JPH02179810A - Method for operating top and bottom blowing converter - Google Patents
Method for operating top and bottom blowing converterInfo
- Publication number
- JPH02179810A JPH02179810A JP33382588A JP33382588A JPH02179810A JP H02179810 A JPH02179810 A JP H02179810A JP 33382588 A JP33382588 A JP 33382588A JP 33382588 A JP33382588 A JP 33382588A JP H02179810 A JPH02179810 A JP H02179810A
- Authority
- JP
- Japan
- Prior art keywords
- tuyere
- bottom blowing
- blowing
- flow rate
- gas flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007664 blowing Methods 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims description 16
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 16
- 239000010959 steel Substances 0.000 claims abstract description 16
- 238000003756 stirring Methods 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 53
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 2
- 229910001882 dioxygen Inorganic materials 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 13
- 230000003628 erosive effect Effects 0.000 abstract description 13
- 239000002893 slag Substances 0.000 abstract description 10
- 229910052742 iron Inorganic materials 0.000 abstract description 4
- 239000011572 manganese Substances 0.000 description 20
- 230000000694 effects Effects 0.000 description 14
- 239000002184 metal Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 241000121220 Tricholoma matsutake Species 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Landscapes
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分舒〕
本発明は炉底径4 、000〜8,000 m、処理溶
銑量250〜380 Ton /chの大型上底吹転炉
の操業方法に関するものである。Detailed Description of the Invention [Industrial Application] The present invention relates to a method for operating a large top-bottom blowing converter having a bottom diameter of 4,000 to 8,000 m and a processing amount of hot metal of 250 to 380 Ton/ch. It is something.
従来、前記の如き大型の上底吹転炉においては底吹ガス
による溶鋼撹拌効果改善の為、ガス流量の増大、ガス種
の選択、羽口配置の最適化等の検討が行われている。一
般に大型の上底吹転炉では底吹ガス総流量を0,1Nボ
/1−mln以上にし上吹からの02ガス量に対する底
吹からの吹込ガス量との比率を0.05〜0.20とし
て操業し転炉内冶金反応向上効果を得ている。又、羽口
配置については、特公昭5B−16013号公報に、上
吹火点内に複数羽口を配置し、溶鋼撹拌力を向上させる
方法や、特公昭61−36050号公報に上吹火点内外
に各々2本ずつ羽口を配置し脱Pを促進させる方法等が
、提案されている。しかし従来は各羽口とも同一流量が
前提であり、火点内外の底吹ガス流量比については触れ
られていない。Conventionally, in order to improve the molten steel stirring effect using bottom blowing gas in the above-mentioned large top-bottom blowing converter, studies have been conducted on increasing the gas flow rate, selecting the gas type, optimizing the tuyere arrangement, etc. Generally, in a large top-bottom blowing converter, the total flow rate of bottom-blown gas is set to 0.1 Nbo/1-mln or more, and the ratio of the amount of gas blown from the bottom blowing to the amount of 02 gas from the top blowing is 0.05 to 0. 20, and the effect of improving the metallurgical reaction inside the converter has been obtained. Regarding the arrangement of tuyeres, Japanese Patent Publication No. 5B-16013 describes a method of arranging multiple tuyeres within the top blowing point to improve the stirring power of molten steel, and Japanese Patent Publication No. 61-36050 describes a method of arranging multiple tuyere within the top blowing point to improve the stirring power of molten steel. A method has been proposed in which two tuyeres are placed inside and outside the point to promote P removal. However, in the past, the same flow rate was assumed for each tuyere, and no mention was made of the ratio of bottom-blown gas flow rates inside and outside the ignition point.
