JPH0379403B2 - - Google Patents

Info

Publication number
JPH0379403B2
JPH0379403B2 JP12667987A JP12667987A JPH0379403B2 JP H0379403 B2 JPH0379403 B2 JP H0379403B2 JP 12667987 A JP12667987 A JP 12667987A JP 12667987 A JP12667987 A JP 12667987A JP H0379403 B2 JPH0379403 B2 JP H0379403B2
Authority
JP
Japan
Prior art keywords
gas
refining
blowing
tuyere
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12667987A
Other languages
Japanese (ja)
Other versions
JPS63290214A (en
Inventor
Nobuyuki Ishiwatari
Keiji Kiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12667987A priority Critical patent/JPS63290214A/en
Publication of JPS63290214A publication Critical patent/JPS63290214A/en
Publication of JPH0379403B2 publication Critical patent/JPH0379403B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は上底吹き転炉の精錬方法に関するもの
である。 (従来の技術) 純酸素上吹き製鋼法及び酸素底吹き製鋼法のそ
れぞれの長所を生かして純酸素を上方から吹き付
けるとともに炉底部から酸素を吹き込む転炉の精
錬法は公知である。例えば特開昭55−161014号公
報に、酸素上吹きによる吹錬操作の期間中もしく
は引続き吹錬終了後の排出期間まで、酸素全供給
量の一部を浴面下に吹き込む技術が開示されてい
る。また特開昭56−13423号公報には、酸素上吹
きによる吹錬操作の期間中もしくは引続き吹錬終
了後の排出期間まで、浴面下に酸素と二酸化炭素
の混合ガスを吹き込む技術が開示されている。 (発明が解決しようとする問題点) 前記特開昭55−161014号公報に開示された技術
によれば、炉底から酸素ガスを吹き込むことによ
つて、アルゴンなどの不活性ガスや窒素などの中
性ガス吹き込みによるコストの上昇あるいは溶鋼
中の窒素含有量が多くなるという欠点を解決する
が、炉底に設けた単管又は二重管羽口の先端に形
成される地金の塊(マツシユルーム)に対する配
慮が無く、このため羽口の寿命が短いと云う問題
があるほか、鋼中水素を低減するという点につい
ては何等注目していない。 一方、特開昭56−23215号公報の技術は底吹き
ガスとして酸素と二酸化炭素の混合ガスを使用す
るというものであるが、酸素と二酸化炭素の混合
比は0.5〜2.0の範囲が望ましいと記載されている
だけで、羽口寿命を考慮した吹込み方法について
は何等開示がなく、又鋼中水素には全く注目して
いないので、前記特開昭55−161014号公報の技術
と同様に望ましい品質の鋼を経済的に製造すると
いう点では問題があつた。 なお、水素含有量を低減するために炉底に取付
けた二重管羽口の内管より純酸素を、外管より二
酸化炭素を吹き込むという技術が特公昭56−9250
号公報に開示されているが、この技術は純酸素底
吹き法の技術であり、本発明とは全く異なる技術
である。 (問題点を解決するための手段) 本発明は前記従来技術の問題点を有利に解決す
るためになされたものであつて、転炉の上方から
酸素ガスを供給すると共に炉底部に設けた二重管
羽口の内管から酸素ガスと二酸化炭素ガスの混合
ガスを吹き込み、かつ外管からは二酸化炭素ガス
又は二酸化炭素ガスと炭化水素ガスの混合ガスを
吹き込んで精錬を行う方法において、精錬後に得
られる鋼中水素予測値に基づいて二重管羽口の内
管及び外管から吹き込むそれぞれのガスの混合割
合を変化させることを特徴とする上底吹き転炉の
精錬方法である。 以下図面に基づいて本発明を説明する。 第1図は本発明を例示する説明図、第2図は本
発明に係る二重管羽口を例示する断面図である。 本発明は第1図及び第2図に示すように、転炉
1の上方からランス2を介して純酸素を供給する
とともに炉底部に設けた二重管羽口3の内管3A
からは、酸素ガス源6Aと二酸化炭素源6Bから
のO2ガス及びCO2ガスを所定の割合で取り出して
混合ガスとして吹き込み、外管3Bからは、炭化
水素ガス源5Aからのプロパンガス、二酸化炭素
ガス源5BからのCO2ガスを単独で又は混合して
吹き込みながら精錬を行う上底吹き転炉の精錬方
法において、精錬後に得られる鋼中水素予測値に
基づいて、内管3A及び外管3Bから吹き込むガ
スの混合割合を変化させて精錬を行うものであ
る。 図中3Cはリブ、7A,7Bは混合ガスの比率
を設定して各流調弁9A〜9Dへ開度指令を発す
る設定器、8は制御装置であつて、精錬すべき鋼
種、精錬条件、溶銑の成分、温度等の値に基づき
混合ガスの比率を設定して該設定器7A,7Bへ
その比率を入力する機能を有する。 第3図は本発明に係る上吹き酸素量、底吹きガ
スの組成及び混合割合をパターン化して例示した
図である。 第3図に基づいて本発明を更に説明する。 同図は300t転炉による上底吹き精錬パターンを
水素含有量が厳しくない普通鋼と、水素含有量が
2.0ppm以下の低水素鋼について示したものであ
る。 同図に示すように、普通鋼を上底吹きにより精
錬する場合は、着火から吹錬終了までの期間、上
吹き酸素量を67000Nm3/Hとするとともに内管
3AからはCO2とO2を合計で5000Nm3/H吹き込
むこととし、この場合、CO2を30〜40%、O2を60
〜70%とする。 また外管3Bからは、LPGとCO2を合計で
500Nm3/Hで吹き込むこととし、比率はLPGを
30%、CO2を70%とする。 一方、低水素鋼を精錬する場合は、内管3Aか
ら吹き込むガスをCO2とO2の混合ガスとして全体
で5000Nm3/H吹き込むものとし、この場合の混
合割合はCO260〜70%、O230〜40%とする。 一方、外管3Bから吹き込むガスはCO2100%
で出鋼開始までこの条件で吹込みを実施する。但
し、吹止〔H〕は転炉吹錬末期でのインプツト
〔H〕により決定されることから低水素鋼精錬底
吹ガスパターンは吹錬中期から出鋼開始まで継続
されれば十分である。上吹き酸素流量は67000N
m3/Hである。 以上のように、本発明は精錬後に得られる水素
含有量により、例えば普通鋼と低水素鋼とに分け
て、それぞれ二重管羽口の内管及び外管から吹き
込むガスの組成及び混合割合を同時に変化させて
精錬を行うものである。 次に底吹羽口の安定化のための熱バランスにつ
いて述べる。 底吹羽口の安定化のためには羽口先端での熱バ
ランスを適正化する必要がある。 羽口先端での適正熱バランスは表1の反応熱を
使用することで以下のような領域に規定される。
(Industrial Application Field) The present invention relates to a refining method using a top-bottom blowing converter. (Prior Art) A converter refining method is known in which pure oxygen is blown from above and oxygen is blown from the bottom of the furnace, taking advantage of the respective advantages of pure oxygen top-blown steelmaking and oxygen bottom-blown steelmaking. For example, Japanese Patent Application Laid-Open No. 161014/1983 discloses a technique in which a portion of the total amount of oxygen supplied is blown below the bath surface during the period of the blowing operation using oxygen top blowing or until the discharge period after the blowing is completed. There is. Furthermore, JP-A-56-13423 discloses a technique for blowing a mixed gas of oxygen and carbon dioxide under the bath surface during the blowing operation using oxygen top blowing or until the discharge period after the blowing is completed. ing. (Problems to be Solved by the Invention) According to the technique disclosed in the above-mentioned Japanese Patent Application Laid-open No. 55-161014, by blowing oxygen gas from the bottom of the furnace, inert gas such as argon or nitrogen etc. This solves the disadvantages of increased costs and increased nitrogen content in molten steel due to neutral gas injection, but it also eliminates the problem of ingots of metal (matsu room) formed at the tip of the single or double pipe tuyeres installed at the bottom of the furnace. ), and as a result, there is a problem that the life of the tuyere is short, and no attention is given to reducing hydrogen in steel. On the other hand, the technology disclosed in JP-A-56-23215 uses a mixed gas of oxygen and carbon dioxide as the bottom blowing gas, but it states that the mixing ratio of oxygen and carbon dioxide is preferably in the range of 0.5 to 2.0. However, there is no disclosure about the blowing method that takes the life of the tuyere into consideration, and no attention is paid to hydrogen in the steel. There were problems in producing quality steel economically. In addition, in order to reduce the hydrogen content, the technology of blowing pure oxygen through the inner tube and carbon dioxide through the outer tube of a double-tube tuyere installed at the bottom of the furnace was developed in 1986-9250.
Although disclosed in the above publication, this technique is a pure oxygen bottom blowing technique, which is completely different from the present invention. (Means for Solving the Problems) The present invention has been made in order to advantageously solve the problems of the prior art described above, and provides oxygen gas to be supplied from above the converter, and a double valve provided at the bottom of the furnace. In the method of refining by blowing a mixed gas of oxygen gas and carbon dioxide gas through the inner pipe of a heavy pipe tuyere, and blowing carbon dioxide gas or a mixed gas of carbon dioxide gas and hydrocarbon gas from the outer pipe, after refining. This is a refining method for a top-bottom blowing converter, which is characterized by changing the mixing ratio of each gas blown into the inner and outer tubes of a double-tube tuyere based on the obtained predicted value of hydrogen in steel. The present invention will be explained below based on the drawings. FIG. 1 is an explanatory diagram illustrating the present invention, and FIG. 2 is a sectional view illustrating a double pipe tuyere according to the present invention. As shown in FIGS. 1 and 2, the present invention supplies pure oxygen from above a converter 1 through a lance 2, and an inner tube 3A of a double-tube tuyere 3 provided at the bottom of the furnace.
From the outer tube 3B, O 2 gas and CO 2 gas from the oxygen gas source 6A and the carbon dioxide source 6B are taken out at a predetermined ratio and blown in as a mixed gas, and from the outer tube 3B, propane gas and carbon dioxide from the hydrocarbon gas source 5A are extracted. In a top-bottom blowing converter refining method in which refining is performed while blowing CO 2 gas from the carbon gas source 5B alone or in a mixture, the inner pipe 3A and the outer pipe are Refining is performed by changing the mixing ratio of gas blown in from 3B. In the figure, 3C is a rib, 7A and 7B are setting devices that set the ratio of mixed gas and issue opening commands to each flow control valve 9A to 9D, and 8 is a control device that controls the type of steel to be refined, the refining conditions, It has a function of setting the ratio of mixed gas based on the values of the components of hot metal, temperature, etc., and inputting the ratio to the setting devices 7A and 7B. FIG. 3 is a diagram illustrating a pattern of the amount of top-blown oxygen, the composition and mixing ratio of bottom-blown gas according to the present invention. The present invention will be further explained based on FIG. The figure shows the top-bottom blowing refining pattern using a 300-ton converter for ordinary steel with less hydrogen content and for ordinary steel with less hydrogen content.
This is shown for low hydrogen steel of 2.0ppm or less. As shown in the figure, when refining ordinary steel by top-bottom blowing, the top-blowing oxygen amount is set to 67000Nm 3 /H from ignition to the end of blowing, and CO 2 and O 2 are emitted from the inner pipe 3A. A total of 5000Nm 3 /H is blown into the air. In this case, CO 2 is 30-40% and O 2 is 60%.
~70%. In addition, from the outer pipe 3B, LPG and CO 2 are released in total.
It was decided to blow at 500Nm 3 /H, and the ratio was LPG.
30% and CO2 to 70%. On the other hand, when refining low hydrogen steel, the gas injected from the inner pipe 3A is a mixed gas of CO 2 and O 2 at a total of 5000 Nm 3 /H, and the mixing ratio in this case is 60 to 70% CO 2 ; O2 should be 30-40%. On the other hand, the gas blown from the outer pipe 3B is 100% CO2.
Blowing is carried out under these conditions until the start of steel tapping. However, since the end of blowing [H] is determined by the input [H] at the end of converter blowing, it is sufficient that the bottom blowing gas pattern for low hydrogen steel refining is continued from the middle of blowing to the start of tapping. Top-blown oxygen flow rate is 67000N
m 3 /H. As described above, according to the hydrogen content obtained after refining, the composition and mixing ratio of the gas injected from the inner and outer tubes of the double-tube tuyere are determined by dividing the steel into, for example, ordinary steel and low-hydrogen steel. It is something that is simultaneously changed and refined. Next, we will discuss the heat balance for stabilizing the bottom blow tuyere. In order to stabilize the bottom blowing tuyere, it is necessary to optimize the heat balance at the tip of the tuyere. The appropriate heat balance at the tip of the tuyere is defined in the following range by using the heat of reaction shown in Table 1.

