JPH09227921A - Method for blowing gas into molten iron - Google Patents

Method for blowing gas into molten iron

Info

Publication number
JPH09227921A
JPH09227921A JP3700496A JP3700496A JPH09227921A JP H09227921 A JPH09227921 A JP H09227921A JP 3700496 A JP3700496 A JP 3700496A JP 3700496 A JP3700496 A JP 3700496A JP H09227921 A JPH09227921 A JP H09227921A
Authority
JP
Japan
Prior art keywords
gas
flow rate
inert gas
blowing
molten iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3700496A
Other languages
Japanese (ja)
Inventor
Yuji Ogawa
雄司 小川
Mitsutaka Matsuo
充高 松尾
Shinya Kitamura
信也 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3700496A priority Critical patent/JPH09227921A/en
Publication of JPH09227921A publication Critical patent/JPH09227921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for blowing gas into molten iron by which variable range of the blowing flow rate of inert gas can be made large without lowering the service life of a tuyere. SOLUTION: At the time of executing refining of the molten iron by blowing the inert gas from the tuyere having single pipe nozzle or collecting single pipe nozzles, in the case of increasing the blowing flow rate of the inert gas so as to keep a sound mushroom, O2 gas is mixed and/or in the case or reducing the blowing flow rate of the inert gas, hydrocarbon gas is mixed to execute the blowing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶鉄の精錬を行う
際の溶鉄内へのガスの吹き込み方法に関し、とくに吹き
込みガス流量の可変範囲の広いガスの吹き込み方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for blowing gas into molten iron when refining molten iron, and more particularly to a method for blowing gas with a wide variable range of the blowing gas flow rate.

【0002】[0002]

【従来の技術】近年、鉄鋼精錬においては溶鋼内へのガ
ス吹き込みが常用されるようになってきたが、精錬技術
の高度化、多様化に伴い、一連の精錬工程の中で吹き込
みガスの流量を大幅に変更しうる技術の必要性が高まっ
ている。
2. Description of the Related Art In recent years, gas injection into molten steel has become common in steel refining. However, with the sophistication and diversification of refining technology, the flow rate of blown gas in a series of refining processes has been increasing. There is a growing need for technology that can significantly change the size of a device.

【0003】例えば、上底吹き転炉で低燐の高炭素鋼を
溶製するためには、脱炭吹錬の末期に底吹きガス流量を
絞り、スラグ中の(T.Fe)を高めて脱燐を促進させ
る必要がある。また、上底吹き転炉で極低炭素域まで脱
炭するに際しては、脱炭末期に酸素の供給が過剰になら
ないように、極低炭素域で底吹き酸素流量を低減させる
必要がある。
[0003] For example, in order to melt low-phosphorus high-carbon steel in an upper-bottom blow converter, the bottom blow gas flow rate is reduced at the end of decarburization blowing to increase (T.Fe) in the slag. It is necessary to promote dephosphorization. In addition, when decarburizing to an extremely low carbon region in the top and bottom blown converter, it is necessary to reduce the bottom blown oxygen flow rate in the extremely low carbon region so that the supply of oxygen does not become excessive at the end of decarburization.

【0004】また、電気炉においても底吹き精錬が多用
されるようになってきたが、溶解初期の溶鋼量の少ない
時期は、底吹きガス流量を小さくし、溶鋼量が多くなる
溶解中期以降に、底吹きガス流量を増大させる必要があ
る。
[0004] In the electric furnace, bottom blow refining has been frequently used. However, in the period when the amount of molten steel in the initial stage of melting is small, the flow rate of the bottom blown gas is reduced and after the middle stage of melting when the amount of molten steel increases. Therefore, it is necessary to increase the bottom gas flow rate.

【0005】一般に溶鋼中にガスを吹き込む羽口として
は、羽口れんが内に金属製の単管又は二重管ノズルを埋
め込んだものが多く用いられる。しかし、このような管
状のノズルは、ガス流量を低減させた時にノズル内に溶
鋼が差し込んで閉塞するという問題がある。そのために
管状のノズルでは、吹き込みガス流量の可変範囲が狭い
ということが問題であった。
Generally, as tuyere for blowing gas into molten steel, a tuyere brick with a metal single tube or double tube nozzle embedded therein is often used. However, such a tubular nozzle has a problem in that when the gas flow rate is reduced, molten steel is inserted into the nozzle and becomes blocked. Therefore, the tubular nozzle has a problem that the variable range of the flow rate of the blown gas is narrow.

【0006】これに対して、多孔質の耐火物いわゆるポ
ーラスプラグを用いて溶鋼内にガスを吹き込む方法で
は、管状のノズルのような溶鋼の差し込みがないため、
流量を絞ることは可能であるが、吹き込めるガス流量が
少なく、大幅な精錬効果の向上が期待できない。
On the other hand, in the method of blowing gas into molten steel using a porous refractory, a so-called porous plug, there is no insertion of molten steel as in a tubular nozzle.
Although it is possible to reduce the flow rate, the flow rate of the blown gas is small and a significant improvement in refining effect cannot be expected.

【0007】一方、例えば特開昭62−96612号公
報には、羽口れんが内に多数の金属製の細管を埋め込ん
で(集合管方式)、低流量時に溶鋼の差し込みを起こり
にくくして流量可変巾を広くする方法が開示されてい
る。この方法では、健全に形成されたマッシュルームが
羽口を保護し寿命を延ばす役割を果たしており、通常
は、マッシュルームを健全に形成させるために、細管ノ
ズル1本当たりの不活性ガスの吹き込み流量をノズル断
面積で除した細管ノズル先端における見かけのガス流速
が300Nm/秒前後となるようにCOやN2等の不
活性ガスを吹き込んでいる。
On the other hand, for example, in Japanese Patent Laid-Open No. 62-96612, a large number of thin metal tubes are embedded in a tuyere brick (collecting pipe system) to make it difficult to insert molten steel at a low flow rate and change the flow rate. A method of widening the width is disclosed. In this method, the healthy mushrooms play a role of protecting the tuyere and extending the life. Normally, in order to form the mushrooms soundly, the flow rate of the inert gas per thin tube nozzle is set to the nozzle. An inert gas such as CO 2 or N 2 is blown in so that the apparent gas flow velocity at the tip of the thin tube nozzle divided by the cross-sectional area is about 300 Nm / sec.

【0008】この方法でガス流量を大幅に絞ろうとする
と、溶鋼の差し込みは防止できるものの、ガスによる冷
却能が低下し、マッシュルームが溶け落ちて羽口の寿命
が著しく短くなる問題が生じる。ガス流量を大幅に増大
させようとすると、ガスによる冷却が過多となり、マッ
シュルームが異常に成長して、ガス流路が閉塞するとい
う問題が生じる。
If the gas flow rate is greatly reduced by this method, the molten steel can be prevented from being inserted, but the cooling capacity due to the gas is lowered, the mushroom melts down, and the life of the tuyere becomes remarkably shortened. If the gas flow rate is to be significantly increased, there is a problem that the cooling by the gas becomes excessive and the mushroom grows abnormally to block the gas flow path.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記のよう
な従来技術の問題点に鑑み、羽口の寿命を低下させるこ
となく、不活性ガスの吹き込み流量の可変範囲を大きく
する溶鉄内へのガスの吹き込み方法を提供することを目
的とする。
SUMMARY OF THE INVENTION In view of the problems of the prior art as described above, the present invention provides a molten iron in which the variable range of the blowing rate of the inert gas is increased without reducing the life of the tuyere. It is an object of the present invention to provide a gas blowing method of

【0010】[0010]

【課題を解決するための手段】本発明は上記の課題を解
決するためになされたものであって、その要旨は、不活
性ガスを吹き込んで溶鉄の精錬を行うに際し、健全なマ
ッシュルームが維持されるように、不活性ガスの吹き込
み流量を増加する場合にはO2ガスを混合し、および/
または、不活性ガスの吹き込み流量を減少する場合には
プロパン等の炭化水素ガスを混合して吹き込むことを特
徴とする溶鉄内へのガスの吹き込み方法である。
The present invention has been made to solve the above-mentioned problems, and its gist is to maintain a healthy mushroom during the refining of molten iron by blowing an inert gas. As described above, when increasing the flow rate of the inert gas, O 2 gas is mixed, and /
Alternatively, it is a method of blowing gas into molten iron, which is characterized in that a hydrocarbon gas such as propane is mixed and blown when the flow rate of the inert gas is reduced.

【0011】また、単管ノズルもしくは単管ノズルを集
合した羽口から不活性ガスを吹き込んで溶鉄の精錬を行
うに際し、ノズル1本当たりの不活性ガスの吹き込み流
量をノズル出口断面積で除した見かけの線流速が400
Nm/秒超となる場合には、下式で示される範囲内の流
量QONm3/時のO2ガスを混合して吹き込むことを特
徴とする溶鉄内へのガスの吹き込み方法である。
Further, when performing the refining of molten iron by blowing an inert gas from a single pipe nozzle or tuyere where the single pipe nozzles are assembled, the flow rate of the inert gas blown per nozzle is divided by the nozzle outlet cross-sectional area. Apparent linear flow velocity is 400
When it exceeds Nm / sec, it is a method of blowing gas into molten iron, which is characterized by mixing and blowing O 2 gas at a flow rate Q O Nm 3 / hour within the range shown by the following formula.

【0012】0.15×(Q−4/3Q*)≦QO≦0.2
2×(Q−2/3Q*) ここで、Q :不活性ガスの吹き込み流量(Nm3
時) Q* :基準吹き込み流量(Nm3/時)=300(Nm/秒)
×ノズル総断面積(m2)×3600 。
0.15 × (Q-4 / 3Q *) ≦ Q O ≦ 0.2
2 × (Q−2 / 3Q *) where Q is the flow rate of the inert gas blown (Nm 3 /
Q *: Reference injection flow rate (Nm 3 / hour) = 300 (Nm / sec)
× Nozzle total cross-sectional area (m 2 ) × 3600.

【0013】また、単管ノズルもしくは単管ノズルを集
合した羽口から不活性ガスを吹き込んで溶鉄の精錬を行
うに際し、ノズル1本当たりの不活性ガスの吹き込み流
量をノズル出口断面積で除した見かけの線流速が200
Nm/秒未満となる場合には、下式で示される範囲内の
流量QLPGNm3/時のプロパンガスを混合して吹き込む
ことを特徴とする溶鉄内へのガスの吹き込み方法であ
る。
Further, when refining molten iron by injecting an inert gas from a single pipe nozzle or tuyere which is a collection of single pipe nozzles, the flow rate of the inert gas blown per nozzle is divided by the nozzle outlet cross-sectional area. Apparent linear flow velocity is 200
When it is less than Nm / sec, it is a method of blowing gas into molten iron, which is characterized in that propane gas having a flow rate Q LPG Nm 3 / hour within a range represented by the following formula is mixed and blown.

【0014】0.16×(2/3Q*−Q)≦QLPG≦0.2
3×(4/3Q*−Q) ここで、Q :不活性ガスの吹き込み流量(Nm3
時) Q* :基準吹き込み流量(Nm3/時)=300(Nm/秒)
×ノズル総断面積(m2)×3600 。
0.16 × (2 / 3Q * -Q) ≤Q LPG ≤0.2
3 × (4 / 3Q * −Q) where Q: the flow rate of the inert gas blown (Nm 3 /
Q *: Reference injection flow rate (Nm 3 / hour) = 300 (Nm / sec)
× Nozzle total cross-sectional area (m 2 ) × 3600.

【0015】なお、ここで言う「健全なマッシュルー
ム」とは、羽口先端を保護しつつ、所定のガス流量を安
定して吹き込める流路を有するマッシュルームを意味す
る。また、「不活性ガス」とは、CO2、N2、Arある
いはこれらの混合ガスを意味する。
The term "healthy mushroom" as used herein means a mushroom having a flow path capable of stably blowing a predetermined gas flow rate while protecting the tuyere tips. Also, the "inert gas" means a CO 2, N 2, Ar or a mixed gas thereof.

【0016】[0016]

【発明の実施の形態】図1は、本発明を実施する際のガ
スの吹き込み経路の例を示す説明図である。転炉1の底
部に羽口2が埋め込まれており、ガスは混合器3内で混
合された後、羽口2を通って溶鉄4内に吹き込まれる。
通常は、CO2バルブ5および/またはN2バルブ6を開
とし、その他のバルブは閉として不活性ガスのみを吹き
込む。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view showing an example of a gas blowing path for carrying out the present invention. The tuyere 2 is embedded in the bottom of the converter 1, and the gas is mixed in the mixer 3 and then blown into the molten iron 4 through the tuyere 2.
Normally, the CO 2 valve 5 and / or the N 2 valve 6 are opened, and the other valves are closed to blow only an inert gas.

【0017】ガスを通常よりも高流量で吹き込む場合
は、O2バルブ8を開としてO2ガスを不活性ガスに混合
してから吹き込む。ガスを通常よりも低流量で吹き込む
場合は、LPGバルブ7を開としてプロパンガスを不活
性ガスに混合してから吹き込む。なお、図1はCO2
2ガスを使用した場合であるが、不活性ガスとしてA
r等の他のガスを使用しても良い。また、プロパンガス
の代わりに、天然ガス等の他の炭化水素ガスを使用して
も良い。
When the gas is blown at a higher flow rate than usual, the O 2 valve 8 is opened and the O 2 gas is mixed with the inert gas before being blown. When the gas is blown at a flow rate lower than usual, the LPG valve 7 is opened to mix the propane gas with the inert gas and then blown. In addition, FIG. 1 shows the case where CO 2 and N 2 gas are used.
Other gas such as r may be used. Further, other hydrocarbon gas such as natural gas may be used instead of propane gas.

【0018】本発明の発明者らは、溶鉄中に不活性ガス
のみを吹き込んで精錬を行う場合に、高流量の不活性ガ
スを流しているとマッシュルームが過度に成長してガス
流路が閉塞気味となり流量が低下してくること、低流量
の不活性ガスを流しているとマッシュルームが溶け落ち
羽口が溶損して寿命が著しく低下すること、ノズル1本
当たりの吹き込み流量をノズル出口断面積で除した見か
けの線流速が200〜400Nm/秒とすれば健全なマ
ッシュルームが形成され羽口の寿命が伸びることを知見
した。すなわち、吹き込みガスによる冷却能がマッシュ
ルームの形成条件を支配する。
The inventors of the present invention, when carrying out refining by blowing only an inert gas into molten iron and flowing a high flow rate of the inert gas, the mushroom grows excessively and the gas flow passage is blocked. The flow rate will decrease, and if a low flow rate of inert gas is flowing, the mushroom will melt down and the tuyere will melt and the life will be significantly reduced. It was found that when the apparent linear flow velocity divided by was 200 to 400 Nm / sec, a healthy mushroom was formed and the life of the tuyere was extended. That is, the cooling ability by the blown gas governs the mushroom formation conditions.

【0019】そこで、発明者らは、見かけのガス線流速
が200Nm/秒未満あるいは400Nm/秒超となる
ようにガス流量を変更した場合でも冷却能がほぼ一定と
なるようにガス組成を制御すれば健全なマッシュルーム
形成を維持しつつ不活性ガスの吹き込み流量の可変巾
(範囲)を大きくできるとの考えから、見かけの線流速
を400Nm/秒超の高流量のガスを吹き込む場合には
発熱反応を伴うO2ガスを不活性ガスに混合し、見かけ
の線流速を200Nm/秒未満の低流量のガスを吹き込
む場合には分解吸熱反応を伴う炭化水素ガスを不活性ガ
スに混合して吹き込む方法を検討した。
Therefore, the inventors of the present invention should control the gas composition so that the cooling capacity becomes almost constant even when the gas flow rate is changed so that the apparent linear gas flow velocity is less than 200 Nm / sec or more than 400 Nm / sec. If it is possible to increase the variable width (range) of the flow rate of the inert gas blown while maintaining a healthy mushroom formation, an exothermic reaction occurs when a high flow rate gas with an apparent linear velocity of more than 400 Nm / sec is blown. A method in which an O 2 gas accompanied by is mixed with an inert gas, and when a low flow rate gas having an apparent linear flow rate of less than 200 Nm / sec is blown, a hydrocarbon gas accompanied by a decomposition endothermic reaction is mixed with the inert gas and blown. It was investigated.