(発明が解決しようとする課題〕
前記の上底吹転炉の操業下において、吹錬末期でのマン
ガン、鉄の酸化ロスによる歩留低減を抑制する為には底
吹ガス量の増大による火点内外への旦供給促進を図るの
が有効であることは周知の事実である。しかし、羽口径
拡大のみを実施すると、第2図に羽口溶損指数との関係
で示し、第3図に炉壁溶損指数との関係で示す如く、吐
出ガスのバックアタックによる羽口周辺耐火物の溶損。(Problems to be Solved by the Invention) Under the operation of the above-mentioned top-bottom blowing converter, in order to suppress the yield reduction due to oxidation loss of manganese and iron at the final stage of blowing, it is necessary to increase the amount of bottom-blowing gas. It is a well-known fact that it is effective to promote supply to and from the point.However, if only the tuyere diameter is expanded, the relationship with the tuyere erosion index is shown in Figure 2, and the relationship with the tuyere erosion index is shown in Figure 3. As shown in the relationship with the furnace wall erosion index, the refractory around the tuyere is eroded due to the back attack of the discharged gas.
炉壁耐火物の溶損量が増大し耐火物コストを著しく上昇
させる。The amount of corrosion of the furnace wall refractories increases and the cost of the refractories increases significantly.
尚、羽口溶損指数とは吹錬1チャージ当りの羽口溶損量
(mm/ch)について基準となる羽口径での溶損量を
1とした時の比率で表わし、炉壁溶損指数とは、吹錬1
チャージ当りの炉壁溶損量について基準となる羽口径で
の溶損量を1とした時の比率で定義されるパラメータで
ある。Note that the tuyere erosion index is expressed as a ratio of the amount of tuyere erosion per one charge of blowing (mm/ch) when the amount of erosion at the standard tuyere diameter is taken as 1, and is The index is blowing 1
This is a parameter defined as the ratio of the amount of erosion on the furnace wall per charge, when the amount of erosion at the tuyere diameter, which is the standard, is set to 1.
また、羽口本数を増大させることは羽口間が近接し、該
バックアタックによる羽口間耐火物溶損を助長し耐火物
寿命を低減させるため、限られた炉底面積内での羽口本
数増大には限界がある。−方では底吹ガス流量の増大に
伴い吹込ガスコストの増大、吹込ガスの抜熱による溶鋼
温度の低下(熱裕度低下)等の問題も生じ、吹込ガスの
有効活用が必要となる。In addition, increasing the number of tuyeres brings the tuyere closer together, which promotes erosion of the refractory between the tuyeres due to back attack and reduces the life of the refractory. There is a limit to increasing the number of books. - On the other hand, problems such as an increase in the cost of the blown gas and a decrease in the molten steel temperature (decreased thermal margin) due to the heat removal of the blown gas arise as the flow rate of the bottom blown gas increases, so it is necessary to make effective use of the blown gas.
本発明は前記課題を解決するもので、その要旨とすると
ころは下記のとおりである。The present invention is intended to solve the above problems, and the gist thereof is as follows.
(1)炉底に設けられた単管あるいは2重管の底吹羽口
から鋼浴中に0. I Nrd/ t−mln以上の撹
拌用ガスを吹込むとともに鋼浴面に水冷した上吹多孔ラ
ンスにより酸素ガスジェットを吹付け、この上底吹ガス
流量比率を0.05〜0.20にした上底吹転炉操業に
おいて、吹錬末期のランス高さ条件下における火点投影
面の内側に配置した底吹羽口からのガス流量を外側に配
置した羽口からの総ガス流量に対する比率を1.2〜2
.0にて操業することを特徴とする上底吹転炉の操業方
法。(1) 0.00 liters of water is poured into the steel bath from the bottom blowing tuyere of a single or double pipe installed at the bottom of the furnace. Stirring gas of I Nrd/tmln or more was blown into the steel bath surface, and an oxygen gas jet was blown onto the steel bath surface using a water-cooled top-blown porous lance, and the top-bottom blowing gas flow rate ratio was set to 0.05 to 0.20. In top-bottom blowing converter operation, the ratio of the gas flow rate from the bottom blowing tuyere placed inside the hot spot projection surface to the total gas flow rate from the outside tuyeres under lance height conditions at the end of blowing is calculated. 1.2-2
.. 1. A method for operating a top-bottom blowing converter, characterized in that it is operated at zero temperature.
(2)前記火点投影面の内側に配置した底吹羽口数と外
側に配置した底吹羽口数が同本数で且つ火点内羽口の直
径を火点外層口の直径より大きくすることを特徴とする
前項工記載の上底吹転炉の操業方法。(2) The number of bottom blowing tuyere arranged inside the flashpoint projection plane and the number of bottom blowing tuyere arranged outside the flashpoint are the same number, and the diameter of the tuyeres inside the flashpoint is larger than the diameter of the tuyere outside the flashpoint. A method of operating a top-bottom blowing converter as described in the preceding paragraph characterized by:
(3)火点的本数と火点外来数を同数とし且つ羽口径を
火点外層口より火点内羽口を大きくし、各羽口から鋼浴
中に吹込むガス流量を独立制御および独立設定値とする
こと、若しくは、異径オリフィス等を用いて制御するこ
とを特徴とする前項1または2記載の上底吹転炉の操業
方法。(3) The number of hot spots and the number of hot spots are the same, and the tuyere diameter inside the hot spot is made larger than the outer hot spot tuyere, and the gas flow rate blown into the steel bath from each tuyere is independently controlled and independent. 3. The method of operating a top-bottom blowing converter according to item 1 or 2 above, characterized in that the control is carried out by setting a set value or by using an orifice of a different diameter or the like.
本発明において、底吹ガス流量とは二重管羽口の場合は
内管から単管羽口はその全体から噴出するガス流量をい
う。In the present invention, the bottom-blown gas flow rate refers to the gas flow rate that is ejected from the inner tube in the case of a double-pipe tuyere and from the entirety of the single-pipe tuyere.
従来、前記大型の上底吹転炉において溶鋼の撹拌力は、
上吹及び底吹、各々総ガス流量により決定され、通常前
記の如く底吹ガス流量を0.INrrr/ t−mln
以上にし上底吹ガス流量比率を0.05〜0.20で操
業することは周知の事実であるが、各底吹羽口からの底
吹ガスの吹込み方法による炉底における底吹ガス流量分
布のあり方については、これまで明らかにされていない
。そこで水モデル実験による底吹ガス吹込み方法の違い
による撹拌力への影響について調査したところ第4図に
示す様に同一底吹ガス総流量下において、上吹ガスによ
る火点内に相当する中央部に配置した羽口の径を火点外
に配置した羽口の径より大にしガス量を火点外より増大
させ火点内・外法量比率を所定範囲にすることにより、
撹拌力の増大が図れ、均一混合時間を短縮させることが
できる知見を得た。Conventionally, the stirring power of molten steel in the large top-bottom blowing converter was
Top blowing and bottom blowing are each determined by the total gas flow rate, and usually the bottom blowing gas flow rate is set to 0. INrrr/t-mln
It is a well-known fact that the operation is carried out at a top and bottom blowing gas flow rate ratio of 0.05 to 0.20. The distribution has not been clarified so far. Therefore, we conducted a water model experiment to investigate the effect of different bottom-blown gas injection methods on the stirring force. As shown in Figure 4, under the same total flow rate of bottom-blown gas, the center of the tank, which corresponds to the ignition point of top-blown gas, was By making the diameter of the tuyere placed in the tuyeres larger than that of the tuyere placed outside the ignition point, the amount of gas is increased from that outside the ignition point, and the ratio of the amount of gas inside and outside the ignition point is within a predetermined range.
We have found that the stirring power can be increased and the uniform mixing time can be shortened.
更に、実機での上底吹転炉における底吹ガス吹込につい
て検討した結果、以下の様に火点内外の羽口からの吹込
ガス流量を各々独立に設定することが有効であることを
見出した。すなわち、スラグ−メタル間の反応促進の為
には、火点外の撹拌によるスラグ−メタル混合強化が有
効であり、方で上吹酸素ジェットにより生成されるFe
O,Mn0等酸化物の還元及び酸化の抑制の為には、火
点内での撹拌が有効であるとの知見を得た。これらの観
点から本発明者等は特に溶銑予備処理により脱P、脱S
tを施した溶銑にMn鉱石を10kg/を以上投入する
スラグレス吹錬下(炉内スラグ量≦50kg/l)にお
いては、吹錬末期には火点外におけるスラグ−メタル界
面でのスラグ中MnOの還元による鋼中Mnの増加と、
火点内でのMnの酸化ロスが同時に生じていることに着
目し、炉内でのMn歩留を向上させる為、実機転炉を用
い、火点内外の底吹ガス量の最適値について更に詳細に
検討した。Furthermore, as a result of studying bottom-blown gas injection in a top-bottom blowing converter using an actual machine, it was found that it is effective to set the blowing gas flow rate from the tuyeres inside and outside the hot spot independently, as shown below. . In other words, in order to promote the reaction between slag and metal, it is effective to strengthen the slag-metal mixture by stirring outside the hot spot, and on the other hand, the Fe generated by the top-blown oxygen jet
It has been found that stirring within the hot spot is effective for reducing oxides such as O and Mn0 and suppressing oxidation. From these points of view, the present inventors particularly aimed to remove P and S by pre-treatment of hot metal.
In slagless blowing (in-furnace slag amount ≦50 kg/l) in which 10 kg or more of Mn ore is added to hot metal that has been subjected to Increase in Mn in steel by reduction of
Focusing on the fact that oxidation loss of Mn occurs at the same time in the hot spot, in order to improve the Mn yield in the furnace, we further investigated the optimal value of the amount of bottom blowing gas inside and outside the hot spot using an actual converter. It was considered in detail.
すなわち、第5図に示す様に3例(×、Δ、・)の同一
底吹ガス総流量下において火点内紛ガス量の比率を増加
すると溶鋼撹拌力の増大効果に加え前記Mn酸化ロス低
減効果により炉内Mn歩留が向上するとともにスラグ中
のT、Feは著しく低減する。In other words, as shown in Fig. 5, increasing the ratio of powder gas at the hot point under the same total flow rate of bottom-blown gas in three cases (×, Δ, ·) not only increases the molten steel stirring force but also reduces the Mn oxidation loss. As a result, the in-furnace Mn yield is improved, and T and Fe in the slag are significantly reduced.
しかし、更に火点内ガス比率を増大していくとスラグ−
メタル撹拌効果が薄れ逆にMn歩留は低下するとともに
スラグ中のT、F eは急増する。つまり前記火点内紛
ガス流量比が1.2〜2.0が最も底吹ガスの吹込み方
法として適していることが判明したのである。However, if the gas ratio in the flashing point is further increased, the slag
As the metal stirring effect fades, the Mn yield decreases and T and Fe in the slag rapidly increase. In other words, it has been found that a flow rate ratio of powder gas at the hot point of 1.2 to 2.0 is most suitable as a bottom blowing gas injection method.
前記した最適吹込み方法を達成する手段として、同径羽
口とし火点内外の配置数を変更すれば可能である。又耐
火物溶損等により羽口配置数に限界がある場合には、火
点内外に位置する羽口の径を火点内〉火点外に変える(
以下異径化と称する)ことにより火点内〉火点外のガス
流量調整が可能である。As a means of achieving the above-mentioned optimal blowing method, it is possible to use tuyeres of the same diameter and change the number of tuyeres arranged inside and outside the spark point. In addition, if there is a limit to the number of tuyere arrangement due to refractory corrosion etc., the diameter of the tuyere located inside and outside the fire point can be changed from inside the fire point to outside the fire point (
(hereinafter referred to as "different diameter"), it is possible to adjust the gas flow rate between inside the fire point and outside the fire point.
各羽口の流量設定が独立して可能でない流量−括制御方
弐の場合には、羽口径毎に適正なオリフィスを供給配管
途中に設置することにより、羽口異径化に応じたガス流
量の変更が可能となる。而して、該火点内・外の吹込ガ
ス流量比率は、操業中に羽口先へのマツシュルーム付着
により通常0.8以下の開孔率となり微妙に変化するの
でその変動分を加味して1.2〜2.0となるように初
期設定値を決定することが好ましいい第6図に羽口閉塞
時の羽口間流量偏差の一例を示すが、流量−括制御の場
合、第1表に示す各羽口径に応じたオリフィスを設置す
ることにより、羽口先マツシュルーム圧損変化による流
量変動によって生じる羽口間流量偏差は高々6%程度で
ある(内管背圧±10%時)。In the case of flow control method 2, in which the flow rate of each tuyere cannot be set independently, by installing an appropriate orifice for each tuyere diameter in the middle of the supply pipe, the gas flow rate can be adjusted according to the different diameters of the tuyere. can be changed. The ratio of the blown gas flow rate inside and outside the fire point changes slightly during operation due to the adhesion of pine mushrooms to the tip of the tuyere, which usually results in an aperture ratio of 0.8 or less. It is preferable to determine the initial setting value so that the value is between . By installing orifices according to each tuyere diameter shown in the table, the inter-tuyere flow rate deviation caused by flow rate fluctuation due to changes in tuyere tip pine mushroom pressure loss can be reduced to about 6% at most (when the inner pipe back pressure is ±10%).
尚、第6図は羽口開孔率が小さい方向に変動した場合(
閉塞気味と称しである)の各羽口間の流量を示したもの
であり、流量偏差は各明日毎の基準値を100%とした
時の百分率にて表しである。In addition, Figure 6 shows the case where the tuyere pore area ratio fluctuates in the direction of decreasing (
It shows the flow rate between each tuyere (which is called a blockage), and the flow rate deviation is expressed as a percentage when the reference value for each tomorrow is set to 100%.
第1表
吹転炉を用い、上吹酸素量は初期〜中期は3〜4Nrr
f/ t −min 、末期は2〜3 Nnr/ t
・min 。Table 1 Using a blowing converter, the amount of top blowing oxygen is 3 to 4 Nrr in the initial to middle stages.
f/t-min, 2-3 Nnr/t in the final stage
・min.
吹錬末期のランスル湯面間距離は2.5〜3.0mとし
た。また溶銑は第2表に示す温度・成分に代表される、
事前に脱Si、脱P、脱S処理を施した予備処理溶銑を
用い、転炉内スラグ量を50kg/を以下とした。The distance between the ransuru molten metal surfaces at the final stage of blowing was 2.5 to 3.0 m. In addition, hot metal is represented by the temperature and composition shown in Table 2.
Pretreated hot metal that had been previously subjected to Si, P, and S removal treatments was used, and the amount of slag in the converter was set to 50 kg/or less.
第2表 〔実施例〕 本発明の実施例を以下に示す。Table 2 〔Example〕 Examples of the present invention are shown below.
炉はいずれも炉底径6.200 mmの3407on上
底底吹羽口は、同時稼動羽口を最大6本とし、火点的羽
口流量、火点外羽口流量の比率を0.7〜2、1とし、
底吹ガス総流量ハ0.16〜0.18 Nnf/ t−
winの間の各水準にて試験を実施した。各水準での底
吹条件を第3表に示す。尚、吹錬は初期にMn鉱石を5
〜35kg/を投入し、Mn鉱石の脈石分に見合う塩基
度調整用として生石灰を1〜8kg/む投入した。All furnaces have 3407on top and bottom blowing tuyeres with a bottom diameter of 6.200 mm, with a maximum of six tuyeres operating simultaneously, and a ratio of the tuyere flow rate at the hot spot to the tuyere flow rate outside the hot spot to 0.7. ~2, 1,
Bottom blowing gas total flow rate 0.16 to 0.18 Nnf/t-
Tests were conducted at each level between win. Table 3 shows the bottom blow conditions at each level. In addition, in the initial stage of blowing, Mn ore is 5
-35 kg/mu of Mn ore was added, and 1-8 kg/mu of quicklime was added to adjust the basicity to match the amount of gangue of Mn ore.
第7図、第8図に冶金効果の一例として吹止スラグ中(
T、Fe)と転炉内Mn歩留の向上効果を示す。Figures 7 and 8 show an example of the metallurgical effect in the blow-off slag (
The effect of improving the Mn yield in the converter is shown.
ここで第7図には横軸に吹止(C)量を、縦軸に吹止め
スラグの(T、Fe)を示す。又第8図には横軸に炉内
装入全Mn量を、縦軸に炉内Mn歩留を示す。Here, in FIG. 7, the horizontal axis shows the blow-off (C) amount, and the vertical axis shows the blow-off slag (T, Fe). Further, in FIG. 8, the horizontal axis shows the total amount of Mn introduced into the furnace, and the vertical axis shows the in-furnace Mn yield.
φ22X4 (0,15Nrrf/ t −min
)からφ24X4 (0,18Nrrf/l −min
)に底吹ガス総流量を増加させることによりT、Fe
の低減効果(第7図)が、又Mn歩留向上効果(第8図
)が各々認められる。φ22X4 (0,15Nrrf/t-min
) to φ24X4 (0,18Nrrf/l -min
) by increasing the total flow rate of bottom-blown gas
The effect of reducing Mn (Fig. 7) and the effect of improving Mn yield (Fig. 8) are observed.
底吹ガス総流量の等しい比較例7と実施例5とを比較す
ると吹止(Mn)0.6〜0.8%においてT、F e
で0.8%の低減、Mn歩留で4%の向上効果が認めら
れた。他の条件下の実施例1〜3及び比較例1〜6の冶
金効果向上化については第5図に一括して示す。Comparing Comparative Example 7 and Example 5, which have the same total flow rate of bottom blowing gas, T, Fe
A 0.8% reduction in Mn yield and a 4% improvement in Mn yield were observed. The improvements in the metallurgical effects of Examples 1 to 3 and Comparative Examples 1 to 6 under other conditions are collectively shown in FIG.
また、二重管羽口を用いるに当たっては火点内洞口の大
径化による羽口溶損量増大を抑制するため、外管冷却ガ
スをt、pc+cozの混合ガスとし、外管ガスの線流
速を気泡後退消滅領域まで上昇させる方式を新たに取り
入れた。In addition, when using a double-tube tuyere, in order to suppress the increase in the amount of tuyere erosion due to the enlargement of the diameter of the inner fire point cavity, the outer tube cooling gas is a mixed gas of t, pc + coz, and the linear flow rate of the outer tube gas is A new method has been adopted in which the bubbles are raised to the bubble receding and disappearing region.
一方、単管での不活性ガス吹込みによる撹拌の場合にも
同様の効果が得られることを確認している。On the other hand, it has been confirmed that similar effects can be obtained when stirring is performed by blowing inert gas through a single tube.
前記した様に本発明により同一底吹ガス量にて炉内Mn
歩留の大幅な向上が得られ高価なMn合金の削減が可能
となる。またスラグ中の鉄分濃度(T。As described above, according to the present invention, Mn in the furnace is
The yield can be significantly improved and the use of expensive Mn alloys can be reduced. In addition, the iron concentration in the slag (T.
Fe)を大幅に低減させ鉄歩留を向上させる。This greatly reduces Fe) and improves the iron yield.
一方では火点外である外周部の吹込ガス量を低減させる
ことにより、炉壁部耐火物の溶損量低減も同時に可能と
なる。また溶損量の大きい部位の羽口径を小さくするこ
とにより複数羽口の寿命を均等化することも可能である
。On the other hand, by reducing the amount of blown gas in the outer circumference, which is outside the fire point, it is also possible to reduce the amount of erosion of the furnace wall refractories at the same time. It is also possible to equalize the lifespan of multiple tuyeres by reducing the diameter of the tuyeres in areas where the amount of erosion is large.