【表】 羽口一本当たり内管発熱速度を次式で定義す
る。 内管O2ガス流量(Nm3/Hr・本)×(116.8Kcal/molO2)×1
000/22.4+内管CO2ガス流量(Nm3/Hr・本) ×(-21.8Kcal/molCO2)×1000/22.4=内管発熱速度
(Kcal/Hr・本)……(1) 羽口一本当たりの外管吸熱速度を次式で定義する。 外管CO2流量(Nm3/Hr・本)×(21.8Kcal/molCO2)×1000
/22.4+外管LPG流量(Nm3/Hr・本) ×(92.5Kcal/molLPG)×1000/22.4=外管吸熱速度(Kc
al/Hr・本)……(2) 羽口先での熱バランスに寄与する内管ガスは内
管内周近傍を流れる内管ガスの一部分であること
を考えると外管には内管ガスの内管内周近傍を流
れる内管ガスの一部分のガスによる発熱速度と、
羽口近傍の溶鋼顕熱にバランスするよう冷却する
だけのガスを流す必要がある。この適正熱バラン
ス領域を(1)、(2)式を用いて(3)式のように表現す
る。 適正熱バランス領域 外管吸熱速度0.0433×内管発熱速度+30×103(Kca
l/Hr・本) 外管吸熱速度0.0433×内管発熱速度+30×103(Kca
l/Hr・本) 外管吸熱速度0.0433×内管発熱速度+70×103(Kcal
/Hr・本)……(3) 内管発熱速度>0 内、外管底吹ガス量、ガス種の混合比率が湯差
し限界以上の線流速を確保することはもちろん(3)
式で表現される適正熱バランス領域をも満足する
ように決定されれば、安定した羽口寿命を維持し
つつ冶金効果の享受を長期管可能にすることがで
きる。 (作用) 本発明において、低水素鋼精錬及び普通鋼精錬
に際し底吹きガスの混合割合を変化させ更に羽口
先での熱バランスを前述の領域とするのは以下の
理由による。 (1) 低水素鋼精錬の場合、〔H〕ピツクアツプが
問題となるため、外管は全て冷却ガスとして
COガスを流す。内管ガスのCO2/O2ガス混合
比率は(3)式を満足するように決定される。 (2) 普通鋼精錬の場合、〔H〕ピツクアツプが問
題とならないため外管の冷却ガスとしてLPG
を流す。ところが低水素鋼時で必要とされる冷
却CO2ガスはLPGに比較して冷却能力が小さ
く、従つて低水素鋼溶製時CO2の多量吹込みが
必要となる。 同一羽口を使用して、低水素鋼精錬時の外管線
流速、普通鋼精錬時の外管線流速共、限界線流速
以上を確保するためには、おのづと普通鋼精錬
時、外管ガスはLPGだけでなく、LPG×CO2
スの混合ガスを流す必要がでてくる。 従つて普通鋼精錬時には、外管にはLPG、CO2
の混合ガスを流し、(3)式に従つて内管ガスの
CO2/O2ガス混合比率が決定されることになる。 (実施例) 300t転炉により第3図のパターンを使用して普
通鋼、低水素鋼を精錬した際の吹止〔H〕の値を
表2に示す。
[Table] The inner tube heat generation rate per tuyere is defined by the following formula. Inner tube O 2 gas flow rate (Nm 3 /Hr・unit)×(116.8Kcal/molO 2 )×1
000/22.4 + Inner tube CO 2 gas flow rate (Nm 3 /Hr・unit) × (-21.8Kcal/molCO 2 ) × 1000/22.4 = Inner tube heat generation rate
(Kcal/Hr・unit)...(1) Define the outer tube heat absorption rate per tuyere using the following formula. Outer tube CO 2 flow rate (Nm 3 /Hr・unit) × (21.8Kcal/molCO 2 ) × 1000
/22.4 + Outer tube LPG flow rate (Nm 3 /Hr・unit) × (92.5 Kcal/mol LPG) × 1000 / 22.4 = Outer tube endothermic rate (Kc
al/Hr・Book)……(2) Considering that the inner pipe gas that contributes to the heat balance at the tip of the tuyere is a part of the inner pipe gas flowing near the inner circumference of the inner pipe, the outer pipe contains the inner pipe gas. The rate of heat generation due to a portion of the inner pipe gas flowing near the inner circumference of the pipe,
It is necessary to flow enough cooling gas to balance the sensible heat of the molten steel near the tuyeres. This appropriate heat balance region is expressed as in equation (3) using equations (1) and (2). Appropriate heat balance area Outer tube heat absorption rate 0.0433 × inner tube heat generation rate + 30 × 10 3 (Kca
l/Hr・units) Outer tube heat absorption rate 0.0433 x inner tube heat release rate + 30 x 10 3 (Kca
l/Hr・units) Outer tube heat absorption rate 0.0433 x inner tube heat generation rate + 70 x 10 3 (Kcal
/Hr・Book)...(3) Inner tube heat generation rate > 0 It goes without saying that the inner and outer tube bottom-blown gas amounts and the mixing ratio of gas types must ensure a linear flow rate that is higher than the hot water pitcher limit (3)
If it is determined so as to satisfy the appropriate heat balance range expressed by the formula, it is possible to enjoy the metallurgical effect for a long period of time while maintaining a stable tuyere life. (Function) In the present invention, the mixing ratio of bottom-blown gas is changed during low-hydrogen steel refining and ordinary steel refining, and the heat balance at the tuyere tip is set in the above-mentioned range for the following reasons. (1) In the case of low-hydrogen steel refining, [H] pick-up is a problem, so the outer tube is entirely used as a cooling gas.
Flow CO gas. The CO 2 /O 2 gas mixture ratio of the inner tube gas is determined to satisfy equation (3). (2) In the case of ordinary steel refining, [H] pick-up is not a problem, so LPG is used as the cooling gas for the outer tube.
flow. However, the cooling CO 2 gas required for low hydrogen steel has a smaller cooling capacity than LPG, and therefore a large amount of CO 2 must be injected when low hydrogen steel is melted. In order to use the same tuyeres to ensure that the outer pipe line flow rate during low hydrogen steel refining and the outer pipe line flow rate during ordinary steel refining are above the limit line flow rate, it is necessary to It will be necessary to flow not only LPG but also a mixed gas of LPG x CO 2 gas. Therefore, when refining ordinary steel, LPG and CO 2 are used in the outer tube.
Flow the mixed gas, and calculate the inner pipe gas according to equation (3).
The CO 2 /O 2 gas mixture ratio will be determined. (Example) Table 2 shows the values of endpoint [H] when ordinary steel and low hydrogen steel were refined using the pattern shown in Figure 3 in a 300-ton converter.