【0020】不活性ガスを吹き込む場合には、羽口はガ
スの顕熱のみで冷却され、ガスの比熱から冷却能を計算
すると、25℃のガスを1500℃の溶鉄に吹き込む場
合、CO2ガスの場合が16 kcal/molでN2ガスの場合
が約11 kcal/molとなる。O2ガスを吹き込む場合に
は、ガスの顕熱増加により羽口が奪われる熱よりも、 O2+2C→2CO の発熱反応で受ける熱の方が大きく、差し引き約74 k
cal/molの熱を発生する。従って、CO2ガスを増加す
る場合にはその増加量の16/74=約0.22倍のO
2ガスを混合し、N2ガスを増加する場合にはその増加量
の11/74=約0.15倍のO2ガスを混合すれば、
羽口の冷却能が維持される。
When an inert gas is blown in, the tuyere is cooled only by the sensible heat of the gas, and when the cooling capacity is calculated from the specific heat of the gas, when blowing the gas at 25 ° C into the molten iron at 1500 ° C, the CO 2 gas In case of N 2 gas, it becomes about 11 kcal / mol. When blowing O 2 gas, the heat received by the exothermic reaction of O 2 + 2C → 2CO is larger than the heat taken by the tuyere due to the increase in sensible heat of the gas, and the subtraction is about 74 k.
Generates cal / mol of heat. Therefore, when the CO 2 gas is increased, 16/74 = 0.22 times as much O
When 2 gases are mixed and N 2 gas is increased, 11/74 = about 0.15 times the increased amount of O 2 gas is mixed,
The tuyere cooling capacity is maintained.

【0021】また、健全なマッシュルームの形成条件
が、見かけ線流速200〜400Nm/秒であることか
ら、基準流量を Q*(Nm3/時)=300(Nm/秒)×ノズル総断面積(m2)
×3600 と定義すると、不活性ガスのみを吹き込む場合、流量が
2/3Q*以上4/3Q*以下であれば、健全なマッシュ
ルームを維持できる。
Since the condition for forming a healthy mushroom is an apparent linear flow velocity of 200 to 400 Nm / sec, the reference flow rate is Q * (Nm 3 / hr) = 300 (Nm / sec) × total nozzle cross-sectional area ( m 2 )
When defined as × 3600, when only the inert gas is blown, a healthy mushroom can be maintained if the flow rate is 2 / 3Q * or more and 4 / 3Q * or less.

【0022】以上のことから、CO2ガスを見かけ線流
速が400Nm/秒超となる流量Qで吹き込む場合、 0.22×(Q−4/3Q*)≦QO≦0.22×(Q−2/3
Q*) を満たす流量QOでO2ガスを混合すれば、羽口の冷却能
がほぼ不変となり、健全なマッシュルーム形成が維持さ
れることになる。
From the above, when CO 2 gas is blown at a flow rate Q at which the apparent linear flow velocity exceeds 400 Nm / sec, 0.22 × (Q−4 / 3Q *) ≦ Q O ≦ 0.22 × (Q −2/3
If the O 2 gas is mixed at a flow rate Q O that satisfies Q *), the cooling capacity of the tuyere becomes almost unchanged, and healthy mushroom formation is maintained.

【0023】同様に不活性ガスとしてN2ガスを使用す
る場合、 0.15×(Q−4/3Q*)≦QO≦0.15×(Q−2/3
Q*) を満たす流量QOでO2ガスを混合すれば、羽口の冷却能
がほぼ一定となり、健全なマッシュルーム形成が維持さ
れることになる。
Similarly, when N 2 gas is used as the inert gas, 0.15 × (Q-4 / 3Q *) ≦ Q O ≦ 0.15 × (Q-2 / 3
If O 2 gas is mixed at a flow rate Q O that satisfies Q *), the tuyere cooling capacity becomes almost constant, and healthy mushroom formation is maintained.

【0024】実際には、CO2とN2の混合ガスを不活性
ガスとして使用する場合もあり、O2ガスの混合量は、 0.15×(Q−4/3Q*)≦QO≦0.22×(Q−2/3
Q*) の範囲となる。
Actually, a mixed gas of CO 2 and N 2 may be used as an inert gas, and the mixed amount of O 2 gas is 0.15 × (Q-4 / 3Q *) ≦ Q O ≦ 0.22 x (Q-2 / 3
It becomes the range of Q *).

