活性ガスの吹込み期間が長いために、羽口の
溶損が少ないこと、及び高温吹錬時には、酸素ガス圧力
が高いので羽口の損耗が防止されることによる。
It was confirmed that treatment No. 4 was an excellent method in that the amount of wear on the tuyere was the smallest compared to Nos. 011 to 3 above. This is because the inert gas blowing period is long, so there is little melting loss of the tuyere, and during high-temperature blowing, the oxygen gas pressure is high, so wear and tear on the tuyere is prevented.

なお処理No、 1〜4では底吹きの酸素流量がそれぞ
れ異なるために当然の結果として鋼浴の撹拌力も異なり
、また冶金反応効果も異なる。冶金反応効果の代表特性
値として吹錬終了時のスラグ中の鉄酸化物としての鉄濃
度(%T、 Fe)を比較すると、Nα1では16.7
%、Nα2では19.5%、Nα3では15.9%、N
α4では16.1%であった。
In Process Nos. 1 to 4, since the bottom-blown oxygen flow rate was different, the stirring power of the steel bath was naturally different, and the metallurgical reaction effect was also different. Comparing the iron concentration (%T, Fe) as iron oxide in the slag at the end of blowing as a typical characteristic value of the metallurgical reaction effect, it is 16.7 for Nα1.
%, 19.5% for Nα2, 15.9% for Nα3, N
For α4, it was 16.1%.

以上の結果をわかりやすく表−2にまとめて示す。The above results are summarized in Table 2 for easy understanding.

スラグ中の鉄濃度は、各処理No、における底吹きガス
の流量に対応しているが、処理Nα1及び4は高圧の酸
素ガスの使用量が比較的少ないのにもかかわらず、羽口
の保護効果、酸化鉄の生成抑制効果においてNo、 2
より優れ1.シかも高圧の酸素ガスの使用量が多い反面
、比較的良好な結果が得られるNo、 3に非常に近い
ことがわかる。なお、この発明を実施するに当たっては
、冶金反応の改善効果の観点から必要な底吹きガスの流
量が得られるよう羽口の直径や本数を適切に選び30気
圧以上の圧力においても所望のガス流量が得られるよう
にすることが肝要である。
The iron concentration in the slag corresponds to the flow rate of bottom blowing gas in each treatment No., but treatments No. 1 and 4 protect the tuyeres even though the amount of high-pressure oxygen gas used is relatively small. No. 2 in terms of effectiveness and iron oxide production suppression effect.
Better than 1. It can be seen that although the amount of high-pressure oxygen gas used is large, it is very close to No. 3, which yields relatively good results. In carrying out the present invention, the diameter and number of tuyeres must be appropriately selected to obtain the necessary flow rate of bottom-blown gas from the viewpoint of improving the metallurgical reaction. It is important to ensure that the following can be obtained.

また、この発明では第2発明として、低圧力のガスを用
いる吹錬の大部分の期間において、不活性ガスを用いる
が、この期間に酸素ガスを用いるか不活性ガスを用いる
かについてはそのコストおよび羽口寿命の延長効果を勘
案して決定すべきである。すなわち酸素ガスは溶鋼の脱
炭用のガスとして使用されるので撹拌用のガスとしての
費用増加はないが、窒素ガスなどの不活性ガスは鋼浴と
の反応がないので撹拌用のガスとして費用を要すること
となるからである。
In addition, in this invention, as a second invention, inert gas is used during most of the period of blowing using low pressure gas, but the cost of using oxygen gas or inert gas during this period is determined. It should be determined by taking into consideration the effect of extending the life of the tuyere. In other words, oxygen gas is used as a gas for decarburizing molten steel, so there is no cost increase as a stirring gas, but inert gases such as nitrogen gas do not react with the steel bath, so there is no cost increase as a stirring gas. This is because it would require the following.

なお、吹錬の後期において用いる高圧酸素ガスに換え、
不活性ガスを用いることも考えられるがこのような方法
では、吹錬の後期とくにその末期においては吹込むべき
ガスは大流量を必要とする時期にあるので不活性ガスの
使用量が増大すること、また価格の比較的安価な窒素ガ
スを用いた場合には溶鋼の窒素濃度が上昇する懸念から
、高価なアルゴンガスを用いる必要があり、経済性の点
に問題がある。
In addition, instead of the high pressure oxygen gas used in the latter stage of blowing,
It is also possible to use an inert gas, but with this method, the amount of inert gas used increases because the gas to be blown requires a large flow rate in the latter stages of blowing, especially at the end. Furthermore, if relatively inexpensive nitrogen gas is used, there is a concern that the nitrogen concentration in the molten steel will increase, so it is necessary to use expensive argon gas, which poses a problem in terms of economy.

(発明の効果) かくしてこの発明によれば、溶融金属中へ吹込むガスの
高圧化のための設備費やエネルギー費用の大幅な増大を
伴うことなしに底吹き羽口の耐久性を有利に高めること
ができる。しかもこの発明によれば溶融金属の精錬にお
いて、酸化鉄の生成抑制効果が極めて高い。
(Effects of the Invention) Thus, according to the present invention, the durability of the bottom blowing tuyere can be advantageously increased without significantly increasing the equipment and energy costs for increasing the pressure of the gas blown into the molten metal. be able to. Moreover, according to the present invention, the effect of suppressing the production of iron oxide in refining molten metal is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、羽口入口におけるガス圧力と羽口損耗量の関
係を示すグラフである。
FIG. 1 is a graph showing the relationship between the gas pressure at the tuyere inlet and the amount of tuyere wear.