【表】 上表に示すように、低水素鋼精錬底吹ガスパタ
ーンを使用することで大幅に吹止〔H〕が低減さ
れている。低水素鋼精錬低吹ガスパターン比率
10.2%時の1炉代通じての羽口ノズル溶損速度は
0.28mm/chと低い値であつた。 (発明の効果) 以上述べたように本発明による底吹ガス条件を
使用して精錬を実施することで羽口溶損速度を低
位安定させつつ普通鋼・低水素鋼を溶製すること
ができる。
[Table] As shown in the table above, the blow-off [H] is significantly reduced by using the low-hydrogen steel refining bottom-blowing gas pattern. Low hydrogen steel refining low blowing gas pattern ratio
At 10.2%, the tuyere nozzle erosion rate over one furnace is
The value was as low as 0.28 mm/ch. (Effects of the Invention) As described above, by carrying out refining using the bottom-blown gas conditions according to the present invention, ordinary steel and low hydrogen steel can be produced while keeping the tuyere erosion rate low and stable. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を例示する説明図、第2図は本
発明に係る二重管羽口を例示する断面図、第3図
は本発明に係る上吹き酸素量、底吹きガスの組成
及び混合割合をパターン化して例示した図であ
る。 1……転炉、2……ランス、3……二重管羽
口、3A……内管、3B……外管、5A……炭化
水素ガス源、6A……酸素ガス源、5B,6B…
…二酸化炭素ガス源、8……制御装置。
FIG. 1 is an explanatory diagram illustrating the present invention, FIG. 2 is a sectional view illustrating a double pipe tuyere according to the present invention, and FIG. 3 is a diagram showing the amount of top-blown oxygen, the composition of bottom-blown gas, and It is a figure which patterned and illustrated the mixing ratio. 1...Converter, 2...Lance, 3...Double tube tuyere, 3A...Inner tube, 3B...Outer tube, 5A...Hydrocarbon gas source, 6A...Oxygen gas source, 5B, 6B …
...carbon dioxide gas source, 8...control device.