【0025】一方、プロパンガスを吹き込む場合には、
ガスの顕熱増加により羽口が奪われる熱に加えて、 C38 → 3C+4H2 の分解反応で奪われる熱があり、合計約70kcal/molの
冷却能を有する。従って、CO2ガスを減少する場合は
その減少量の16/70=約0.23倍のプロパンガス
を混合し、N2ガスを減少する場合はその減少量の11
/70=約0.16倍のプロパンガスを混合すれば、羽
口の冷却能が維持される。
On the other hand, when blowing propane gas,
In addition to the heat taken away by the tuyere due to the increase in sensible heat of the gas, there is also heat taken away by the decomposition reaction of C 3 H 8 → 3C + 4H 2 , which has a total cooling capacity of about 70 kcal / mol. Therefore, when the CO 2 gas is reduced, 16/70 = about 0.23 times the propane gas is mixed, and when the N 2 gas is reduced, the decrease amount is 11
By mixing / 70 = about 0.16 times the propane gas, the tuyere cooling capacity is maintained.

【0026】従って、不活性ガス流量を減少して見かけ
線流速が200Nm/秒未満となる流量Qで吹き込む場
合、健全なマッシュルーム形成を維持するためのプロパ
ンガスの混合量QLPGは、O2ガスの時と同様に考えて、 0.16×(2/3Q*−Q)≦QLPG≦0.23×(4/3Q
*−Q) となる。
Therefore, when the flow rate of the inert gas is reduced and the apparent linear flow rate is blown at a flow rate Q of less than 200 Nm / sec, the mixed amount Q LPG of propane gas for maintaining sound mushroom formation is O 2 gas. As in the case of, 0.16 × (2 / 3Q * −Q) ≦ Q LPG ≦ 0.23 × (4 / 3Q
* -Q).

【0027】もちろん、羽口の冷却能は、炉や羽口毎
に、また吹き込みガス種や溶鉄の温度によっても多少異
なり、健全なマッシュルームが形成されるための不活性
ガスの適正流量も異なってくる。従って、本発明を適用
する際には、その炉での不活性ガスの適正流量を把握
し、その適正流量からの増減分の不活性ガスの顕熱を相
殺するだけの冷却能もしくは発熱能を有するように、プ
ロパンガスもしくは他の炭化水素ガスやO2ガスの流量
を計算して、混合、吹き込むのが望ましい。
Needless to say, the cooling capacity of the tuyere differs slightly depending on the furnace and tuyere, the type of gas blown in, and the temperature of the molten iron, and the appropriate flow rate of the inert gas for forming a healthy mushroom also differs. come. Therefore, when the present invention is applied, the proper flow rate of the inert gas in the furnace is grasped, and the cooling capacity or the heating capacity sufficient to offset the sensible heat of the inert gas that increases or decreases from the proper flow rate. It is desirable to calculate, mix, and blow the flow rate of propane gas or other hydrocarbon gas or O 2 gas so as to have.

【0028】[0028]

【実施例】容量100tonの転炉を用いて、本発明のガ
ス吹き込み方法と、不活性ガスのみを吹き込んだ場合の
吹き込み状況と羽口溶損速度を比較した。実施例、比較
例とも直径3mmの小径ノズルをスリーブれんがに15本
埋め込んだ羽口を炉底に4本配置し、不活性ガスとして
CO2ガスを使用した。この羽口を使用した場合、本発
明で定義した基準流量Q*は458Nm3/時となる。C
2ガスの流量が150、450、1500 Nm3/時
の3水準で比較を行い、実施例では、1500Nm3
時の場合O2ガスを230Nm3/時と混合し、150N
3/時の場合プロパンガスを70Nm3/時混合して吹
き込んだ。実施例の結果を表1に、比較例の結果を表2
に示す。
EXAMPLE A gas blowing method of the present invention was compared with a blowing condition and tuyere melting loss rate when only an inert gas was blown, using a converter having a capacity of 100 tons. In each of the examples and the comparative examples, four tuyere having 15 small nozzles with a diameter of 3 mm embedded in a sleeve brick were arranged at the bottom of the furnace, and CO 2 gas was used as an inert gas. When this tuyere is used, the standard flow rate Q * defined in the present invention is 458 Nm 3 / hour. C
O 2 flow rate of gas compares with 3 levels of 150,450,1500 Nm 3 / time, in the embodiment, 1500 Nm 3 /
In the case of time, O 2 gas is mixed with 230 Nm 3 / hour,
In the case of m 3 / hour, propane gas was mixed and blown at 70 Nm 3 / hour. The results of Examples are shown in Table 1, and the results of Comparative Examples are shown in Table 2.
Shown in

