JPS63290214A - Refining method in top and bottom blowing converter - Google Patents

Refining method in top and bottom blowing converter

Info

Publication number
JPS63290214A
JPS63290214A JP12667987A JP12667987A JPS63290214A JP S63290214 A JPS63290214 A JP S63290214A JP 12667987 A JP12667987 A JP 12667987A JP 12667987 A JP12667987 A JP 12667987A JP S63290214 A JPS63290214 A JP S63290214A
Authority
JP
Japan
Prior art keywords
gas
refining
steel
tuyere
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12667987A
Other languages
Japanese (ja)
Other versions
JPH0379403B2 (en
Inventor
Nobuyuki Ishiwatari
信之 石渡
Keiji Kiuchi
木内 啓嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12667987A priority Critical patent/JPS63290214A/en
Publication of JPS63290214A publication Critical patent/JPS63290214A/en
Publication of JPH0379403B2 publication Critical patent/JPH0379403B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To produce common steel and low hydrogen steel while maintaining stable service life of tuyere by executing refining using the prescribed bottom blowing gas condition to stabilize eroding speed of the tuyere to low level. CONSTITUTION:The refining is executed by supplying O2 from upper part of a converter 1 through a lance 2 and by blowing mixed gas of O2 and CO2 from inner pipe 3A and CO2 gas or mixed gas of CO2 and hydrocarbon from outer pipe 3B in a tuyere 3 having double pipes at bottom part of the furnace 1. Then, based on hydrogen predicting value in the steel obtd. after refining, at the time of refining the low hydrogen steel, all CO2 gas from the outer pipe 3B as cooling gas and the mixed gas of CO2 and O2 from the inner pipe 3A so that CO2/O2 mixing ratio satisfies the condition of suitable heat balance range at tip of the tuyere 3, are blown. Or, at the time of refining the common steel, the mixed gas of Co2 and hydrocarbon is blown from the outer pipe 3B and the mixed gas of CO2 and O2 is blown from the inner pipe 3A so that CO2/O2 mixing ratio satisfies the above condition. By changing the bottom blowing gas volume and the mixing ratio of each gas kind from the inner pipe 3A and the outer pipe 3B, the common steel and the low hydrogen steel can be produced while maintaining the stable service life of the tuyere.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は上底吹き転炉の精錬方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a refining method using a top-bottom blowing converter.

(従来の技術) 純酸素上吹き製鋼法及び酸素底吹き製鋼法のそれぞれの
長所を生かして純酸素を上方から吹き付けるとともに炉
底部からも酸素を吹き込む転炉の精錬法は公知である。
(Prior Art) A converter refining method is known in which pure oxygen is blown from above and oxygen is also blown from the bottom of the furnace, taking advantage of the respective advantages of pure oxygen top-blown steelmaking and oxygen bottom-blown steelmaking.

例えば特開昭55−161014号公報に、酸素上吹き
による吹錬操作の期間中もしくは引続き吹錬終了後の排
出期間まで、酸素全供給量の一部を浴面下に吹き込む技
術が開示され吹錬終了後の排出期間まで、浴面下に酸素
と二酸化炭素の混合ガスを吹き込む技術が開示されてい
る。
For example, Japanese Unexamined Patent Publication No. 55-161014 discloses a technique in which a part of the total amount of oxygen supplied is blown under the bath surface during the blowing operation using top oxygen blowing or until the discharge period after the blowing is completed. A technique has been disclosed in which a mixed gas of oxygen and carbon dioxide is blown below the bath surface until the discharge period after the completion of refining.

(発明が解決しようとする問題点) 前記特開昭55−161014号公報に開示された技術
によれば、炉底から酸素ガスを吹き込むことによって、
アルゴンなどの不活性ガスや窒素などの中性ガス吹き込
みによるコストの上昇あるいは溶鋼中の窒素含有量が多
くなるという欠点を解決するが、炉底に設けた単管又は
二重前羽目の先端に形成される地金の塊(マツシュルー
ム)に対する配慮が無く、このため羽目の寿命が短いと
云う問題があるほか、鋼中水素を低減するという点につ
いては同等注目していない。
(Problems to be Solved by the Invention) According to the technique disclosed in the above-mentioned Japanese Unexamined Patent Publication No. 55-161014, by blowing oxygen gas from the bottom of the furnace,
This solves the disadvantages of increased cost or increased nitrogen content in molten steel due to the injection of inert gas such as argon or neutral gas such as nitrogen, but it There is no consideration given to the lumps of metal (pine mushrooms) that are formed, and as a result, there is a problem that the lifespan of the panels is short, and no equal attention is paid to the reduction of hydrogen in the steel.

