JPS5867816A - Cooling method for converter-tuyere - Google Patents

Cooling method for converter-tuyere

Info

Publication number
JPS5867816A
JPS5867816A JP16639181A JP16639181A JPS5867816A JP S5867816 A JPS5867816 A JP S5867816A JP 16639181 A JP16639181 A JP 16639181A JP 16639181 A JP16639181 A JP 16639181A JP S5867816 A JPS5867816 A JP S5867816A
Authority
JP
Japan
Prior art keywords
tuyere
molten steel
gas
refining
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16639181A
Other languages
Japanese (ja)
Inventor
Tsutomu Nozaki
野崎 努
Kenji Saito
健志 斎藤
Hideo Nakamura
仲村 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16639181A priority Critical patent/JPS5867816A/en
Publication of JPS5867816A publication Critical patent/JPS5867816A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To cool a tuyere effectively and to prevent the damage for converter bottom- refractries by controlling the blowing amount of CO2 gas introduced for cooling from the annular path of a tuyere-outside tube in combination with the C concentration in the molten steel corresponding to the change of refining stage. CONSTITUTION:When the double tubes-tuyere causing O2 gas for refinning to flow from a central flow-path equipped under the surface of molten steel-bath is cooled, CO2 gas blown into the molten steel from the outside annular flow path is controlled by following. That is to say, when C concentration in the molten steel in the beginning period of blow-refining is larger, CO2 ratio is caused to become small. In the finishing period where the molten steel contains low C concentration, as the tuyere is cooled by almost only sensible heat of CO2 gas, the refining is carried out by keeping CO2 ratio high to some extent. Thus, the blowing amount of CO2 gas is controlled in combination with C content in the molten steel corresponding to each refining stage. Consequently, as shown in the figure, the tuyere-temperature becomes constant in total refining period, so CO2 consumption is reduced, and simultaneously the expansion and contraction for the refractories adjacent to the tuyere by thermal hysteresis is reduced. Additionally, the refractory-life is prolonged by preventing the loss of C source in the refractory.

Description

【発明の詳細な説明】 この発明は転炉羽口の冷却方法に関し、とくに底吹き、
上底吹き転炉炉底羽口保護のための冷却用ガスとしてC
02ガスを用いる羽口冷却方法において、そのCO2ガ
ス流歇全鋼浴中〔%O〕に応じて変化させることにより
、CO2ガス量の削減、炉底耐大物の損耗防止を図る有
利な方法につし)て提案する。
[Detailed Description of the Invention] The present invention relates to a method for cooling a converter tuyere, and in particular to a method for cooling a converter tuyere,
C as a cooling gas to protect the bottom tuyeres of top-bottom blowing converters.
In the tuyere cooling method using 02 gas, by changing the flow of CO2 gas according to [%O] in the whole steel bath, it is an advantageous method to reduce the amount of CO2 gas and prevent wear and tear on large parts at the bottom of the furnace. I would like to make a proposal.

酸素底吹き転炉は、LD転炉に比べると、攪拌、混合が
よく、製鋼時間の短縮、合金参上り向上、鉄参上り向上
などの面で利点がある。ただ、浴面下に羽口を有するの
でそれ自身の冷却が難しく、従来一般的に採用されてい
る方法は同心のλ重管羽目を使い、中心流路に流す酸素
ガスに対しその外側環状流路からプロパン等の炭化水素
系のガスを流し、該炭化水素系の分解によるその吸熱に
よって羽口の冷却保護を図っている。この従来技術の欠
点は炭化水素の分解後に水素が鋼中に残存し、LD転炉
に比べると鋼中水素が2〜s ppm高くなることであ
る。
Oxygen bottom-blown converters have advantages over LD converters in terms of better agitation and mixing, shorter steelmaking time, improved alloy yield, and improved iron yield. However, since the tuyere is located below the bath surface, it is difficult to cool the tuyere itself, and the conventional method generally used is to use concentric λ-layered pipe siding, and the outer annular flow is A hydrocarbon gas such as propane is passed through the tuyeres, and the tuyere is cooled and protected by absorbing heat due to the decomposition of the hydrocarbon gas. The disadvantage of this prior art is that hydrogen remains in the steel after decomposition of the hydrocarbons, resulting in a 2-s ppm higher hydrogen content in the steel than in an LD converter.

また、羽目保護流体としてCO2を用いる技術がある。There is also a technique that uses CO2 as a siding protection fluid.