Claims (1)

【特許請求の範囲】[Claims] 1 転炉の上方から酸素ガスを供給すると共に炉
底部に設けた二重管羽口の内管から酸素ガスと二
酸化炭素ガスの混合ガスを吹き込み、かつ外管か
らは二酸化炭素ガス又は二酸化炭素ガスと炭化水
素ガスの混合ガスを吹き込んで精錬を行う方法に
おいて、精錬後に得られる鋼中水素予測値に基づ
いて二重管羽口の内管及び外管から吹き込むそれ
ぞれのガスの混合割合を変化させることを特徴と
する上底吹き転炉の精錬方法。
1 Oxygen gas is supplied from above the converter, and a mixed gas of oxygen gas and carbon dioxide gas is blown from the inner tube of the double tube tuyere provided at the bottom of the furnace, and carbon dioxide gas or carbon dioxide gas is blown from the outer tube. In the method of refining by injecting a mixed gas of hydrogen and hydrocarbon gas, the mixing ratio of each gas injected from the inner and outer pipes of the double-tube tuyere is changed based on the predicted value of hydrogen in steel obtained after refining. A refining method using a top-bottom blowing converter.
JP12667987A 1987-05-23 1987-05-23 Refining method in top and bottom blowing converter Granted JPS63290214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12667987A JPS63290214A (en) 1987-05-23 1987-05-23 Refining method in top and bottom blowing converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12667987A JPS63290214A (en) 1987-05-23 1987-05-23 Refining method in top and bottom blowing converter

Publications (2)

Publication Number Publication Date
JPS63290214A JPS63290214A (en) 1988-11-28
JPH0379403B2 true JPH0379403B2 (en) 1991-12-18

Family

ID=14941173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12667987A Granted JPS63290214A (en) 1987-05-23 1987-05-23 Refining method in top and bottom blowing converter

Country Status (1)

Country Link
JP (1) JPS63290214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136062A1 (en) 2006-05-23 2007-11-29 Nipro Corporation Container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136062A1 (en) 2006-05-23 2007-11-29 Nipro Corporation Container

Also Published As

Publication number Publication date
JPS63290214A (en) 1988-11-28

Similar Documents

Publication Publication Date Title
CN109207672A (en) A kind of production method of Slagoff method and ultra-low phosphoretic steel in ultra-low phosphoretic steel production process
CA2555472C (en) Method for producing low carbon steel
US4290802A (en) Steel making process
JPH0379403B2 (en)
KR100363608B1 (en) Method of low-carbon ferromanganese(LCFeMn) manufacturing by recycling dust containing manganese
US4348227A (en) Process for producing steel with low hydrogen content in a through-blowing oxygen converter
US4021233A (en) Metallurgical process
JPH0124855B2 (en)
WO2003029498A1 (en) Method for pretreatment of molten iron and method for refining
US4436287A (en) Method for protecting tuyeres for refining a molten iron
JP2982464B2 (en) Method of injecting hydrocarbon gas from tuyere
JPH0355538B2 (en)
JPH0471965B2 (en)
JP2842231B2 (en) Pretreatment of hot metal by bottom-blown gas stirring
JPH06145762A (en) Method for decarburize-refining molten chromium-containing steel
JP2000119725A (en) Converter steelmaking method with high productivity
JPS6056009A (en) Steel making method
KR970009513B1 (en) Process for preparing low-carbon ferromanganese
JPH04136113A (en) Method for melting iron-contained cold material
JPS5861211A (en) Manufacture of steel in converter
JPH0154409B2 (en)
SU1125257A1 (en) Method for smelting low-carbon steel in converter
JPH0873915A (en) Method for dephosphorizing and desulfurizing molten iron
JPH03120307A (en) Steelmaking method
JPH01283312A (en) Method for melting iron-contained cold material