JPS60194009A - Method for refining stainless steel - Google Patents

Method for refining stainless steel

Info

Publication number
JPS60194009A
JPS60194009A JP4717384A JP4717384A JPS60194009A JP S60194009 A JPS60194009 A JP S60194009A JP 4717384 A JP4717384 A JP 4717384A JP 4717384 A JP4717384 A JP 4717384A JP S60194009 A JPS60194009 A JP S60194009A
Authority
JP
Japan
Prior art keywords
gas
blown
blowing
refining
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4717384A
Other languages
Japanese (ja)
Inventor
Yoshihide Kato
嘉英 加藤
Tetsuya Fujii
徹也 藤井
Yasuhiro Kakio
垣生 泰弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4717384A priority Critical patent/JPS60194009A/en
Publication of JPS60194009A publication Critical patent/JPS60194009A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To maintain the decarburization of molten crude stainless steel at a high speed and to shorten the refining time by blowing a gaseous mixture of oxygen with an inert gas on the surface of the bath from a top blowing lance and by blowing a gaseous mixture of a hydrocarbon fluid with an inert gas into the bath from the gap between the inner and outer tubes of a tuyere having a double-tubed structure. CONSTITUTION:In an oxidation stage for gradually removing carbon from molten crude steel in a refining vessel, a gaseous mixture of oxygen with an inert gas as a gas to be blown from the top is blown on the surface of the bath from a top blowing lance. At the same time, a tuyere having a double-tubed structure is used to blow a gas to be blown from the bottom, and a gaseous mixture of a hydrocarbon fluid for cooling the tuyere with an inert gas is blown as a tuyere protecting gas into the bath from the gap between the inner and outer tubes of the tuyere.

Description

【発明の詳細な説明】 (技術分野) 転炉とくに底吹き用の2重管羽目を有する転炉を用いて
ステンレス鋼精錬を有利に行うことに関連してこの明細
書で述べる技術内容は、該精錬の酸化工程における適切
な脱炭の促進を、羽目の消耗軽減にあわせ有利に実現す
ることについての開発成果を提案するところにある。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The technical content described in this specification in connection with the advantageous refining of stainless steel using a converter, particularly a converter having a double tube wall for bottom blowing, is as follows: The purpose of this paper is to propose development results that can advantageously realize appropriate promotion of decarburization in the oxidation process of the refining process, as well as reducing the consumption of the slag.

(背景技術) ステンレス鋼の精錬は一般に、いわゆるAOD炉、また
最近に至って底吹き転炉の如き精錬容器を用い、これに
収容したステンレス鋼粗溶鋼に、その浴面下に開孔する
底吹き羽口を通して精錬ガスたとえば酸素および不活性
ガスの混合気を浴中に吹込むことにより、粗溶鋼中の炭
素を漸次に酸化させる工程を経るを例とする。
(Background Art) Stainless steel refining generally uses a refining vessel such as a so-called AOD furnace or, more recently, a bottom blowing converter. For example, the carbon in the crude molten steel is gradually oxidized by blowing a refining gas, such as a mixture of oxygen and an inert gas, into the bath through the tuyere.

すなわら予め電気炉の如き溶解炉においてスクラップや
鉄合金などの主原料を溶融させ、得られたステンレス鋼
粗溶鋼を底吹き転炉やAOD炉に装入し、02ガスもし
くは02ガスと不活性ガス(Arガスまた番よN2ガス
)との混合気を精錬ガスとして粗溶鋼の浴中に吹込むい
わゆる底吹きにて酸化精錬を行ない、主に炭素を酸化さ
せて脱炭する。
That is, the main raw materials such as scrap and iron alloy are melted in advance in a melting furnace such as an electric furnace, and the resulting crude molten stainless steel is charged into a bottom-blowing converter or AOD furnace, where it is mixed with 02 gas or 02 gas. Oxidation refining is performed by so-called bottom blowing, in which a mixture with an active gas (Ar gas or N2 gas) is blown into a bath of crude molten steel as a refining gas, and carbon is mainly oxidized and decarburized.