Claims (1)

【特許請求の範囲】 1、容器底部に設けた羽口から精錬容器内の溶融金属浴
中に精錬ガスを底吹きする精錬方法において、 吹錬の後期における溶融金属の温度が、す くなくとも1500℃になった時点で、上記羽口からそ
の入口における気圧が絶対圧で30気圧以上の酸素ガス
を供給することを特徴とする精錬容器における底吹き羽
口の保護方法。 2、容器底部に設けた羽口から精錬容器内の溶融金属浴
中に精錬ガスを底吹きする精錬方法において、 吹錬の前期は上記羽口から不活性ガスを供 給し、次いで吹錬後期において溶融金属の温度が少なく
とも1500℃になった時点で該羽口からその入口にお
ける気圧が絶対圧で30気圧以上の酸素ガスを供給する
ことを特徴とする精錬容器における底吹き羽口の保護方
法。
[Claims] 1. In a refining method in which refining gas is bottom-blown into a molten metal bath in a refining container from a tuyere provided at the bottom of the container, the temperature of the molten metal in the latter stage of blowing is at least 1500°C. A method for protecting a bottom-blowing tuyere in a refining vessel, characterized by supplying oxygen gas having an absolute pressure of 30 atm or more at the inlet from the tuyere at the time when the bottom blowing tuyere is blown. 2. In a refining method in which refining gas is bottom-blown into the molten metal bath in the refining container from a tuyere provided at the bottom of the container, inert gas is supplied from the tuyere during the early stage of blowing, and then during the latter stage of blowing. A method for protecting a bottom blowing tuyere in a refining vessel, characterized in that when the temperature of molten metal reaches at least 1500° C., oxygen gas having an absolute pressure of 30 atmospheres or more at the inlet of the tuyere is supplied from the tuyere.
JP30772387A 1987-12-07 1987-12-07 Method of protecting bottom blown tuyere in refining vessel Expired - Fee Related JPH0660343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30772387A JPH0660343B2 (en) 1987-12-07 1987-12-07 Method of protecting bottom blown tuyere in refining vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30772387A JPH0660343B2 (en) 1987-12-07 1987-12-07 Method of protecting bottom blown tuyere in refining vessel

Publications (2)

Publication Number Publication Date
JPH01149914A true JPH01149914A (en) 1989-06-13
JPH0660343B2 JPH0660343B2 (en) 1994-08-10

Family

ID=17972476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30772387A Expired - Fee Related JPH0660343B2 (en) 1987-12-07 1987-12-07 Method of protecting bottom blown tuyere in refining vessel

Country Status (1)

Country Link
JP (1) JPH0660343B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234512A (en) * 1988-03-16 1989-09-19 Kawasaki Steel Corp Method for steelmaking in combined converter
US5423900A (en) * 1992-11-19 1995-06-13 Kct Technologie Gmbh Method for blowing oxidizing gases into molten metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234512A (en) * 1988-03-16 1989-09-19 Kawasaki Steel Corp Method for steelmaking in combined converter
US5423900A (en) * 1992-11-19 1995-06-13 Kct Technologie Gmbh Method for blowing oxidizing gases into molten metal

Also Published As

Publication number Publication date
JPH0660343B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
CA2010357C (en) Method for smelting reduction of ni ore
US4001009A (en) Process for the manufacture of steels with a high chromium content
JPH01149914A (en) Method for protecting bottom blowing tuyere in refining vessel
JPS58130216A (en) Refining method of high alloy steel and stainless steel
JPH0723494B2 (en) Method and apparatus for refining molten metal
EP0099713B1 (en) A method for protecting tuyères for refining a molten iron
JPH0124855B2 (en)
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
KR100225249B1 (en) Remaining slag control method of of slopping control
JPS61279608A (en) Production of high-chromium alloy by melt reduction
JPH093517A (en) Method for decarburization-refining stainless steel by blowing oxygen
US4066442A (en) Method of making chrome steel in an electric arc furnace
JP2713795B2 (en) Stainless steel smelting method
JP3509128B2 (en) Operating method of converter type smelting reduction furnace and oxygen blowing lance
JPH03100140A (en) Method for producing medium or low carbon ferro-manganese
JPH0431016B2 (en)
JPH0154409B2 (en)
JP3167901B2 (en) Decarburization refining method for Cr-containing molten steel
JPS629644B2 (en)
JPH0215602B2 (en)
JPH02282410A (en) Smelting reduction method for ore
JPS609814A (en) Production of high chromium alloy unsaturated with carbon by melt reduction
JPH06240328A (en) Method for efficiently melting molten raw stainless steel in converter
JPH06172839A (en) Operation of converter type smelting reduction furnace
JPH04214812A (en) Method for smelting stainless steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees