JPS5839717A - Coolant for protection of tuyere - Google Patents

Coolant for protection of tuyere

Info

Publication number
JPS5839717A
JPS5839717A JP13605481A JP13605481A JPS5839717A JP S5839717 A JPS5839717 A JP S5839717A JP 13605481 A JP13605481 A JP 13605481A JP 13605481 A JP13605481 A JP 13605481A JP S5839717 A JPS5839717 A JP S5839717A
Authority
JP
Japan
Prior art keywords
gas
tuyeres
coolant
tuyere
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13605481A
Other languages
Japanese (ja)
Inventor
Kenji Saito
健志 斎藤
Kenichiro Suzuki
健一郎 鈴木
Tsutomu Nozaki
野崎 努
Toshihiko Emi
江見 俊彦
Takashi Omori
尚 大森
Jun Nagai
潤 永井
Takemi Yamamoto
山本 武美
Hideo Take
武 英雄
Rinzo Tachibana
橘 林三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13605481A priority Critical patent/JPS5839717A/en
Publication of JPS5839717A publication Critical patent/JPS5839717A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To provide a coolant for protection which cools tuyeres effectively by mixing a specific amt. of hydrocarbon which produces carbon when thermally decomposed with carbon dioxide as a coolant for protection around the tuyeres which blow refining gases into molten iron. CONSTITUTION:In a gaseous mixture of hydrocarbon and carbon dioxide, hydrocarbon which produces carbon when thermally decomposed is contained at 10-40vol% with the gaseous mixture. The hydrocarbon-base coolant for tuyeres decomposes in the high temp. areas near the preceding end parts of the tuyeres and absorbs heat. For example, if gaseous propane is used as hydrocarbon, the coolant absorbs heat and produces carbon like the equationI. Further, the carbon dioxide reacts with carbon and causes the endothermic reaction as shown by the equation II. Thus the tuyeres are cooled effectively.

Description

【発明の詳細な説明】 この発明は、羽口保護用冷却剤に関し、とくに底吹転炉
を代表例とするような溶鉄の酸素吹錬のためその溶鉄の
浴中への精錬ガス吹込みを司る羽口につき、溶鉄中にお
けるはげしい反応から有利に保護するための冷却剤組成
の改良を提案しようとするものである。
[Detailed Description of the Invention] The present invention relates to a coolant for protecting tuyeres, and in particular to a cooling agent for blowing refining gas into a bath of molten iron for oxygen blowing of molten iron, typically in a bottom blowing converter. The purpose of this paper is to propose an improvement in the coolant composition for the tuyeres in order to advantageously protect them from violent reactions in molten iron.

上記した種類の精錬容器ではその炉底の羽口から鋼浴中
に酸化性ガスたとえば純酸素を精錬ガスとして吹込み、
溶鉄中に含有される炭素その他、珪素、燐などを酸化除
去する。
In the above-mentioned type of refining vessel, an oxidizing gas such as pure oxygen is injected as a refining gas into the steel bath through the tuyeres at the bottom of the furnace.
Oxidizes and removes carbon, silicon, phosphorus, etc. contained in molten iron.

ここに精錬ガスには、酸化性ガスをキャリヤガスに兼用
して石灰その他の精錬削粉などを含有する場合も含まれ
、しかるに、上記の脱炭を主とする酸化反応は発熱反応
であり、これによって浴中に生成する強烈な火点により
、精錬ガスの吹込みを司る羽口はその周辺の耐火物を含
めて著しい高温にさらされる。
Here, the refining gas includes cases where an oxidizing gas is also used as a carrier gas and contains lime or other refined shavings.However, the oxidation reaction mainly consisting of decarburization is an exothermic reaction, As a result, the intense fire point generated in the bath exposes the tuyere, which controls the injection of refining gas, to extremely high temperatures, including the surrounding refractories.

そこで、通常は、同心多重管よりなる複合羽口管が用い
られ、中心管より精錬ガスを1内外管内の環状すatか
ら冷却剤をそれぞれ浴中に吹込む。
Therefore, a composite tuyere tube consisting of concentric multiple tubes is usually used, and the refining gas is blown into the bath from the central tube and the coolant is blown into the bath from the annular suts in the inner and outer tubes.