ところがこの酸化精錬工程においては炭素のみならずC
r 6M化されてしまい、特に低炭酸となるほどCrの
酸化が著しくなる。
However, in this oxidation refining process, not only carbon but also C
r becomes 6M, and the oxidation of Cr becomes more significant, especially as the carbonic acid becomes lower.

そこで通常はCrの酸化損失を抑えるため、溶鋼中の炭
素濃度の低下に従って精錬ガス中の不活性ガスの比率を
順次増加させ、これにより炉内の00分圧を下げて平衡
炭素濃度を低くし、優先脱炭させることが行なわれてい
る。
Therefore, in order to suppress the oxidation loss of Cr, the ratio of inert gas in the refining gas is gradually increased as the carbon concentration in the molten steel decreases, thereby lowering the 00 partial pressure in the furnace and lowering the equilibrium carbon concentration. , preferential decarbonization is being carried out.

しかしながらこのようにしてC「の酸化抑制を図ったと
しても、酸化工程の終了時には溶鋼の2〜3%程度のC
r酸化損失が存在することは避けられないのであり、そ
のため、酸化工程に引続いて溶鋼のCr1l化損失分、
すなわちスラグ中に移行した酸化クロムを溶鋼中へ還元
させる還元工程を実施するのが通常である。
However, even if we try to suppress the oxidation of C in this way, at the end of the oxidation process, about 2 to 3% of C in the molten steel remains.
The existence of oxidation loss is unavoidable, and therefore, following the oxidation process, the loss of Cr1l in the molten steel,
That is, it is usual to carry out a reduction step in which chromium oxide that has migrated into slag is reduced into molten steel.

以上述べた在来のステンレス鋼精錬方法では、酸化精錬
につき混合気として吹込み精錬ガスを希釈することに加
えτ還元精錬工程の付加を必要とすることなどから、精
錬時間が普通鋼のそれに比べて2〜3倍にものぼり、後
工程での連鋳との同期化、なかでも連々鋳の如き能率的
なプロセスの適合は困難となり、高生産効率という点で
難があった。
The conventional stainless steel refining method described above requires the addition of a τ reduction refining process in addition to diluting the injected refining gas as a mixture for oxidation refining, so the refining time is longer than that of ordinary steel. As a result, it becomes difficult to synchronize with continuous casting in the subsequent process, especially adapting an efficient process such as continuous casting, and this poses a problem in terms of high production efficiency.

〈従来の開発努力) ステンレス鋼を迅速に精錬することに関して、特開昭5
8−130216号公報の如く、浴面下に設けた底吹き
用羽目から酸素と窒素または酸素とアルゴンの混合気も
しくは酸素を精錬ガスとして鋼浴中に吹込むことに加え
て、転炉に付帯設置した上吹きランスを用いて02とA
「または02とN2との混合気を鋼浴面上に吹付けて精
錬することが提案された。
<Conventional development efforts> Regarding rapid refining of stainless steel,
8-130216, in addition to blowing a mixture of oxygen and nitrogen or oxygen and argon into the steel bath as a refining gas through the bottom blowing slats provided below the bath surface, 02 and A using the installed top blow lance
``Alternatively, it has been proposed to spray a mixture of 02 and N2 onto the surface of the steel bath for refining.