第1図は本発明を実施するための上底吹転炉の−例を示
す模式的な縦断面図、第2図、第3図は羽口径と各部位
溶損速度を示す図、第4図は1/10の水モデル実験に
おいて火点内及び火点外を想定した位置に、両者の流量
比が1.1.4となる様に4本の羽口を配置した場合の
均一混合時間の比較を行った結果を示した図、第5図は
各底吹ガス総流量下での、火点内、火点外の流量比の冶
金効果に及ぼす影響を示したものであり、実機上底吹転
炉での結果を示す図、第6図は各羽口の羽口径を変えた
場合、ノズル先開孔率の変化が各羽口流量に及ぼす影響
を計算して示した図、第7図、第8図は実施例の一例で
底吹総ガスito、18Nrrr/1−mln時に火点
内流量/火点外流量を1.1.4とした際の両者の実機
上底吹転炉での結果を比較した図である。
H1歩留 (o7o)
第1図
上ψシに冷うンズ
上ぐ酸座ジェット
火点
ズテグ
5″!A4!4
c大点力剥ロ
ア火5色外用口
第2図
頃へりグズ波量(N4rネ9
第3図
吹込ガズ#、t(Nm’=浄1.本9
ψ16 硲 −斜 −28
羽口径C型υ
#/6 φ2D p−ψJ
朋コ外rゆあつ
第6図
一@利口の力゛ス咲達絵」【
第7図
吹止(C)
(Z)
第8図
炉内全兼入Mn量(x/(7−’Z)FIG. 1 is a schematic vertical cross-sectional view showing an example of a top-bottom blowing converter for carrying out the present invention, FIGS. 2 and 3 are views showing the tuyere diameter and melting rate of each part, and FIG. The figure shows the uniform mixing time in a 1/10 water model experiment when four tuyeres were placed at positions assumed to be inside the fire point and outside the fire point so that the flow rate ratio of both was 1.1.4. Figure 5 shows the effect of the ratio of flow rates inside and outside the spark point on the metallurgical effect under each total flow rate of bottom-blown gas. Figure 6 is a diagram showing the results in a bottom-blowing converter, and Figure 6 is a diagram showing the calculated effect of changes in the nozzle tip aperture ratio on the flow rate of each tuyere when the tuyere diameter of each tuyere is changed. Figures 7 and 8 are examples of actual machine top-bottom blowing when the bottom-blown total gas is 18Nrrr/1-mln and the flow rate inside the hot spot/flow rate outside the hot spot is 1.1.4. It is a figure comparing the results in a furnace. H1 yield (o7o) Fig. 1 Upper ψ shi cools down, acid seat jet fire point Zuteg 5''! A4! 4 c Large point force peeling lower fire 5 color external use port N4rne 9 Fig. 3 Blowing gas #, t (Nm' = Pure 1. Main 9 ψ16 硲 - Oblique -28 Tuyere diameter C-type υ #/6 φ2D p-ψJ Tomoko outsider Yuatsu Fig. 6 1 @ Clever Figure 7 (C) (Z) Figure 8 Total amount of Mn in the reactor (x/(7-'Z)
Claims (3)
から鋼浴中に0.1Nm^3/t・min以上の撹拌用
ガスを吹込むとともに鋼浴面に水冷した上吹多孔ランス
により酸素ガスジェットを吹付け、この上底吹ガス流量
比率を0.05〜0.20にした上底吹転炉操業におい
て、吹錬末期のランス高さ条件下における火点投影面の
内側に配置した底吹羽口からのガス流量を外側に配置し
た羽口からの総ガス流量に対する比率を1.2〜2.0
にて操業することを特徴とする上底吹転炉の操業方法。(1) Stirring gas of 0.1 Nm^3/t・min or more is blown into the steel bath from the bottom blowing tuyere of a single or double tube installed at the bottom of the furnace, and the steel bath is cooled with water. In a top-bottom blowing converter operation in which an oxygen gas jet is blown by a blowing porous lance and the top-bottom blowing gas flow rate ratio is set to 0.05 to 0.20, the fire point projection surface under lance height conditions at the end of blowing. The ratio of the gas flow rate from the bottom blowing tuyeres placed inside to the total gas flow rate from the outside tuyeres is 1.2 to 2.0.