ここに羽口保護用冷却剤として従来プロパン、天然ガス
、石油などの炭化水素系の気体、液体をときには水蒸気
をあわせて用い、また気体や液体の二酸化炭素も用いら
れる。
Conventionally, hydrocarbon gases and liquids such as propane, natural gas, and petroleum, sometimes in combination with water vapor, are used as coolants for protecting the tuyere, and gaseous or liquid carbon dioxide is also used.

このうち炭化水素と水蒸気を用いる場合には、洛中吹込
みによる分解で発生する水素により、溶鉄中の水素濃度
を高め、製品品質を損う不利がある。一方、二酸化炭素
にについては、溶鉄中の水素濃度を高めるうれいこそな
いが、炭化水素とは異なって、分解吸熱反応が期待でき
ないため、同程度の冷却能とするためには、たとえばプ
ロパンの約5倍の流量を必要とし、ここに多くの場合、
その供給は石油化学工場での排ガスの利用によるとは云
え、必ずしも価格が安くないため、上記のような多量の
使用によって、製造コストを引上げることになる。
Among these, when using hydrocarbons and steam, there is a disadvantage that the hydrogen generated by decomposition due to Rakuchu injection increases the hydrogen concentration in the molten iron and impairs product quality. On the other hand, carbon dioxide does not have the advantage of increasing the hydrogen concentration in molten iron, but unlike hydrocarbons, it cannot be expected to undergo an endothermic decomposition reaction. Requires approximately 5 times the flow rate, and here in many cases,
Although it is supplied by using exhaust gas from petrochemical factories, the price is not necessarily low, and the use of large quantities as described above increases manufacturing costs.

こめ発明は、上記した問題点を解決すること、すなわち
、炭化水素系冷却剤による水素ガスの発生を、二酸化炭
素の併用によって軽減することにあわせ、とくに炭化水
素と二酸化炭素との化学反応に基づく吸熱反応を冷却能
の向上に効果的に利用しようとするものである。
The purpose of the invention is to solve the above-mentioned problems, that is, to reduce the generation of hydrogen gas by a hydrocarbon-based coolant by using carbon dioxide in combination, and in particular, to reduce the generation of hydrogen gas by a hydrocarbon-based coolant. This aims to effectively utilize endothermic reactions to improve cooling capacity.

すなわち、この発明は、精錬ガスの溶鉄の洛中吹込みに
供する羽口の周辺にて熱分解により炭素を発生する炭化
水素と二酸化炭素との混合ガスからなり、炭化水素を前
記混合ガスに対してlθ〜功容社%含有する組成からな
ることを特徴とする羽目保護用冷却剤である。
That is, this invention consists of a mixed gas of hydrocarbons and carbon dioxide that generate carbon by thermal decomposition around the tuyeres used for injecting molten iron into the refining gas, and the hydrocarbons are mixed with the mixed gas. This is a refrigerant for protecting the siding, characterized in that it has a composition containing % lθ to Koyosha%.

ところで炭化水素系羽口冷却剤は、羽口先端部近くの高
温部で分解し、吸熱するがプロパンガスを一例として、
100Kにおける化学反応は次の(1)式のようにあら
れされる。
By the way, hydrocarbon-based tuyere coolants decompose and absorb heat in the high-temperature area near the tuyere tip, but propane gas is an example.
A chemical reaction at 100K occurs as shown in the following equation (1).

0、H8−+ 70 + ni、−JO,s koal
/rnot    (1)実際上1羽口先端部の温度は
troo Kと推′6!すれ、ここに、プロパンおよび
その分解によって生成する水素、炭素の昇熱に必要な熱
量を考えると、まずtoo K tでの昇熱に必要な熱
量は、/4C,Jkoal/mot、つぎに100 K
からtroo Kまでの昇熱に必要な熱量は、4’4−
J kOLl/mol −0sHBとなる。
0, H8-+ 70 + ni, -JO, s koal
/rnot (1) Actually, the temperature at the tip of the tuyere is estimated to be troo K'6! Now, considering the amount of heat required to raise the temperature of propane, hydrogen and carbon produced by its decomposition, the amount of heat required to raise the temperature at too K t is /4C, Jkoal/mot, and then 100 K
The amount of heat required to raise the temperature from to troo K is 4'4-
J kOLl/mol -0sHB.