この方法によれば、ステンレス鋼の酸化精錬期の時間短
縮が、上吹きランスから酸素の供給を行う分だけ図れる
ことになる。しかし、この場合精錬時間は短縮され得て
もステンレス鋼精錬操業上重要な底吹き羽目の溶損速度
の低下に対する寄与はほとんどない。。なぜなら、底吹
きガス中における不活性ガスの混入によっては、羽口先
端近傍での酸化発熱反応に対し、羽目の冷却が不十分だ
からである。もちろん不活性ガスを酸素に比べ大流口に
て吹込めば、不活性ガスによる顕然で羽目の冷却は図れ
るにしても、この場合不活性ガスに対1−る酸素ガスの
流m比が、通常の及デンレス鋼精錬に適合する該流量比
5/1〜1/4に比べC著しく小さくなり、実用に供し
得ない。
According to this method, the time required for oxidation refining of stainless steel can be shortened by the amount of oxygen supplied from the top blowing lance. However, in this case, even though the refining time may be shortened, there is little contribution to lowering the erosion rate of the bottom blown surface, which is important in stainless steel refining operations. . This is because the inert gas mixed into the bottom blowing gas does not sufficiently cool the tuyere against the oxidation exothermic reaction near the tuyere tip. Of course, if the inert gas is blown into a larger flow port than the oxygen, it is possible to achieve a noticeable cooling effect due to the inert gas, but in this case, the flow rate m of the oxygen gas to the inert gas is 1-1. , C becomes significantly smaller than the flow rate ratio of 5/1 to 1/4, which is suitable for ordinary steel refining, and cannot be put to practical use.

一方で羽目の冷却が十分に行えるように底吹き羽目とし
ていわゆる2重管羽口を用いた、普通鋼の大量生産量用
転炉つまり、純酸素底吹き転炉(Q−BOP)が知られ
ている。この転炉は底吹き羽目として同心の2重管構造
のものを用い、該羽目の内管内部から純酸素とCaOな
どの粉末を吹込み、また内管と外管のすきまからプロパ
ンなどの炭化水素系流体を供給しこの炭化水素の熱分解
による吸熱反応で羽目先端を冷却する。
On the other hand, a converter for mass production of ordinary steel, a pure oxygen bottom-blown converter (Q-BOP), is known, which uses a so-called double-tube tuyere as a bottom-blown tuyere to ensure sufficient cooling of the bottom-blown tuyere. ing. This converter uses a concentric double-tube structure as a bottom blower, and pure oxygen and powders such as CaO are blown into the inner tube of the bottom blower, and carbonization such as propane is blown into the gap between the inner and outer tubes. A hydrogen-based fluid is supplied and the ends of the slats are cooled by an endothermic reaction caused by thermal decomposition of the hydrocarbons.

この2重管羽目において内管からの粉末供給は造滓剤と
しての役目を果させるほか、粉末の顕熱分が羽目冷却に
寄与している。しかしQ −BOPにおける2重管羽目
をそのままステンレス鋼精錬に応用することはできない
。なぜなら、大量の炭化水素系流体を溶鋼に吹込んだ場
合、その熱分解反応によって溶鋼浴中に炭素分がとどま
ることとなって溶鋼が加炭され、酸化精錬における脱炭
効率を著しく損ねるか、精錬そのものが不可能どなって
しまうからである。
In this double pipe siding, the powder supplied from the inner tube serves as a slag-forming agent, and the sensible heat of the powder contributes to cooling the siding. However, the double pipe structure in Q-BOP cannot be directly applied to stainless steel refining. This is because when a large amount of hydrocarbon fluid is injected into molten steel, carbon content remains in the molten steel bath due to the thermal decomposition reaction, and the molten steel is carburized, which significantly impairs the decarburization efficiency in oxidation refining. This is because refining itself becomes impossible.

(発明の目的) 低炭酸までステンレス鋼粗溶鋼の脱炭速度を高く維持し
たまま精錬時間の短縮を、2重管羽口の溶損軽減にあわ
せ実現することを可能としたステンレス鋼の溶製方法を
与えることがこの発明の目的である。
(Objective of the invention) Smelting of stainless steel that makes it possible to shorten the refining time while maintaining a high decarburization rate of crude molten stainless steel up to low carbon dioxide levels, as well as to reduce melting damage of the double tube tuyeres. It is an object of this invention to provide a method.