1. A method of operating a top-bottom blowing converter, characterized in that it is operated at.
側に配置した底吹羽口数が同本数で且つ火点内羽口の直
径を火点外羽口の直径より大きくすることを特徴とする
請求項1記載の上底吹転炉の操業方法。(2) The number of bottom blowing tuyere arranged inside the fire point projection surface is the same as the number of bottom blowing tuyere arranged outside the fire point, and the diameter of the tuyere inside the fire point is larger than the diameter of the tuyere outside the fire point. 2. The method of operating a top-bottom blowing converter according to claim 1.
火点外羽口より火点内羽口を大きくし、各羽口から鋼浴
中に吹込むガス流量を独立制御および独立設定値とする
こと、若しくは、異径オリフィス等を用いて制御するこ
とを特徴とする請求項1または2記載の上底吹転炉の操
業方法。(3) The number of tuyeres inside the hot spot and the number outside the hot spot are the same, and the diameter of the tuyere inside the hot spot is made larger than the tuyere outside the hot spot, and the gas flow rate blown into the steel bath from each tuyere is independently controlled. 3. The method of operating a top-bottom blowing converter according to claim 1, wherein control is performed using independent set values or by using orifices of different diameters.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33382588A JPH068450B2 (en) | 1988-12-28 | 1988-12-28 | Operation method of upper and lower blow converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33382588A JPH068450B2 (en) | 1988-12-28 | 1988-12-28 | Operation method of upper and lower blow converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02179810A true JPH02179810A (en) | 1990-07-12 |
JPH068450B2 JPH068450B2 (en) | 1994-02-02 |
Family
ID=18270367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33382588A Expired - Lifetime JPH068450B2 (en) | 1988-12-28 | 1988-12-28 | Operation method of upper and lower blow converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH068450B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016223007A (en) * | 2015-05-27 | 2016-12-28 | Jfeスチール株式会社 | Furnace body of converter |
-
1988
- 1988-12-28 JP JP33382588A patent/JPH068450B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016223007A (en) * | 2015-05-27 | 2016-12-28 | Jfeスチール株式会社 | Furnace body of converter |
Also Published As
Publication number | Publication date |
---|---|
JPH068450B2 (en) | 1994-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9580764B2 (en) | Top-blowing lance and method for refining molten iron using the same | |
CN101597669B (en) | Hot metal dephosphorization method by using top-bottom combined blown converter under the condition of slag splashing and converter protecting | |
CA2555472C (en) | Method for producing low carbon steel | |
US4405365A (en) | Method for the fabrication of special steels in metallurgical vessels | |
US20030010155A1 (en) | Method for blowing oxygen in converter and top-blown lance for blowing oxygen | |
CA2203410C (en) | Process for vacuum refining molten steel and apparatus therefor | |
CN1048562A (en) | Double flow compound top blown steel making process and oxygen rifle thereof | |
EP0974675B1 (en) | Pressure converter steel making method | |
JPH02179810A (en) | Method for operating top and bottom blowing converter | |
JPS5837110A (en) | Refining method of converter | |
JP4980175B2 (en) | Lance for molten iron refining and molten iron refining method | |
CN102140567A (en) | Argon-oxygen refining method for low-carbon ferrochromium alloy | |
JPH0477046B2 (en) | ||
JPS6056051A (en) | Production of medium- and low-carbon ferromanganese | |
JP5949627B2 (en) | Method of refining hot metal in converter | |
JPH02166256A (en) | Method for refining medium-or low-carbon ferromanganese | |
JP2000119725A (en) | Converter steelmaking method with high productivity | |
JPS637315A (en) | Secondary combustion method for gaseous co in oxygen bottom blowing converter | |
JPS62116712A (en) | Melting and smelting vessel having splash lance | |
JPH08253804A (en) | Method for dephosphorizing molten iron in high productivity | |
CN114686736A (en) | Method for converting medium-low carbon ferromanganese by high carbon ferromanganese | |
JPH01252708A (en) | Method for operating iron bath type smelting reduction furnace | |
JPS60194009A (en) | Method for refining stainless steel | |
JP2019116668A (en) | Method of operating top and bottom blown converter | |
KR20020051961A (en) | A method for refining high phosphurous steel in converter |