一方、特開昭56−23215号公報の技術は底吹きガ
スとして酸素と二酸化炭素の混合ガスを使用するという
ものであるが、酸素と二酸化炭素の混合比は0.5〜2
.0の範囲が望ましいと記載されているだけで、羽口寿
命を考慮した吹込み方法については同等開示がなく、又
鋼中水素には全く注目していないので、前記特開昭55
−161014号公報の技術と同様に望ましい品質の鋼
を経済的に製造するという点では問題があった。
On the other hand, the technique disclosed in JP-A-56-23215 uses a mixed gas of oxygen and carbon dioxide as the bottom blowing gas, but the mixing ratio of oxygen and carbon dioxide is between 0.5 and 2.
.. It is only stated that a range of 0 is desirable, but there is no equivalent disclosure regarding the blowing method that takes the life of the tuyere into consideration, and there is no focus on hydrogen in steel at all.
Similar to the technique disclosed in Japanese Patent No. 161014, there was a problem in economically producing steel of desired quality.

なお、水素含有量を低減するために炉底に取付けた二重
管羽口の内管より純酸素を、外管より二酸化炭素を吹き
込むという技術が特公昭56−9250号公報に開示さ
れているが、この技術は純酸素底吹き法の技術であり、
本発明とは全く異なる技術である。
Furthermore, in order to reduce the hydrogen content, a technique is disclosed in Japanese Patent Publication No. 56-9250 in which pure oxygen is blown into the inner tube of a double-tube tuyere installed at the bottom of the furnace, and carbon dioxide is blown into it through the outer tube. However, this technology is a pure oxygen bottom blowing method,
This is a completely different technology from the present invention.

(問題点を解決するための手段) 本発明は前記従来技術の問題点を有利に解決するために
なされたものであって、転炉の上方から酸素ガスを供給
すると共に炉底部に設けた二重前羽目の内管から酸素ガ
スと二酸化炭素ガスの混合ガスを吹き込み、かつ外管か
らは二酸化炭素ガス・又は二酸化炭素ガスと炭化水素ガ
スの混合ガスを吹き込んで精錬を行う方法において、精
錬後に得られる鋼中水素予測値に基づいて二重管羽口の
内情及び外管から吹き込むそれぞれのガスの混合割合を
変化させることを特徴とする上底吹き転炉の精錬方法で
ある。
(Means for Solving the Problems) The present invention has been made to advantageously solve the problems of the prior art. In the method of refining by blowing a mixed gas of oxygen gas and carbon dioxide gas from the inner pipe of the heavy front panel, and blowing carbon dioxide gas or a mixed gas of carbon dioxide gas and hydrocarbon gas from the outer pipe, after refining. This is a refining method for a top-bottom blowing converter, which is characterized by changing the internal conditions of the double tube tuyere and the mixing ratio of each gas blown from the outer tube based on the obtained predicted value of hydrogen in steel.

以下図面に基づいて本発明を説明する。The present invention will be explained below based on the drawings.

第1図は本発明を例示する説明図、第2図は本発明に係
る二重管羽口を例示する断面図である。
FIG. 1 is an explanatory diagram illustrating the present invention, and FIG. 2 is a sectional view illustrating a double pipe tuyere according to the present invention.