(発明の構成) この発明はステンレス鋼粗溶鋼を収容しその溶鋼浴面よ
りも下位で開孔した羽口を備える精錬容器を用い、該羽
目から酸素および不活性ガスよりなる底吹きガスを浴中
に吹込みながらこの精錬容器中にてステンレス鋼の吹錬
を行うに際して、粗溶鋼中の炭素を漸次に除去させる酸
化工程の間、上記精練容器に付帯設置した上吹きランス
を通して酸素および不活性ガスの混合気よりなる上吹き
ガスを浴面に吹付けるとともに、 底吹きガスの吹込みに同心2重管構造の羽目を用いてそ
の内管と外管のすきまから羽目冷却用の炭化水素系流体
および不活性ガスの混合気よりなる羽目保護ガスを吹込
むことを特徴とするステンレス鋼の溶製方法である。
(Structure of the Invention) This invention uses a refining vessel that houses crude molten stainless steel and is equipped with a tuyere that is opened below the surface of the molten steel bath. During the oxidation process in which carbon in the crude molten steel is gradually removed when stainless steel is blown into the smelting vessel, oxygen and inert gas are blown into the smelting vessel through a top blowing lance attached to the smelting vessel. A top-blown gas consisting of a mixture of gases is blown onto the bath surface, and a concentric double-pipe structure is used to blow bottom-blown gas, and a hydrocarbon system for cooling the siding is used through the gap between the inner and outer tubes. This is a stainless steel melting method characterized by blowing a siding protective gas consisting of a mixture of a fluid and an inert gas.

この発明では、上吹きランスからも02とAr又は/及
びN2ガスの混合気を溶鋼浴面に吹きつけ、かくして0
0分圧を上げずに、しかも2重管羽口の内管と外管のす
きまから炭化水素系流体と不活性ガスの混合気を羽目冷
却用ガスとして吹込み、それによる溶鋼強攪拌のもとに
2重管羽目の溶損と溶鋼の加炭を極カ抑えつつ適切な精
錬を行う。
In this invention, a mixture of 02 and Ar or/and N2 gas is also blown onto the surface of the molten steel bath from the top blowing lance.
A mixture of hydrocarbon fluid and inert gas is blown into the gap between the inner and outer tubes of the double-tube tuyere as a cooling gas for molten steel, without raising the partial pressure. In addition, appropriate refining is carried out while minimizing erosion of the double pipe lining and carburization of the molten steel.

まず、上吹きする精錬ガスの混合比率は、酸化精錬工程
中一定であってもよいが、より効率的な精練を行うため
には、下吹きの精錬ガスの混合気比率についても同様に
、吹錬の進行に伴い変化させた方がよい。
First, the mixture ratio of the top-blown refining gas may be constant during the oxidation refining process, but in order to perform more efficient scouring, the mixture ratio of the bottom-blowing refining gas should be similarly adjusted. It is better to change it as the skill progresses.

たとえば、 〔%C〕≧ 0.6で、02 /N2 = 5/ 1〜
4/1.0.6> (% Q ) ≧0.25 テハ、
Oz/Nz’−2/1.0.25 > (%C)≧o、
o4ニアッテハ、02 / N 2Φ1/2、 のように変化させる。
For example, [%C]≧0.6, 02/N2 = 5/1~
4/1.0.6> (%Q) ≧0.25 Teha,
Oz/Nz'-2/1.0.25 > (%C)≧o,
Change it as follows: o4 Niattach, 02/N2Φ1/2.

混合気を溶鋼表面に吹きつける場合、従来のLD法にお
けるような上吹き純酸素ガスの吹込みよりも、広範囲の
変化をもたせることができ、たとえば上述の混合気比率
の変化量のほが混合気比率の変化時期や混合気流口そし
てランス高さなどである。
When blowing the mixture onto the surface of molten steel, it is possible to make a wider range of changes than by blowing top-blown pure oxygen gas as in the conventional LD method. These include the timing of changes in the air ratio, the air mixture flow opening, and the lance height.

こられを適切に制御すれば、従来技術に比べ大幅な精練
時間の短縮を、酸化精錬末期におけるCrの酸化ロスを
増加させないで実現させることができる。
If these are appropriately controlled, the refining time can be significantly shortened compared to the conventional technology without increasing the oxidation loss of Cr at the final stage of oxidation refining.