−これらを統合して/100 K tでにおけるプロパ
ンガス1モル当との冷却能は、はぼ90.Irkaal
程度に見積ることができ、ここに炭化水素系羽口冷却剤
は分解して固体炭素を析出し、これが次に述べるように
二酸化炭素との併用の際、吸熱反応熱の増大に大きな役
割を果すのである。
- By integrating these, the cooling capacity per mole of propane gas at /100 Kt is approximately 90. Irkaal
It can be estimated that the hydrocarbon-based tuyere coolant decomposes and precipitates solid carbon, which plays a major role in increasing the heat of endothermic reaction when used in combination with carbon dioxide, as described below. It is.

すなわち、二酸化炭素は、主にその顕熱で羽口冷却を行
い、そのガスのもつ顕熱は、常温から/r00Kまで昇
温する場合/1.7 kaeLl/molであるが、二
酸化炭素とともに上述固体炭素の存在する場合にあって
は、次の吸熱反応が加わり、羽口冷却能が有利に高めら
れる。
In other words, carbon dioxide mainly performs tuyere cooling using its sensible heat, and the sensible heat of the gas is 1.7 kaeLl/mol when the temperature is raised from room temperature to /r00K, but as mentioned above together with carbon dioxide. In the presence of solid carbon, the following endothermic reaction is added and the tuyere cooling capacity is advantageously enhanced.

C02+C→コCo −IAl、/ kaaz/mol
(2)かような反応を期待して、別途に炭素粉の如きを
二酸化炭素とともに供給することが考えられる。
C02+C→CoCo-IAl,/kaaz/mol
(2) In anticipation of such a reaction, it is conceivable to separately supply carbon powder or the like together with carbon dioxide.

しかし、(2)式の当社分に当る0、 j4’ kg/
Nm” 002程度の希薄な炭素粉を簡便な搬送手段で
搬送するのに問題がある。
However, 0, j4' kg/ which corresponds to our part in equation (2)
There is a problem in conveying dilute carbon powder of about Nm'' 002 using a simple conveying means.

この発明においては、熱分解反応を起して炭素を析出す
る気体、液体の炭化水素を二酸化炭素と併用するので、
別塗に炭素源を供給するときのような搬送上の難点を伴
うことなく、容易に複合羽口、たとえば同心二重管の内
−1外管間のすきまに導入することができ、羽口冷却剤
として有効に(1)式(2)式の吸熱反応熱を利用する
ことができる。その結果、炭化水素および二酸化炭素の
合計送給流−をそれらの個別使用に比しはるかに減少し
、従って溶鉄中における水素濃度上昇を防止するのみな
らず、冷却剤原単位を有利に抑制することができるO この発明に従う混合ガスは、止揚(1)式および(2)
式に従い、次の(8)式に示される吸熱反応を呈する。
In this invention, gaseous or liquid hydrocarbons that cause a thermal decomposition reaction to precipitate carbon are used in combination with carbon dioxide.
It can be easily introduced into a composite tuyere, for example, the gap between the inner and outer tubes of a concentric double tube, without the difficulties of conveying it when supplying a carbon source separately. The endothermic reaction heat of equations (1) and (2) can be effectively utilized as a coolant. As a result, the combined feed flow of hydrocarbons and carbon dioxide is much reduced compared to their individual use, thus not only preventing an increase in hydrogen concentration in the molten iron, but also advantageously suppressing the coolant consumption. O The mixed gas according to the present invention can be expressed by the formula (1) and (2).
According to the formula, the endothermic reaction shown in the following formula (8) is exhibited.

J G Og + 03 HB →≦OO+1M、−#
J、≦kcaj/mo!−03[6(3)いま(8)式
の反応がtoo Kで起るとして、l100Kに至る種
々な混合比にわたる混合ガスの羽目冷却能をまとめて第
1表に示す。
J G Og + 03 HB →≦OO+1M, -#
J, ≦kcaj/mo! -03[6(3) Now, assuming that the reaction of equation (8) occurs at too K, Table 1 summarizes the overall cooling capacity of the mixed gas at various mixing ratios up to 1100 K.

第1表 (3)式および第1表から明らかなように008に対す
る03H8の混合モル比がS!lすなわちC02とC3
H8の混合ガス中0.H8の含有量がB容l1%の場合
に吸熱反応が一番効率よく行なわれ、この発明の最辿混
合率である。03H8はlO〜4I0混合容量%の範囲
にて羽口冷却ガスの削減効果が大であり、tθ容社%未
満および蜀容社%をこえても、冷却ガスの削減効果は認
められるが、後述する理由によりこの発明の範囲から除
外する。
As is clear from the formula (3) in Table 1 and Table 1, the mixing molar ratio of 03H8 to 008 is S! l i.e. C02 and C3
0 in a mixed gas of H8. The endothermic reaction occurs most efficiently when the H8 content is 1% by volume of B, which is the ultimate mixing ratio of this invention. For 03H8, the effect of reducing the tuyere cooling gas is large in the range of lO to 4I0 mixed volume%, and even if it is less than tθ Yongsha% and exceeds Shu Yongsha%, the cooling gas reduction effect is recognized, but as will be discussed later. For these reasons, it is excluded from the scope of this invention.

ざらに第1表にて示したように、この発明の範凹内にお
いては37.3〜4j、、2 kcal/mojの羽口
保護冷却能を有し、C3H8と同一の冷却能を奏するた
めの必要置比(必要モル数比)は、O,H8の混合割合
すみ、羽口保護冷却の低コスト化の利益が図られる(第
2表参照)。
As roughly shown in Table 1, within the scope of the present invention, it has a tuyere protection cooling ability of 37.3 to 4j, 2 kcal/moj, and exhibits the same cooling ability as C3H8. The required positional ratio (required molar ratio) is determined by the mixing ratio of O and H8, and the benefit of cost reduction for tuyere protection cooling can be achieved (see Table 2).

第1図に等羽口冷却能を得るのに必要なC02−C3H
8混合ガス置に対応する混合ガス中C5H8の容It%
の関係を示し、図中の破線は炭化水素の分解Cとco、
との反応を考慮しない場合を仮定した上記関係を示した
Figure 1 shows the C02-C3H required to obtain equal tuyere cooling capacity.
8 Volume of C5H8 in mixed gas corresponding to mixed gas position It%
The broken line in the figure shows the relationship between C and co of hydrocarbon decomposition,
The above relationship is shown assuming that the reaction with is not considered.

なおグラフの縦軸はCO2により一定の羽目冷却能を呈
する必要ガス量を100とした指数表示である。同図か
ら0.1(82を容置%までの間に等羽口冷却能を得る
のに必要なガス量は急激に減少し、それ以後は漸減傾向
を呈することがゎかる・次に第2図は、羽目冷却隔置に
およほすCO2−C3H8混合ガス1モル当りの冷却能
を03H8含有置に対応して実線で表わし、点線は炭化
水素の分解CがCO2と反応することを考慮゛しない場
合を仮定した上記関係であり、従って、実線と点線との
差はそれぞれの03H8含有置に応じてそのcollと
の併用による羽口冷却用反応熱量の増大量を表わす。
Note that the vertical axis of the graph is an index display where 100 is the amount of gas required to exhibit a constant wall cooling capacity with CO2. From the same figure, it can be seen that the amount of gas required to obtain equal tuyere cooling capacity decreases rapidly up to 0.1 (82%), and after that it shows a gradual decreasing tendency. In the figure, the solid line represents the cooling capacity per mole of CO2-C3H8 mixed gas in the panel cooling arrangement, corresponding to the 03H8 containing position, and the dotted line takes into account that the decomposed C of hydrocarbons reacts with CO2. The above relationship is based on the assumption that 03H8 is not used. Therefore, the difference between the solid line and the dotted line represents the amount of increase in the amount of reaction heat for cooling the tuyere due to the combined use with the coll, depending on the respective 03H8 content position.

第1図、第2図かられかるように、002にC3H8を
混合することにより、混合ガス1モル当りの羽目冷却能
が急激に増大し、換言すると羽口冷却に必要な冷却ガス
量を有利に減少させて効果があることを示している。
As can be seen from Figures 1 and 2, by mixing C3H8 with 002, the tuyere cooling capacity per mole of mixed gas increases rapidly, in other words, the amount of cooling gas required for tuyere cooling is advantageous. It has been shown that it is effective in reducing

ざらに第3図は、03HBの分解Cが(8)式に示すと
おり、00.と反応することにより、等羽口冷却能をも
たらすべ龜ガス置の削減に及ぼす03H8含有置の関係
を示す。この削減ガス量は、第1図の点線と実線との艶
に相当する。
Briefly, FIG. 3 shows that the decomposition C of 03HB is 00. The relationship between the 03H8 content position and the reduction of the gas position resulting in equal tuyere cooling capacity is shown. This reduced gas amount corresponds to the dotted line and solid line in FIG.

この羽口冷却用ガスの削減量は、C02と03H8の混
合ガス量に対して03H8がB容I1%まで急勾配で増
大しているのに対し、その後は03H8の含有10口に
応じてガス削減量が漸減するがC02単独使用の場合と
比べて有効なガス削減による低コスト化にみるべき効果
がある。以上は計算により求めた結果であるが次にjt
転炉による実験結果について述べ発明の範囲を限定する
This reduction in the amount of tuyere cooling gas increases steeply for 03H8 up to B volume I1% with respect to the amount of mixed gas of C02 and 03H8, but after that, the amount of gas for cooling the tuyeres increases according to the 10 ports of 03H8 contained. Although the amount of reduction gradually decreases, there is a noticeable effect in cost reduction due to effective gas reduction compared to the case of using C02 alone. The above is the result obtained by calculation, but next
The scope of the invention will be limited by describing experimental results using a converter.

これまで述べたように計算ではC3H8の含装置がB容
置%のときを最高に、はげ全領域にわたって羽口冷却ガ
ス社の削減効果が期待できる。しかし、この計算は平衡
計算であり、実際にはそれぞれの組成のときにガスの反
応速度が異なり、計算で求めた結果と違う場合があるこ
とも予想される。
As mentioned above, according to calculations, the reduction effect of tuyere cooling gas can be expected to reach its maximum when the C3H8 content is B volume % over the entire bald area. However, this calculation is an equilibrium calculation, and in reality, the reaction rate of the gas differs for each composition, and it is expected that the result may differ from the calculated result.

そこで実験を行ったのである。So we conducted an experiment.

実験はS)ン底吹試験炉にて、二重管側口の内管に酸素
流量/J Nm’/minを吹込すと同時にその内外管
間の環りのすきまには計算で求められた一定の冷却効果
を得るように混合ガスを流した。すなわち第2表に示す
03H8およびOO2各流置装混合し、03H8を0 
、 j 、 101 Jj # 170 、 jO、4
717! 。
The experiment was carried out in a bottom-blowing test furnace, and at the same time oxygen flow rate /J Nm'/min was blown into the inner tube at the side entrance of the double tube, the gap between the ring between the inner and outer tubes was determined by calculation. The mixed gas was flowed to obtain a constant cooling effect. That is, 03H8 and OO2 shown in Table 2 are mixed in each flow device, and 03H8 is
, j , 101 Jj # 170 , jO, 4
717! .

ioo各容置%の9水準で、一定の冷却効果を得るよう
にして実験を行ったのである0 羽口冷却効果の判定は、羽口先端部凝固鉄(マツシュル
ーム)形状の形成状態の観察により行ない、正常な形状
のマツシュルームが形成した場合を良とし、そのうちで
特にマツシュルームが大きく強固に形成した場合を優良
とし、マツシュルームが形成していなかったり羽口部分
の溶損が激しい場合を不良とした。その結果を第2表に
示した〇第2表 同表で示すように、すべての混合割合において羽口保護
効果は良以上の判走を得たが、特にO,H8の容置%が
10〜功%において他の条件に比べて大きく、強固な!
ツシュルーム形成が認められた。
The experiment was conducted to obtain a constant cooling effect at 9 levels of each volume%.0 The tuyere cooling effect was determined by observing the formation state of solidified iron (pine mushroom) at the tip of the tuyere. The product was evaluated as good if a normal-shaped pine mushroom was formed, excellent if the pine mushroom was particularly large and strong, and poor if the pine mushroom was not formed or the tuyere part was severely eroded. . The results are shown in Table 2. As shown in Table 2, the tuyere protection effect was better than good at all mixing ratios, but especially when the storage percentage of O and H8 was 10 ~ Bigger and stronger in terms of performance than other conditions!
Thushroom formation was observed.