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】比較例の場合には、150Nm3/時の水
準では羽口の溶損進行が速く、実験回数を重ねるにつれ
吹き込み圧力が低下し、1500Nm3/時の水準では
羽口が閉塞気味となり吹き込み流量が徐々に低下して最
終的に300〜400Nm3/時までしか吹き込めない
ようになった。
In the case of the comparative example, at the level of 150 Nm 3 / hour, the progress of erosion of the tuyere was fast, the blowing pressure decreased as the number of experiments was repeated, and the tuyere became slightly blocked at the level of 1500 Nm 3 / hour. The blowing flow rate gradually decreased, and finally, the blowing rate became 300 to 400 Nm 3 / hour.

【0032】一方、実施例では、いずれの流量の場合に
も、安定した吹き込みが実現でき、羽口の溶損速度も大
きな変化は認められなかった。従って、本発明の吹き込
み方法によれば、従来の吹き込み方法に比較して、羽口
の寿命低下なしにガス流量の可変範囲を大幅に拡大でき
ることが明らかになった。
On the other hand, in the examples, stable blowing could be realized at any flow rate, and no significant change was found in the tuyere melting rate. Therefore, it became clear that the blowing method of the present invention can greatly expand the variable range of the gas flow rate without shortening the life of the tuyere, as compared with the conventional blowing method.

【0033】[0033]

【発明の効果】本発明により、溶鉄内へのガスを吹き込
みに際し、従来の吹き込み方法と比較して、羽口の寿命
の低下なしに、吹き込みガス流量の可変範囲を大幅に拡
大することが可能となった。
According to the present invention, when the gas is blown into the molten iron, it is possible to greatly expand the variable range of the blown gas flow rate as compared with the conventional blowing method without shortening the life of the tuyere. Became.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する際のガスの吹き込み経路の例
を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a gas blowing path when carrying out the present invention.

【符号の説明】[Explanation of symbols]

1 転炉 2 羽口 3 ガスの混合器 4 溶鉄 5 CO2バルブ 6 N2バルブ 7 LPGバルブ 8 O2バルブ1 converter 2 tuyere 3 gas mixer 4 molten iron 5 CO 2 valve 6 N 2 valve 7 LPG valve 8 O 2 valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】不活性ガスを吹き込んで溶鉄の精錬を行う
に際し、健全なマッシュルームが維持されるように、不
活性ガスの吹き込み流量を増加する場合にはO2ガスを
混合し、および/または、不活性ガスの吹き込み流量を
減少する場合にはプロパン等の炭化水素ガスを混合して
吹き込むことを特徴とする溶鉄内へのガスの吹き込み方
法。
1. When refining molten iron by blowing an inert gas, O 2 gas is mixed and / or mixed when increasing the flow rate of the inert gas so that a healthy mushroom is maintained. A method for blowing gas into molten iron, characterized in that a hydrocarbon gas such as propane is mixed and blown when the flow rate of the inert gas is reduced.
【請求項2】単管ノズルもしくは単管ノズルを集合した
羽口から不活性ガスを吹き込んで溶鉄の精錬を行うに際
し、ノズル1本当たりの不活性ガスの吹き込み流量をノ
ズル出口断面積で除した見かけの線流速が400Nm/
秒超となる場合には、下式で示される範囲内の流量QO
Nm3/時のO2ガスを混合して吹き込むことを特徴とす
る溶鉄内へのガスの吹き込み方法。 0.15×(Q−4/3Q*)≦QO≦0.22×(Q−2/3
Q*) ここで、Q :不活性ガスの吹き込み流量(Nm3
時) Q* :基準吹き込み流量(Nm3/時)=300(Nm/秒)
×ノズル総断面積(m2)×3600
2. When refining molten iron by injecting an inert gas from a single-tube nozzle or tuyere assembled from single-tube nozzles, the flow rate of the inert gas blown per nozzle is divided by the nozzle outlet cross-sectional area. Apparent linear flow velocity is 400 Nm /
If it exceeds seconds, the flow rate Q O within the range shown by the following formula
A method for blowing gas into molten iron, which comprises mixing and blowing O 2 gas at Nm 3 / hour. 0.15 x (Q-4 / 3 Q *) ≤ Q O ≤ 0.22 x (Q-2 / 3
Q *) where Q is the flow rate of the inert gas blown in (Nm 3 /
Q *: Reference injection flow rate (Nm 3 / hour) = 300 (Nm / sec)
× Nozzle total cross-sectional area (m 2 ) × 3600
【請求項3】単管ノズルもしくは単管ノズルを集合した
羽口から不活性ガスを吹き込んで溶鉄の精錬を行うに際
し、ノズル1本当たりの不活性ガスの吹き込み流量をノ
ズル出口断面積で除した見かけの線流速が200Nm/
秒未満となる場合には、下式で示される範囲内の流量Q
LPGNm3/時のプロパンガスを混合して吹き込むことを
特徴とする溶鉄内へのガスの吹き込み方法。 0.16×(2/3Q*−Q)≦QLPG≦0.23×(4/3Q
*−Q) ここで、Q :不活性ガスの吹き込み流量(Nm3
時) Q* :基準吹き込み流量(Nm3/時)=300(Nm/秒)
×ノズル総断面積(m2)×3600
3. When refining molten iron by injecting an inert gas from a single-tube nozzle or tuyere assembled from single-tube nozzles, the flow rate of the inert gas blown per nozzle is divided by the nozzle outlet cross-sectional area. Apparent linear flow velocity is 200 Nm /
If it is less than a second, the flow rate Q within the range shown by the following formula
A method for blowing gas into molten iron, characterized in that LPG Nm 3 / hr propane gas is mixed and blown. 0.16 x (2 / 3Q * -Q) ≤ Q LPG ≤ 0.23 x (4 / 3Q
* -Q) Here, Q: Inflow rate of inert gas (Nm 3 /
Q *: Reference injection flow rate (Nm 3 / hour) = 300 (Nm / sec)
× Nozzle total cross-sectional area (m 2 ) × 3600
JP3700496A 1996-02-26 1996-02-26 Method for blowing gas into molten iron Pending JPH09227921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3700496A JPH09227921A (en) 1996-02-26 1996-02-26 Method for blowing gas into molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3700496A JPH09227921A (en) 1996-02-26 1996-02-26 Method for blowing gas into molten iron