次に底吹き攪拌効果そのものについては、Q−BOPに
おけるスラグ中(T、Fe!>111度が、スラグ−メ
タル間の平衡により近いために、LDで生じる(T、F
e)ai1度に比しはるかに低いという公知の事実から
も明らかである。
Next, regarding the bottom blow stirring effect itself, it occurs in LD because (T, Fe!>111 degrees in the slag in Q-BOP is closer to the equilibrium between slag and metal.
e) This is clear from the well-known fact that ai is much lower than 1 degree.

この発明で上吹きとしてとくに酸素と不活性ガスの混合
気を、鋼浴表面に吹きつけてそのうらの不活性ガスによ
り、酸素と溶鋼中の炭素との反応で生じるCOのガス分
圧を下げ、而してCrの燃焼を抑え、脱炭効率を上げる
酸化精錬が、浴中への精錬ガスの吹込みによる溶鋼の強
攪拌によって、初めて効力を生じる。
In this invention, a mixture of oxygen and an inert gas is blown onto the surface of the steel bath as a top blower, and the inert gas behind it lowers the gas partial pressure of CO produced by the reaction between oxygen and carbon in molten steel. Oxidation refining, which suppresses the combustion of Cr and increases decarburization efficiency, becomes effective only when the molten steel is strongly stirred by blowing refining gas into the bath.

この精練ガスとどもにする炭化水素系流体の吹込み流口
につい°(はその最適量が脱炭速度の低下を極力防ぎつ
つ、羽口溶損速度を極カ抑えることのできる範囲で存在
する。
Regarding the inlet of the hydrocarbon fluid to be mixed with this scouring gas, the optimum amount exists within a range that can minimize the decarburization rate and minimize the tuyere melting rate. .

第1図は5を転炉において溶湯聞5〜5.5t、初期c
m度1.3〜1.5%、Qr11度16〜16.5%の
ステンレス鋼粗溶鋼を0.04〜0.05%まで脱炭し
た場合の〔%C) = 0.07〜0.1での平均脱炭
速度、羽口溶損速度と吹込みo2流量に対するプロパン
流m比率の関係を調査した結果である。
Figure 1 shows the melt volume of 5 to 5.5 tons in a converter, initial c.
[%C) = 0.07-0.0 when crude molten stainless steel with m degree 1.3-1.5% and Qr 11 degree 16-16.5% is decarburized to 0.04-0.05%. These are the results of investigating the relationship between the average decarburization rate, the tuyere melting rate, and the ratio of propane flow m to the blown O2 flow rate.

この場合羽口は内管内径8龍φ、内管の肉厚2冒肩、内
管と外管のすきま0.8nの2重管構造のものを4本炉
底に配設した。内管がらの底吹き全ガス流量は全吹錬を
通して5Nyn3/1nと、1ONm’7mrn、また
上吹き全ガス11;iハ5 N m3/ll1in F
一定とした。ざらに内管と外管のすきまから供給した冷
却ガスは、A「とプロパンの混合気とし、その全ガス流
量は内管からの酸素ガス流量の6%とした。
In this case, four tuyeres of a double-tube structure with an inner diameter of 8mm, an inner wall thickness of 2mm, and a gap of 0.8n between the inner and outer tubes were arranged at the bottom of the hearth. The bottom-blown total gas flow rate of the inner tube is 5Nyn3/1n and 1ONm'7mrn throughout the entire blowing, and the top-blown total gas flow rate is 11;iha5 N m3/ll1inF.
It was set as constant. The cooling gas supplied from the gap between the inner tube and the outer tube was a mixture of A and propane, and the total gas flow rate was 6% of the oxygen gas flow rate from the inner tube.

ここに酸素とArの混合ガス比率02/Arは、上、底
吹きとも同一で、02 /Ar −4/ 1((%C)
≧0.6) 、2/ 1(0,25≦(%C)≦0.6
) 、1/ 2((%C) ≦0.25 )と切替えた
Here, the mixed gas ratio of oxygen and Ar, 02/Ar, is the same for both top and bottom blowing, and is 02/Ar -4/ 1 ((%C)
≧0.6), 2/1 (0,25≦(%C)≦0.6
), 1/2 ((%C)≦0.25).