この事実は前述の(平衡)計算上はできていなかったも
のであるが、実験により初めて明らかとなつた。この理
由については必らずしも明確ではないが、反応の化学量
論量に近い範囲の混合比の方がより平衡値に近くまで反
応する。すなわち反応効率が高いものと考えられる。
This fact was not possible in the above-mentioned (equilibrium) calculations, but it became clear for the first time through experiments. Although the reason for this is not necessarily clear, a mixture ratio close to the stoichiometric range of the reaction results in a reaction closer to the equilibrium value. In other words, it is considered that the reaction efficiency is high.

以上に述べたように、本実験結果からO,H8の容置%
がlO〜に%の範囲で羽口保護効果が特にすぐれている
ことが判明した。
As mentioned above, from the results of this experiment, the volume percentage of O, H8
It has been found that the tuyere protective effect is particularly excellent in the range of 10 to %.

これら計算結果および実験結果からこの発明の範囲を0
3H8の容量%が10〜に%の領域に限宇する。
From these calculation results and experimental results, the scope of this invention is 0.
The capacity of 3H8 is limited to an area of 10% to 10%.

この発明に従いO,H8を10−$117容量囁含有す
る混合ガスを用いて、全量CO□もしくは0.H8の場
合と比べてコス)がO0≦参〜0.7I倍程度に低下し
た。
According to the present invention, using a mixed gas containing 10-$117 volumes of O, H8, the total amount of CO□ or 0. Compared to the case of H8, the cost was reduced to about 0.7I times.

第参図は混合ガス中の0.H8含有量に対する鋼中水素
濃度の関係を示すように冷却ガスのC3H8の混合容1
%を選択することにより鋼中水素値を制御することも可
能である・ 製造鋼種によって鋼中水素値の制限は変わるが、規格よ
り高値であることの故に、真空脱ガス装置などを用いて
脱水素処理を行わなければならないような場合にあって
も、この発明による精錬を行ない、鋼中の水素値を規格
内に制御し、あるいは真空脱ガスの、負荷を軽減して多
大なコストダウンが実現される。
The figure below shows 0% in the mixed gas. The mixing volume of C3H8 of the cooling gas 1 shows the relationship between the hydrogen concentration in steel and the H8 content.
It is also possible to control the hydrogen value in steel by selecting the percentage. - The limit for the hydrogen value in steel varies depending on the type of steel manufactured, but since it is higher than the standard, it is possible to dehydrate it using a vacuum degassing device etc. Even in cases where elementary treatment is required, this invention can be used to refine the steel to control the hydrogen level in the steel within specifications, or reduce the burden of vacuum degassing, resulting in significant cost reductions. Realized.

以上底吹き転炉における軟線に関し、CO8に対してC
3H8を混合する場合を代表例として説明したがCO2
に混合する炭化水素はプロパンガスのほか天然ガス、ざ
らには石油などを含めて、熱分解により炭素を発生する
炭化水素一般を、気体はもとよりのこと、液体で用いて
もよい。
Regarding the soft wire in the bottom blowing converter above, C
Although the case of mixing 3H8 was explained as a typical example, CO2
Hydrocarbons to be mixed with the gas may include propane gas, natural gas, petroleum, and other hydrocarbons that generate carbon through thermal decomposition, and may be used in gas or liquid form.

またこの羽口保護用冷却剤は、底吹転炉のほか、これど
類似の機能を有する限り、上、底吹き併用転炉その他炉
外処理用取鍋の如き精錬容器にょる溶鉄精錬にも適用で
き、何れの場合も精錬後における浴銑中水素濃度上昇の
有利な軽減を冷却能の有効な向上にあわせ実現し、羽口
保護用冷却剤の使用鮒を大いに低減することができる。
In addition to bottom-blowing converters, this tuyere-protecting coolant can also be used for molten iron refining in top- and bottom-blowing converters and other refining vessels such as ladle for out-of-furnace processing, as long as they have similar functions. In any case, an advantageous reduction in the increase in hydrogen concentration in the bath pig iron after refining can be realized together with an effective improvement of the cooling capacity, and the use of coolant for tuyere protection can be greatly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は等羽目冷却能を得るのに必要なCO3−(3,
H8混合ガス臆に対応する混合ガス中C3H8の容置%
の関係を示すグラフ、第2図は羽口冷却熱量に及ぼす混
合ガス中0.118の容1%の影響を示す冷却能グラフ
、第3図は・C,H8の分解0がCO2と反応すること
により削減できるガス量と混合ガス中0.H8容置第と
の関係を示すグラフ、第4I図は混合ガス中のO,H8
容置襲に対する鋼中水素濃度の関係を示すグラフである
。 特許出願人  川崎製鉄株式会社 第1図 第2図 o  to  20304050 6070130 q
Of00′51−1g  Xfθ0(容量%) co2+03He 第4図。
Figure 1 shows the CO3-(3,
Volume % of C3H8 in the mixed gas corresponding to H8 mixed gas
Figure 2 is a cooling capacity graph showing the effect of 1% volume of 0.118 in the mixed gas on the tuyere cooling heat amount, Figure 3 is the decomposition of C, H8 reacts with CO2. The amount of gas that can be reduced by this and the amount of gas in the mixed gas can be reduced by 0. A graph showing the relationship between H8 and H8 in the mixed gas, Figure 4I shows the relationship between O and H8 in the mixed gas.
It is a graph showing the relationship between hydrogen concentration in steel and storage attack. Patent applicant Kawasaki Steel Corporation Figure 1 Figure 2 o to 20304050 6070130 q
Of00'51-1g Xfθ0 (volume %) co2+03He Figure 4.