Publications (1)

Publication Number Publication Date
JPH09227921A true JPH09227921A (en) 1997-09-02

Family

ID=12485567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3700496A Pending JPH09227921A (en) 1996-02-26 1996-02-26 Method for blowing gas into molten iron

Country Status (1)

Country Link
JP (1) JPH09227921A (en)

Similar Documents

Publication Publication Date Title
US5039480A (en) Method for manufacturing molten metal containing Ni and Cr
EP1721017B1 (en) Method for producing low carbon steel
US4474605A (en) Process for refining high-chromium steels
US4395283A (en) Method of switching bottom-blown gases and apparatus therefor
US4420334A (en) Method for controlling the bottom-blowing gas in top-and-bottom blown converter steel making
JPH09227921A (en) Method for blowing gas into molten iron
JP3706429B2 (en) Method of injecting gas into molten metal
US4330108A (en) Method for cooling tuyeres
EP0099713B1 (en) A method for protecting tuyères for refining a molten iron
KR100868430B1 (en) Method for Making Molten Steel by Converter
KR100225249B1 (en) Remaining slag control method of of slopping control
JP3630003B2 (en) Method of injecting hydrocarbon gas into molten metal
JP3769060B2 (en) Method of blowing gas into molten metal
JP2000219906A (en) Method for blowing gas into molten iron
JPS6136051B2 (en)
JPS6235447B2 (en)
JP3619338B2 (en) Method of injecting gas into molten metal
JPS61276912A (en) Operating method for top and bottom blown converter
JPH05214420A (en) Method for injecting gaseous hydrocarbon from tuyere
JP2001207207A (en) Double pipe tuyere for blowing hydrocarbon
JPS63290214A (en) Refining method in top and bottom blowing converter
JPH068447B2 (en) Method for melting iron-containing cold material
JPS60194009A (en) Method for refining stainless steel
JPH04268009A (en) Method for cooling bottom blowing tuyere in stainless steel decarbonizing furnace
JPH0678867B2 (en) Oxygen gas tuyere stable operation method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20031224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040220

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040323