脱炭速度を向上させる観点からはプロパン比を極力抑え
た方が、また羽口溶損速度を小さくするにはプロパン比
を大きくした方がよいのは自明であるが、第1図を見る
と、矢印で示したように、脱炭速度の低下が顕著に生ぜ
ずして羽口溶損量も抑えられる最適プロパン比は0.5
〜2%の範囲に存在することがわかる。
It is obvious that it is better to suppress the propane ratio as much as possible in order to improve the decarburization rate, and to increase the propane ratio in order to reduce the tuyere erosion rate, but looking at Figure 1, , as shown by the arrow, the optimum propane ratio that does not significantly reduce the decarburization rate and suppresses the amount of tuyere erosion is 0.5.
It can be seen that it exists in the range of ~2%.

すなわち、この試験例のように上吹きランスおよび2重
管羽目を用いて酸素とその希釈ガスとしての不活性ガス
の混合ガスを吹込む場合、羽目冷却用のプロパンガスは
対酸素流量比0.5〜2%とすれば特に経済的であるこ
とがわかった。
That is, when blowing a mixed gas of oxygen and an inert gas as its diluent gas using a top blowing lance and a double pipe siding as in this test example, the propane gas for cooling the siding has a flow rate ratio of 0. It has been found that it is particularly economical to set the content to 5 to 2%.

(実施例) 以下にこの発明の実施例を比較例と対比して示す。(Example) Examples of the present invention will be shown below in comparison with comparative examples.

予め電気炉に°(溶融したステンレス鋼粗溶鋼5tを上
、底吹き併用転炉に装入した。
5 tons of molten stainless steel crude molten steel was charged into a top and bottom blowing converter in advance in an electric furnace.

底吹き用の羽目としては内管内径12m1φの2■管を
4本使用し、内管からの底吹き混合気(02+Ar>I
llを8NmlB/Win、また外管と内管とのすきま
からはプロパンとArの混合気を合計して0.2N n
ff/ 5in一定となるように流した。
Four 2-inch pipes with an inner diameter of 12 m1φ are used as the bottom-blowing surface, and the bottom-blowing mixture (02+Ar>I) from the inner pipes is
ll is 8NmlB/Win, and from the gap between the outer tube and the inner tube, the total mixture of propane and Ar is 0.2Nn.
The flow rate was kept constant at ff/5in.

また上吹き用のランスとしては、3孔で各ノズルのスロ
ート径が9miφのものを用いた。
Further, as the top blowing lance, one with three holes and each nozzle having a throat diameter of 9 miφ was used.

粗溶鋼の成分組成は〔%C)=1.1〜1.2゜(%S
 i ) −0,5〜0.55 、(%Mn)=0.4
〜0.5. (%P ) = 0.020〜0,025
. (%5)−0,015〜0.020で、できるだけ
同一組成を選んだ。
The composition of crude molten steel is [%C) = 1.1~1.2° (%S
i) −0.5 to 0.55, (%Mn)=0.4
~0.5. (%P) = 0.020-0,025
.. (%5) -0.015 to 0.020, and the same composition was selected as much as possible.

初期温度は、1540〜1560℃にした。The initial temperature was 1540-1560°C.

塩基度調整用の塊状CaOを02/Ar −571の時
期に投入した。
Massive CaO for basicity adjustment was introduced at the time of 02/Ar-571.

酸化精錬の後は、還元精錬をおこない還元後のスラグ組
成を(%Ca0)/(%Si 02 )÷1.1に調整
した。また出鋼温度も1650〜1610℃に揃えた。
After oxidation refining, reduction refining was performed to adjust the slag composition after reduction to (%Ca0)/(%Si02)÷1.1. Moreover, the tapping temperature was also adjusted to 1650 to 1610°C.