Claims (1)

【特許請求の範囲】[Claims] L 精錬ガスの溶鉄の洛中吹込みに供する羽口の周辺に
て、熱分解により炭素を発生する炭化水素と二酸化炭素
との混合ガスからなり、炭化水素を前記混合ガスに対し
て10〜侵容社%含有する組成からなることを特徴とす
る羽口保護用冷却剤。
L Consists of a mixed gas of hydrocarbons and carbon dioxide that generate carbon by thermal decomposition around the tuyeres used for injecting molten iron into the refining gas, and the hydrocarbons have a penetration rate of 10 to 10% to the mixed gas. A cooling agent for protecting tuyeres, characterized in that it consists of a composition containing 1%.
JP13605481A 1981-09-01 1981-09-01 Coolant for protection of tuyere Pending JPS5839717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13605481A JPS5839717A (en) 1981-09-01 1981-09-01 Coolant for protection of tuyere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13605481A JPS5839717A (en) 1981-09-01 1981-09-01 Coolant for protection of tuyere

Publications (1)

Publication Number Publication Date
JPS5839717A true JPS5839717A (en) 1983-03-08

Family

ID=15166098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13605481A Pending JPS5839717A (en) 1981-09-01 1981-09-01 Coolant for protection of tuyere

Country Status (1)

Country Link
JP (1) JPS5839717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT403928B (en) * 1996-09-17 1998-06-25 Holderbank Financ Glarus Process for reconditioning combustion residues

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT403928B (en) * 1996-09-17 1998-06-25 Holderbank Financ Glarus Process for reconditioning combustion residues

Similar Documents

Publication Publication Date Title
KR910009873B1 (en) Submerged combustion in molten materials
JPS6023182B2 (en) Melting method for medium carbon high chromium molten metal
GB2093864A (en) Process for refining high-chronium steels by oxygen-blowing
JPS5839717A (en) Coolant for protection of tuyere
US3867135A (en) Metallurgical process
JPH0124855B2 (en)
US4274871A (en) Method of obtaining manganese alloys with a medium carbon content
US4436287A (en) Method for protecting tuyeres for refining a molten iron
US4348227A (en) Process for producing steel with low hydrogen content in a through-blowing oxygen converter
JPS6049687B2 (en) Tuyere cooling method
US3350196A (en) Basic steelmaking
US4021233A (en) Metallurgical process
JPS62109918A (en) Method for cooling multiply tubed tuyere of bottom blowing refining furnace
JPS5867816A (en) Cooling method for converter-tuyere
JP2982464B2 (en) Method of injecting hydrocarbon gas from tuyere
JP2553204B2 (en) Tuyere protection method for bottom-blown and top-blown converters
US4188206A (en) Metallurgical process
US4066442A (en) Method of making chrome steel in an electric arc furnace
JPS61284512A (en) Production of high-chromium steel using chromium ore
JPS58217620A (en) Pretreatment of molten pig iron
JPS628482B2 (en)
JPH01149914A (en) Method for protecting bottom blowing tuyere in refining vessel
JPS5913012A (en) Method for protecting tuyere of blowpipe for refining molten iron
JPH0379403B2 (en)
JPS58113311A (en) Protecting method for tuyere for blowing oxidative gas for refining