本発明は第1図及び第2図に示すように、転炉lの上方
からランス2を介して純酸素を供給するとともに炉底部
に設けた二重管羽口3の内管3Aからは、酸素ガス源6
Aと二酸化炭素源6Bからの0.ガス及びCO,ガスを
所定の割合で取り出して混合ガスとして吹き込み、外管
3Bからは、炭化水素ガス源5Aからのプロパンガス、
二酸化炭素ガス源5BからのCO,ガスを単独で又(よ
混合して吹き込みながら精錬を行う上底吹き転炉の精錬
方法において、精錬後に得られる鋼中水素予測値に基づ
いて、内管3A及び外管3Bか°ら吹き込むガスの混合
割合を変化させて精錬を行うものである。
As shown in FIGS. 1 and 2, the present invention supplies pure oxygen from above a converter l through a lance 2, and from an inner tube 3A of a double-tube tuyere 3 provided at the bottom of the furnace. Oxygen gas source 6
A and 0.0 from carbon dioxide source 6B. Gas and CO gas are taken out at a predetermined ratio and blown in as a mixed gas, and from the outer tube 3B, propane gas from the hydrocarbon gas source 5A,
In the refining method of a top-bottom blowing converter in which refining is performed while blowing CO and gas from the carbon dioxide gas source 5B alone or in a well-mixed manner, the inner tube 3A is Refining is performed by changing the mixing ratio of the gas blown in from the outer tube 3B.

図中30はリブ、7A、7Bは混合ガスの比率を設定し
て各流調弁9A〜9Dへ開度指令を発する設定器、8は
制御装置であって、精錬すべき鋼種、精錬条件、溶銑の
成分、温度等の値に基づき混合ガスの比率を設定して該
設定器7A、78へその比率を入力する機能を有する。
In the figure, 30 is a rib, 7A and 7B are setting devices that set the ratio of mixed gas and issue opening commands to each flow control valve 9A to 9D, and 8 is a control device that controls the type of steel to be refined, the refining conditions, It has a function of setting the ratio of mixed gas based on the values of the components of hot metal, temperature, etc., and inputting the ratio to the setting devices 7A and 78.

第3図は本発明に係る上吹き酸素量、底吹きガスの組成
及び混合割合をパターン化して例示した図である。
FIG. 3 is a diagram illustrating a pattern of the amount of top-blown oxygen, the composition and mixing ratio of bottom-blown gas according to the present invention.

第3図に基づいて本発明を更に説明する。The present invention will be further explained based on FIG.

同図は300を転炉による上底吹き精錬パターンを水素
含有量が厳しくない普通鋼と、水素含有量が2.0pp
−以下の低水素鋼について示したものである。
The figure shows the top-bottom blowing refining pattern of 300 using a converter for ordinary steel with a less strict hydrogen content and 2.0pp of hydrogen content.
- The following is shown for the low hydrogen steel.

同図に示すように、普通鋼を上底吹きにより精錬する場
合は、着火から吹錬終了までの期間、上吹き酸素量を6
7000 N+s’/Hとするとともに内管3Aからは
CO2と0.を合計で5000 Nll1i/■吹き込
むこととし、この場合、COtを30〜40%、Ofを
60〜70%とする。
As shown in the figure, when refining ordinary steel by top-bottom blowing, the top-blowing oxygen amount is 6
7,000 N+s'/H, and CO2 and 0.0% from the inner tube 3A. A total of 5000 Nll1i/■ is injected, and in this case, COt is 30 to 40% and Of is 60 to 70%.

また外管3Bからは、LPGとCOtを合計で500 
Nm’/Hで吹き込むこととし、比ンれはLPGを30
%、CO,を7θ%とする。
In addition, from the outer tube 3B, a total of 500 LPG and COt
It was decided to blow in at Nm'/H, and the comparison was 30 LPG.
%, CO, is 7θ%.

一方、低水素鋼を精錬する場合は、内管3Aから吹き込
むガスをCOtとO2の混合ガスとして全体で5000
 Nm3/H吹き込むものとし、この場合の混合割合は
cotso〜70%、o、30〜40%とする。
On the other hand, when refining low hydrogen steel, the gas injected from the inner pipe 3A is a mixed gas of COt and O2, and the total amount of gas is 5,000 yen.
Nm3/H is blown in, and the mixing ratio in this case is 70% to 70%, 30 to 40%.

一方、外管3Bから吹き込むガスはcotto。On the other hand, the gas blown from the outer tube 3B is cotto.

%で出鋼開始までこの条件で吹込みを実施する。%, and blowing is carried out under these conditions until the start of steel tapping.

但し、吹止(H)は転炉吹錬末期でのインプット〔■1
〕により決定されることから低水素鋼精錬底吹ガスパタ
ーンは吹錬中期から出鋼開始まで継続されれば十分であ
る。上吹き酸素流量は6700011+s’/Hである
However, the blow end (H) is the input at the final stage of converter blowing [■1
], it is sufficient that the bottom blowing gas pattern for low hydrogen steel refining is continued from the middle of blowing until the start of tapping. The top-blown oxygen flow rate is 6700011+s'/H.

以上のように、本発明は精錬後に得られる水素含有量に
より、例えば普通鋼と低水素鋼とに分けて、それぞれ二
重管羽口の内管及び外管から吹き込むガスの組成及び混
合割合を同時に変化させて精錬を行うものである。
As described above, according to the hydrogen content obtained after refining, the composition and mixing ratio of the gas injected from the inner and outer tubes of the double-tube tuyere are determined by dividing the steel into, for example, ordinary steel and low-hydrogen steel. It is something that is simultaneously changed and refined.

次に底吹羽口の安定化のための熱バランスにっいて述べ
る。
Next, we will discuss the thermal balance for stabilizing the bottom blow tuyere.

底吹羽口の安定化のためには羽目先端での熱バランスを
適正化する必要がある。
In order to stabilize the bottom-blown tuyere, it is necessary to optimize the heat balance at the tip of the tuyere.

羽口先端での適正熱バランスは表1の反応熱を使用する
ことで以下ような領域に規定される。
The appropriate heat balance at the tip of the tuyere is defined in the following range by using the heat of reaction shown in Table 1.

表  1 羽口一本当たり内管発熱速度を次式で定義する。Table 1 The inner tube heat generation rate per tuyere is defined by the following formula.

内管0.ガス流量(Nl13/Hr・本)X (116
,8Kcal/Hr・本)・・・・・・・・・・・・(
1)羽口一本当たりの外管吸熱速度を次式で定義する。
Inner tube 0. Gas flow rate (Nl13/Hr・unit)
,8Kcal/Hr・book)・・・・・・・・・・・・(
1) Define the outer tube heat absorption rate per tuyere using the following formula.

外管CO,流量(Nl13/Hr ・本) X (21
,8Kcal/sol■「・本)・・・・・・・・・・
・・(2)羽口先での熱バランスに寄与する内管ガスは
内管内周近傍を流れる内管ガスの一部分であることを考
えると外管には内管ガスの内管内周近傍を流れる内管ガ
スの一部分のガスによる発熱速度と、羽口近傍の溶鋼顕
熱にバランスするよう冷却するだけのガスを流す必要が
ある。この適正熱バランス領域を(1)、(2)式を用
いて(3)式のように表現する。
Outer tube CO, flow rate (Nl13/Hr・units) X (21
,8Kcal/sol
...(2) Considering that the inner pipe gas that contributes to the heat balance at the tip of the tuyere is a part of the inner pipe gas flowing near the inner periphery of the inner pipe, the outer pipe contains the inner pipe gas flowing near the inner periphery of the inner pipe. It is necessary to flow enough cooling gas to balance the heat generation rate of a portion of the pipe gas with the sensible heat of the molten steel near the tuyere. This appropriate heat balance region is expressed as in equation (3) using equations (1) and (2).

適正熱バランス領域 内管発熱速度〉0 内、外管底吹ガス量、ガス種の混合比率が湯差し限界以
上の線流速を確保することはもちろん(3)式で表現さ
れる適正熱バランス領域をも満足するように決定されれ
ば、安定した羽口寿命を維持しつつ冶金効果の享受を長
期間可能にすることができる。
Appropriate heat balance area Inner tube heat generation rate > 0 The inner and outer tube bottom-blown gas amounts and gas type mixing ratio must ensure a linear flow rate that is above the hot water pitch limit, as well as the appropriate heat balance area expressed by equation (3). If it is determined to satisfy the following, it is possible to enjoy the metallurgical effect for a long period of time while maintaining a stable tuyere life.

(作  用) 本発明において、低水素鋼精錬及び普通鋼精錬に際し底
吹きガスの混合割合を変化させ更に羽口先での熱バラン
スを前述の領域とするのは以下の理由による。
(Function) In the present invention, the mixing ratio of bottom-blown gas is changed during low-hydrogen steel refining and ordinary steel refining, and the heat balance at the tuyere tip is set in the above-mentioned range for the following reason.