実施例および比較例を表1に示す。Examples and comparative examples are shown in Table 1.

実施例■〜■は、底吹き単独吹錬を行った比較例■に比
べ、酸化末期のCr濃度の低下はほぼ同等以下、プなわ
ら、還元期にCr 20s還元のために使われる5tf
flにほとんどかわらなくしかも酸化期精錬時間は半分
またそれ以下と大幅に短縮できた。
In Examples ■ to ■, the decrease in Cr concentration at the final stage of oxidation is almost the same or lower than that in Comparative Example ■ in which bottom blowing was performed alone.
There was almost no change in fl, and the refining time during the oxidation stage could be significantly shortened to half or less.

これに対し上吹きに純酸素ガスのみを用いた比較例■、
■は、酸化末期におけるOr燃焼が多く、その結果酸化
期精錬時間も、底吹き単独吹錬時に行った比較例5と比
べて、この発明によるほどの短縮を遂げることはできな
い。
On the other hand, a comparative example using only pure oxygen gas for top blowing■,
In case (2), there is a lot of Or combustion in the final stage of oxidation, and as a result, the refining time during the oxidation stage cannot be shortened to the extent that the present invention can achieve, compared to Comparative Example 5, which was conducted during bottom blowing alone.

また、比較例■は、上吹きとして混合ガスを用いて、実
施例■とほぼ同様の吹錬条件としたが、プロパン比率が
2.5%と高いので、鋼浴中に加炭され゛U&炭効率が
低下し、01203mが増えるのcCr203の還元に
使用されるSiMも増し、また精錬時間も実施例■に比
べてかなり長くなる。
In Comparative Example (2), a mixed gas was used for top blowing and the blowing conditions were almost the same as in Example (2), but since the propane ratio was as high as 2.5%, carburization occurred in the steel bath. The coal efficiency decreases, the amount of 01203m increases, the amount of SiM used to reduce cCr203 also increases, and the refining time also becomes considerably longer than in Example (2).

比較例■、[相]はプロパン比率が0%の場合Cあるが
、精錬時間や還元用Si量は実施例と同等なものの、羽
口溶損速度が実施例に比べ2〜3倍となる。
Comparative Example ■, [Phase] is C when the propane ratio is 0%, but the refining time and amount of Si for reduction are the same as in the example, but the tuyere erosion rate is 2 to 3 times higher than in the example. .

なお比較例■はCaOの底吹きインジェクションを、5
0kg / tだけ02 /Ar = 4/ 1および
2/1の時期に行った場合であり、ここにクロムの酸化
損失が大きく、したがって還元Si量、精錬時間も増え
る。
Comparative example ■ is a bottom-blowing injection of CaO.
This is the case when 0 kg/t was carried out at the time of 02/Ar = 4/1 and 2/1, where the oxidation loss of chromium is large, and therefore the amount of reduced Si and the refining time also increase.

(発明の効果) 以上の実施例および比較例かられかるように、本発明に
よる方法は、羽目の溶損を有利に回避しつつ迅速なステ
ンレス鋼精錬が可能となる。
(Effects of the Invention) As can be seen from the above Examples and Comparative Examples, the method according to the present invention enables rapid stainless steel refining while advantageously avoiding the melting loss of the lining.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は羽目に保護ガスに混入したプロパン比率が脱炭
速度と羽口溶損に及ぼす影響を示すグラフである。
FIG. 1 is a graph showing the influence of the proportion of propane mixed in the protective gas in the siding on the decarburization rate and tuyere melting loss.