しかし、002の冷却効果は前記のプロパンなどと異な
り分解反応を伴わないので、アルゴンや窒素の吹込みと
同様の抜熱効果しかなく、発明者らの試算によれば対0
2体積%で/J〜17%の002ガスが必要とされ、多
量のCO8の使用が不可欠とされるため高価になる欠点
があった。しかも、初めから高い002比で吹込むと含
滲れんがやMgO−Cjれんがの0と反応して耐火物の
劣化を招く。
However, unlike the propane mentioned above, the cooling effect of 002 does not involve a decomposition reaction, so it only has a heat removal effect similar to the blowing of argon or nitrogen, and according to the inventors' calculations, it has a cooling effect of 0.
Since 002 gas of 2 volume %/J~17% is required and the use of a large amount of CO8 is essential, it has the disadvantage of being expensive. Moreover, if it is blown in at a high 002 ratio from the beginning, it will react with the 0 of the impregnated bricks and MgO-Cj bricks, leading to deterioration of the refractories.

ただ、この00.を用いる冷却の場合、溶鋼中に多源に
Cが存在すれば、そのCと反応して吸熱し羽目近傍をそ
の反応熱によって冷却することかで ゛きると予測され
る。
However, this 00. In the case of cooling using C, it is predicted that if C is present in many sources in the molten steel, it will react with the C, absorb heat, and cool the area near the surface by the heat of reaction.

この発明は、将に鋼浴中のC濃度が寄与する上述したよ
ちな知見にもとづいて開発した方法であって、冷却のた
めに羽口外管の環状流路から導入するC02の吹込瀘を
、精錬段階の推移に応じる鋼浴中のC濃度に合わせた制
御をすることで、有効な羽目冷却を果すようにしたとこ
ろに特色がある。
This invention is a method developed based on the above-mentioned knowledge that the C concentration in the steel bath contributes. The feature is that effective slat cooling is achieved by controlling the C concentration in the steel bath according to the progress of the refining stage.

要するに、CO3の冷却能は転炉内温浴中のC′flI
4度に強く依存することがわかった。そこで、本発明苔
らは、次に002が鋼中のO、Feと反応する際の反応
熱および顕熱について熱力学的に検討を行った。その結
果を第1表に示す。また同様にして従来冷却ガスとして
汎用されているプロパンについても計算したところ、プ
ロパンの冷却能は79に0a17mo1であった。そこ
で、上記プロパン冷却能を基準とした場合のOO2冷却
能について次のような計算をした。すなわち、いま、B
″Cのco2カスが、1600℃までに上昇するときに
そのco2が周囲から奪う熱−顕熱を(ΔH)とする。
In short, the cooling capacity of CO3 is C'flI in the hot bath inside the converter.
It was found that it strongly depends on the 4th degree. Therefore, the present inventors conducted a thermodynamic study on the reaction heat and sensible heat when 002 reacts with O and Fe in steel. The results are shown in Table 1. Further, when similar calculations were made for propane, which has conventionally been widely used as a cooling gas, the cooling capacity of propane was 79.0a17mo1. Therefore, the following calculations were made regarding the OO2 cooling capacity based on the propane cooling capacity described above. In other words, now B
When the CO2 scum of ``C'' rises to 1600°C, the heat that the CO2 takes away from the surroundings - sensible heat is (ΔH).

この002が明日周辺の溶鋼中Cと反応すると、OO2
+ C禰gc。
When this 002 reacts with C in the molten steel around tomorrow, OO2
+ C Negc.

この反応熱は!!、! Koal/h+olであり、周
囲からこの分の熱を奪う。一方、このco2が少なくな
ってFeと反応すると、 00、 + Fe −FeO+ 00 の反応が起こり、この反応熱はr、lr Kcal/m
olであるから、 aO,が未反応のままなら、1.−3 、350 Kc
al/mo100!!がOと反応すると、18.350
 +33.5−51.8 KOal/UD100、がF
6と反応すると、18.350+8.8−27.I K
Oal/ffI)1となる。その結果を第2表に示す。
This reaction heat! ! ,! Koal/h+ol, and this amount of heat is taken away from the surroundings. On the other hand, when this co2 decreases and reacts with Fe, the reaction 00, + Fe -FeO+ 00 occurs, and the heat of reaction is r, lr Kcal/m
ol, so if aO, remains unreacted, then 1. -3, 350 Kc
al/mo100! ! When reacts with O, 18.350
+33.5-51.8 KOal/UD100, is F
When reacting with 6, 18.350+8.8-27. IK
Oal/ffI)1. The results are shown in Table 2.