(1)低水素鋼精錬の場合、(H)ピックアップが゛ 
 問題となるため、外管は全て冷却ガスとしてCOガス
を流す。内管ガスのCot10sガス混合比率は(3)
式を満足するように決定される。
(1) In the case of low hydrogen steel refining, (H) pickup is
Because of this problem, CO gas is passed through all the outer tubes as a cooling gas. The Cot10s gas mixture ratio of the inner pipe gas is (3)
It is determined to satisfy the formula.

(2)普通鋼精錬の場合、〔11〕ピツクアツプが問題
とならないため外管の冷却ガスとしてLPGを流す。と
ころが低水素鋼時で必要とされる冷却CO,ガスはLI
’Gに比較して冷却能力が小さく、従って低水素鋼溶製
時CO2の多量吹込みが必要となる。
(2) In the case of ordinary steel refining, [11] LPG is used as a cooling gas for the outer tube because pick-up is not a problem. However, the cooling CO and gas required for low hydrogen steel are LI
Compared to 'G, the cooling capacity is smaller, so a large amount of CO2 needs to be injected when low hydrogen steel is melted.

同一羽口を使用して、低水素鋼精錬時の外管線流速、普
通鋼精錬時の外管線流速共、限界線流速以上を確保する
ためには、おのづと普通鋼精錬時、外管ガスはLPGだ
けでなく、LPG+GO,ガスの混合ガスを流す必要が
でてくる。
In order to use the same tuyeres to ensure that the outer pipe line flow rate during low hydrogen steel refining and the outer pipe line flow rate during ordinary steel refining are above the limit line flow rate, it is necessary to It becomes necessary to flow not only LPG but also a mixed gas of LPG+GO and other gases.

従って普通鋼精錬時には、外管にはLPG、Co。Therefore, when refining ordinary steel, LPG and Co are used in the outer tube.

の混合ガスを流し、(3)式に従って内管ガスのC01
10、ガス混合比率が決定されることになる。
Flow the mixed gas of the inner tube gas according to equation (3).
10. The gas mixture ratio will be determined.

(実 施 例) 300を転炉により第3図のパターンを使用して普通鋼
、低水素鋼を精錬した際の吹止[H)の値を表2に示す
(Example) Table 2 shows the values of blow-off [H) when ordinary steel and low hydrogen steel were refined using the pattern shown in FIG.

上表に示すように、低水素鋼精錬底吹ガスパターンを使
用することで大幅に吹止[H)が低減されている。低水
素鋼精錬底吹ガスパターン比率10.2%時の1炉代通
じての羽口ノズル溶損速度は0.28am/chと低い
値であった。
As shown in the table above, the blow-off [H) is significantly reduced by using the low-hydrogen steel refining bottom-blowing gas pattern. When the low hydrogen steel refining bottom blowing gas pattern ratio was 10.2%, the tuyere nozzle erosion rate over one furnace was as low as 0.28 am/ch.

(発明の効果) 以上述べたように本発明による底吹ガス条件を使用して
精錬を実施することで羽口溶損速度を低位安定させつつ
普通鋼・低水素鋼を溶製することができる。
(Effects of the Invention) As described above, by carrying out refining using the bottom-blown gas conditions according to the present invention, ordinary steel and low hydrogen steel can be produced while keeping the tuyere erosion rate low and stable. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を例示する説明図、第2図は本発明に係
る二重管胴口を例示する断面図、第3図は本発明に係る
上吹き酸素量、底吹きガスの組成及び混合割合をパター
ン化して例示した図である。 1・・・・・転炉 2・・・・・ランス 3・・・・・二重管胴口 3A・・・・内管 3B・・・・外管 5A・・・・炭化水素ガス源 6A・・・・酸素ガス源 5B、6B・・・二酸化炭素ガス源 8・・・・・制御装置 出 願 人 新日本製鐵株式会社 第1図 り
FIG. 1 is an explanatory diagram illustrating the present invention, FIG. 2 is a sectional view illustrating the double pipe body opening according to the present invention, and FIG. 3 is a diagram showing the amount of top-blown oxygen, the composition of bottom-blown gas, and It is a figure which patterned and illustrated the mixing ratio. 1...Converter 2...Lance 3...Double tube body opening 3A...Inner tube 3B...Outer tube 5A...Hydrocarbon gas source 6A ...Oxygen gas sources 5B, 6B...Carbon dioxide gas source 8...Control device Applicant Nippon Steel Corporation No. 1 Plan