Claims (1)

【特許請求の範囲】 1、ステンレス鋼粗溶鋼を収容しその溶鋼浴面よりも下
位で開孔した羽目を備える精錬容器を用い、該羽口から
酸素および不活性ガスよりなる底吹きガスを浴中に吹込
みながらこの精錬容器中にてステンレス鋼の吹錬を行う
に際して、相溶鋼中の俵素を漸次に除去させる酸化工程
の間、 上記精錬容器に付帯設置した上吹きランスを通して酸素
および不活性ガスの混合気よりなる上吹きガスを浴面に
吹付(プるとともに、底吹きガスの吹込みに同心2重管
構造の羽目を用いてその内管と外管のすきまから羽口冷
却用の炭化水素系流体および不活性ガスの混合気よりな
る羽目保護ガスを吹込む ことを特徴とするステンレス鋼の溶製方法。 2、炭化水素系流体の底吹きガス中M素に対する比率を
0.5〜2%に調整する特許請求の範囲1記載の方法。
[Claims] 1. Using a refining vessel containing crude molten stainless steel and having pores formed below the surface of the molten steel bath, a bottom-blown gas consisting of oxygen and an inert gas is blown from the tuyeres into the bath. When blowing stainless steel in this refining vessel, oxygen and nitrogen are blown into the refining vessel through a top blowing lance attached to the refining vessel during the oxidation process that gradually removes the bulk elements in the compatible steel. A top-blown gas consisting of a mixture of active gases is blown onto the bath surface, and a concentric double-pipe structure is used to blow bottom-blown gas into the tuyere cooling through the gap between the inner and outer tubes. A stainless steel melting method characterized by blowing a siding protective gas consisting of a mixture of a hydrocarbon fluid and an inert gas. 2. The ratio of the hydrocarbon fluid to the M element in the bottom blowing gas is 0. The method according to claim 1, wherein the content is adjusted to 5 to 2%.
JP4717384A 1984-03-14 1984-03-14 Method for refining stainless steel Pending JPS60194009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4717384A JPS60194009A (en) 1984-03-14 1984-03-14 Method for refining stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4717384A JPS60194009A (en) 1984-03-14 1984-03-14 Method for refining stainless steel

Publications (1)

Publication Number Publication Date
JPS60194009A true JPS60194009A (en) 1985-10-02

Family

ID=12767672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4717384A Pending JPS60194009A (en) 1984-03-14 1984-03-14 Method for refining stainless steel

Country Status (1)

Country Link
JP (1) JPS60194009A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989002479A1 (en) * 1987-09-09 1989-03-23 Nkk Corporation Process for decarburizing high-cr molten pig iron
JPWO2022249798A1 (en) * 2021-05-26 2022-12-01

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989002479A1 (en) * 1987-09-09 1989-03-23 Nkk Corporation Process for decarburizing high-cr molten pig iron
AU619488B2 (en) * 1987-09-09 1992-01-30 Nkk Corporation Process for decarburizing high-cr molten pig iron
JPWO2022249798A1 (en) * 2021-05-26 2022-12-01
WO2022249798A1 (en) * 2021-05-26 2022-12-01 Jfeスチール株式会社 Method for refining molten iron

Similar Documents

Publication Publication Date Title
JPH0243803B2 (en)
JPH044388B2 (en)
US4001009A (en) Process for the manufacture of steels with a high chromium content
JPS58130216A (en) Refining method of high alloy steel and stainless steel
JPS60194009A (en) Method for refining stainless steel
JPH0124855B2 (en)
JPH0477046B2 (en)
EP0099713B1 (en) A method for protecting tuyères for refining a molten iron
JPS6138248B2 (en)
JPS6063307A (en) Converter steel making method of dead soft steel
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
US4066442A (en) Method of making chrome steel in an electric arc furnace
JPH02166256A (en) Method for refining medium-or low-carbon ferromanganese
JPH0413404B2 (en)
JP2754983B2 (en) Converter refining method
JPH04224612A (en) Method for refining in converter
JP2842231B2 (en) Pretreatment of hot metal by bottom-blown gas stirring
JPH0414164B2 (en)
JPS62130210A (en) Production of stainless steel
JPS59104420A (en) Method for decarburizing chromium-containing molten steel
JPH0379712A (en) Refining method in converter
JPH01142010A (en) Method for refining stainless steel
JPS5867816A (en) Cooling method for converter-tuyere
JPS63206446A (en) Production of middle-and low-carbon ferromanganese
JPS61291947A (en) Production of alloy iron