第    1    表 一方、002濃度一定操業:すなわち従来法のように0
2に対する002比を一定にして吹錬した際の羽口の熱
覆歴を炉底羽口外管に熱電対を埋込むことによって測定
したところ、第1図に示すように吹錬の前半では羽口温
度が低く冷却が過度に行なわれていることがわかる。こ
れに対し、吹錬の伎半になると、鋼浴中の0が少なくな
りかっ鋼浴自体の温度の上昇が起こる。したがって、吹
錬後期になると羽目の受熱が大となり、co2による羽
目冷却効果が弱まる。数多くの実験から0が。、1%以
下、鋼浴温度が/60α°C以上になると、羽目保護効
果がおとろえることがわかった。
Table 1 On the other hand, 002 concentration constant operation: that is, 0 as in the conventional method.
The thermal cover history of the tuyere during blowing with a constant ratio of 002 to It can be seen that the mouth temperature is low and cooling is excessive. On the other hand, at the halfway point of blowing, the amount of 0 in the steel bath decreases and the temperature of the steel bath itself increases. Therefore, in the later stages of blowing, the heat received by the siding increases, and the cooling effect of CO2 on the siding weakens. 0 from numerous experiments. , 1% or less, and the steel bath temperature was /60α°C or higher, it was found that the surface protection effect deteriorated.

これに対し第2図は、本発明法にもとづき鋼浴中のC濃
度に応じてco、の対酸素割合を変化させる操業をした
ときの結果である。この本発明冷却方法は、吹錬初期の
鋼浴中に(0)%が十分に存在している場合にはCO2
比を小さくシ、また((3)%が低下する吹錬末期には
、はとんどco2顕熱だけで羽目を冷却する必要がある
から多量の吹込みが必要で、CO2比を高目に維持して
吹錬するように、した。このよりなCO2吹込み流量を
各精錬段階に1ノロじる浴中CIIItに合わせた制御
を行うと、第2図に示すように吹錬の全期にわたって羽
口温度が一定するため、C02使用量の削減ができるこ
とにあわせ、隣接する耐火物の熱履歴による膨張、収縮
が緩和され、かつ該耐火物中C#が消滅し■くなって耐
火物寿命が向上する。
In contrast, FIG. 2 shows the results of an operation in which the ratio of co to oxygen was varied according to the C concentration in the steel bath based on the method of the present invention. In the cooling method of the present invention, if (0)% is sufficiently present in the steel bath at the initial stage of blowing, CO2
In addition, at the end of the blowing process when ((3)% decreases, it is necessary to cool the siding with only CO2 sensible heat, so a large amount of blowing is required, and the CO2 ratio is set high. By controlling this CO2 injection flow rate according to the CIIIt in the bath by increasing the CO2 injection flow rate by one sip at each refining stage, as shown in Fig. 2, the entire blowing process was Since the tuyere temperature remains constant over a period of time, the amount of CO2 used can be reduced, and the expansion and contraction due to the thermal history of the adjacent refractories is alleviated, and the C# in the refractories disappears, making the fire resistant. Product life is improved.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

りを試験転炉を用いて吹錬実験を行った。A blowing experiment was conducted using a test converter.

(1)溶装置+ 5.2t (2)溶銑成分(%): 0/4.5 8j710.3
2Mn10.aa ”10.u4 S10,024(3
) 送酸速度’ 12−5 Nm3/min C全11
1吹)(4)外管環状流路に流動させるC02ガス比設
定C〉1.0の明朗ではC02を7% 0.3<O(1,0の中期ではCO2を10%Q (0
,3の後期ではC02を15%(5)吹止目標: Q 
= 0.02%、 Temp −1650°C(6)炉
底羽口本数:4本 (7)溶銑温度: 1222℃ 以上の条件で吹錬した結果は第3表の通りであつた。
(1) Melting equipment + 5.2t (2) Hot metal component (%): 0/4.5 8j710.3
2Mn10. aa”10.u4 S10,024(3
) Oxidation rate' 12-5 Nm3/min C total 11
1 blow) (4) CO2 gas ratio setting to flow into the outer tube annular flow path C> 7% of CO2 in the light of 1.0 0.3<O (10% of CO2 in the middle of 1,0 Q (0
In the latter half of 3, C02 is 15% (5) target: Q
= 0.02%, Temp -1650°C (6) Number of hearth bottom tuyeres: 4 (7) Hot metal temperature: The results of blowing under conditions of 1222°C or higher are as shown in Table 3.