Claims (1)

【特許請求の範囲】[Claims] (1)転炉の上方から酸素ガスを供給すると共に炉底部
に設けた二重管羽口の内管から酸素ガスと二酸化炭素ガ
スの混合ガスを吹き込み、かつ外管からは二酸化炭素ガ
ス又は二酸化炭素ガスと炭化水素ガスの混合ガスを吹き
込んで精錬を行う方法において、精錬後に得られる鋼中
水素予測値に基づいて二重管羽口の内管及び外管から吹
き込むそれぞれのガスの混合割合を変化させることを特
徴とする上底吹き転炉の精錬方法。
(1) Oxygen gas is supplied from above the converter, and a mixed gas of oxygen gas and carbon dioxide gas is blown from the inner tube of the double-tube tuyere installed at the bottom of the furnace, and carbon dioxide gas or carbon dioxide gas is blown from the outer tube. In the method of refining by blowing a mixed gas of carbon gas and hydrocarbon gas, the mixing ratio of each gas injected from the inner and outer tubes of the double-tube tuyere is determined based on the predicted value of hydrogen in steel obtained after refining. A refining method using a top-bottom blowing converter characterized by
JP12667987A 1987-05-23 1987-05-23 Refining method in top and bottom blowing converter Granted JPS63290214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12667987A JPS63290214A (en) 1987-05-23 1987-05-23 Refining method in top and bottom blowing converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12667987A JPS63290214A (en) 1987-05-23 1987-05-23 Refining method in top and bottom blowing converter

Publications (2)

Publication Number Publication Date
JPS63290214A true JPS63290214A (en) 1988-11-28
JPH0379403B2 JPH0379403B2 (en) 1991-12-18

Family

ID=14941173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12667987A Granted JPS63290214A (en) 1987-05-23 1987-05-23 Refining method in top and bottom blowing converter

Country Status (1)

Country Link
JP (1) JPS63290214A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090018833A (en) 2006-05-23 2009-02-23 니프로 가부시키가이샤 Container

Also Published As

Publication number Publication date
JPH0379403B2 (en) 1991-12-18

Similar Documents

Publication Publication Date Title
CA2555472C (en) Method for producing low carbon steel
US4474605A (en) Process for refining high-chromium steels
CN1048562A (en) Double flow compound top blown steel making process and oxygen rifle thereof
JPS63290214A (en) Refining method in top and bottom blowing converter
JPS6152213B2 (en)
KR100363608B1 (en) Method of low-carbon ferromanganese(LCFeMn) manufacturing by recycling dust containing manganese
US4021233A (en) Metallurgical process
US4436287A (en) Method for protecting tuyeres for refining a molten iron
CN112853030B (en) TSR furnace top bottom combined blowing CO2Method for smelting stainless steel
CN103160636A (en) Method for converter steel tapping alloying molten steel component evening
JPH0860221A (en) Converter steelmaking method
JPH02166256A (en) Method for refining medium-or low-carbon ferromanganese
JP2842231B2 (en) Pretreatment of hot metal by bottom-blown gas stirring
JPH0154409B2 (en)
US4188206A (en) Metallurgical process
JPH02179810A (en) Method for operating top and bottom blowing converter
JPH04224612A (en) Method for refining in converter
JPS63262407A (en) Method for dephosphorizing molten iron
JPH04136113A (en) Method for melting iron-contained cold material
JPH04268009A (en) Method for cooling bottom blowing tuyere in stainless steel decarbonizing furnace
JPH0873915A (en) Method for dephosphorizing and desulfurizing molten iron
JPH03120307A (en) Steelmaking method
JPH05214420A (en) Method for injecting gaseous hydrocarbon from tuyere
JPS63186815A (en) Method for melting high chromium alloy steel
JPS59104421A (en) Decarburization of chromium-containing molten steel