以上のように本発明法では、羽目に付着する凝固鉄も正
常であり鋼浴中のC置しベルに応じて、羽口冷却用のC
O2吹込み流量を変化させることは、00□朧の削減も
でき、かつ炉底寿命の延長の効果があり、本発明法によ
り製鋼コストの削減ができた。
As described above, in the method of the present invention, the solidified iron adhering to the siding is also normal, and depending on the C setting bell in the steel bath, the C
By changing the O2 injection flow rate, it was possible to reduce the 00□ haze and also to extend the life of the furnace bottom, and the method of the present invention was able to reduce the steel manufacturing cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はC02量一定の従来法における吹錬時の羽口温
度推移を示すグラフ、第2図はoo2mを浴中O量によ
って可変にした本発明法における吹、扉時の羽目温度推
移を示すグラフである。
Figure 1 is a graph showing the tuyere temperature transition during blowing in a conventional method with a constant C02 amount, and Figure 2 is a graph showing the tuyere temperature transition during blowing and door blowing in the present invention method in which oo2m is varied depending on the O amount in the bath. This is a graph showing.

Claims (1)

【特許請求の範囲】 L 底吹き転炉あるいは上底吹き転炉炉内の溶鋼浴面下
に設置した中心流路から精錬用酸素ガスを流動させる同
心2重管羽口の冷却に当り、中心流路外側の環状流路に
冷却用C02ガスを流動きせることにより当該羽口の冷
却を行う方法において、 上記冷却用C02の吹込量を精錬段階の推移によって変
化する鋼浴中炭素濃度に応じて制御することを特徴とす
る転炉羽口の冷却方法。
[Scope of Claims] L For cooling the concentric double pipe tuyeres through which refining oxygen gas flows from the center channel installed below the surface of the molten steel bath in a bottom blowing converter or a top and bottom blowing converter, In a method of cooling the tuyere by flowing cooling C02 gas through an annular flow path outside the flow path, the blowing amount of the cooling C02 is adjusted according to the carbon concentration in the steel bath, which changes depending on the progress of the refining stage. A method for cooling a converter tuyere characterized by controlling the tuyere of a converter.
JP16639181A 1981-10-20 1981-10-20 Cooling method for converter-tuyere Pending JPS5867816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16639181A JPS5867816A (en) 1981-10-20 1981-10-20 Cooling method for converter-tuyere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16639181A JPS5867816A (en) 1981-10-20 1981-10-20 Cooling method for converter-tuyere

Publications (1)

Publication Number Publication Date
JPS5867816A true JPS5867816A (en) 1983-04-22

Family

ID=15830543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16639181A Pending JPS5867816A (en) 1981-10-20 1981-10-20 Cooling method for converter-tuyere

Country Status (1)

Country Link
JP (1) JPS5867816A (en)

Similar Documents

Publication Publication Date Title
US3844768A (en) Process for refining alloy steels containing chromium and including stainless steels
US3323907A (en) Production of chromium steels
JP7184179B2 (en) Steelmaking slag reforming method and lance
JPS6146523B2 (en)
US4001009A (en) Process for the manufacture of steels with a high chromium content
JPS5867816A (en) Cooling method for converter-tuyere
US3930843A (en) Method for increasing metallic yield in bottom blown processes
US4330108A (en) Method for cooling tuyeres
JPH0124855B2 (en)
CA1157660A (en) Method for producing steel having a low hydrogen content in an oxygen blow-through converter
US4274871A (en) Method of obtaining manganese alloys with a medium carbon content
EP0099713B1 (en) A method for protecting tuyères for refining a molten iron
JPS60194009A (en) Method for refining stainless steel
US4141723A (en) Process for producing stainless steel
JPS6184311A (en) Method for heating molten iron by secondary combustion method
JPH01283313A (en) Method for cooling multiplex-pipe tuyere in steelmaking furnace
JPS5839717A (en) Coolant for protection of tuyere
JP2005290515A (en) Blowing method for converter having high metal yield
US4066442A (en) Method of making chrome steel in an electric arc furnace
JPS5913013A (en) Method for protecting tuyere of blowpipe for refining molten iron
JPS62109918A (en) Method for cooling multiply tubed tuyere of bottom blowing refining furnace
JPS628482B2 (en)
JPS59145718A (en) Blowing method of gas in nozzle for refining molten metal
JPS5913012A (en) Method for protecting tuyere of blowpipe for refining molten iron
JPS6335723A (en) Method for inhibiting foaming during refining by smelting and reducting