JPS59104421A - Decarburization of chromium-containing molten steel - Google Patents

Decarburization of chromium-containing molten steel

Info

Publication number
JPS59104421A
JPS59104421A JP21207682A JP21207682A JPS59104421A JP S59104421 A JPS59104421 A JP S59104421A JP 21207682 A JP21207682 A JP 21207682A JP 21207682 A JP21207682 A JP 21207682A JP S59104421 A JPS59104421 A JP S59104421A
Authority
JP
Japan
Prior art keywords
molten steel
gas
decarburization
oxygen
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21207682A
Other languages
Japanese (ja)
Inventor
Yasumasa Ikehara
池原 康允
Haruki Ariyoshi
春樹 有吉
Hironori Takano
高野 博範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21207682A priority Critical patent/JPS59104421A/en
Publication of JPS59104421A publication Critical patent/JPS59104421A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • C21C7/0685Decarburising of stainless steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To eliminate problems such as decrease of decarburizing speed, the oxidation of a metal or the like, in a decarburizing process by blowing O2-gas and dilution gas into molten steel, by specifying the blow-in condition of the aforementioned both gases in three regions due to the C-content in the molten steel. CONSTITUTION:In a decarburizing process by blowing protective gas and a gaseous mixture of O2-gas and dilution gas into molten steel from the outer and the inner pipes of a double pipe tuyere, the C-content in the molten steel divided into three regions, that is, a region of up to 0.7%, a region to 0.05-0.25% from 0.7% and a region to up to a final C-value from 0.25-0.05%. In this state only the O2-gas, a gaseous mixture continuously changed in the ratio of the O2-gas and the dilution gas corresponding to the C-content and only the dilution gas are successively and respectively blown into the molten steel in these regions from the inner pipe. By this method, the conservation of a required reducing agent, shortening of a reduction time, prevention of the molten loss of a refractory material and enhancing effect of refining efficiency are obtained.

Description

【発明の詳細な説明】 本発明は希釈ガスと酸素ガスとの同時吹込みによる溶鋼
の脱炭精錬方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for decarburizing molten steel by simultaneously blowing diluent gas and oxygen gas.

溶鋼の脱炭精錬においては鋼中メタル分の酸化を極力弁
え、優先的に脱炭精錬を行ガい鋼中に含まれるクロムの
酸化を出来るだけ抑えて酸化クロムの還元に必要な還元
剤量、造滓剤量の低減をはかることおよび効率の高い脱
炭精錬を行い操業能率の向上及び耐火物溶損の防止をは
かることが極めて肝要である。
In the decarburization refining of molten steel, the oxidation of the metals in the steel should be controlled as much as possible, and the decarburization should be carried out preferentially.The oxidation of chromium contained in the steel should be suppressed as much as possible, and the reducing agent necessary to reduce the chromium oxide should be used. It is extremely important to reduce the amount of slag forming agent and to carry out highly efficient decarburization refining to improve operational efficiency and prevent refractory erosion.

一般に溶鋼中の〔C〕濃度は鋼浴温度が低い程溶鋼中C
Oガス分圧が高い程その平衡値は高くなるので、鋼浴温
度を高く、00分圧を低くすれば効率的な脱炭を行なう
事が出来る。しかし、鋼浴温度を高くすれば溶鋼を保持
する耐火物の損耗が大きくなるため、鋼浴温度上昇によ
る脱炭効率の向上には限度がある。
In general, the lower the steel bath temperature, the lower the [C] concentration in molten steel.
The higher the O gas partial pressure, the higher its equilibrium value, so efficient decarburization can be achieved by increasing the steel bath temperature and lowering the 00 partial pressure. However, increasing the steel bath temperature increases the wear and tear on the refractories that hold the molten steel, so there is a limit to the improvement in decarburization efficiency by increasing the steel bath temperature.

一方、00分圧を低下させる方法としては2重管羽口の
内管から希釈ガスと酸素ガスとを同時に吹込み脱炭反応
の進行と共に溶鋼中[C) 濃度に応じ希釈ガス富化と
なる様に希釈ガスと酸素ガスの比率を段階的に切替えて
いく、例えばAOD法がある。
On the other hand, as a method to reduce the 00 partial pressure, diluent gas and oxygen gas are simultaneously injected from the inner pipe of a double-tube tuyere, and as the decarburization reaction progresses, the diluent gas becomes enriched according to the concentration of [C] in the molten steel. For example, there is an AOD method in which the ratio of diluent gas and oxygen gas is changed stepwise.

通常の精錬においては脱炭が進行するにつれ酸素ガ゛ス
吹込による脱炭反応への寄与が低下しメタル酸化への寄
与が増大し投入還元剤の量が増大する。そこでAOD法
により希釈ガスを富化することによ960分圧を低下さ
せ酸素ガスの脱炭反応への寄与を増大させ、メタル酸化
を抑え還元剤量の増大を防止することができる。しかし
AOD法では希釈ガス富化による希釈ガスコストの上昇
及び酸素ガス吹込量の減少によシ脱炭速度が低下し精錬
時間が延長することによる側人物コストの上昇を伴なう
。脱炭速度を上昇させるには酸素吹込速度を上昇する方
法があるが、吹込圧力、吹込ノズル径、集塵フード、冷
却能力等の設備制約及びスプラッシュの飛散等の操業上
の問題があるため全吹込ガス速度は制限される。このた
め酸素吹込速度はその時選定している希釈ガスとの比率
に応じた量が最大速度と々るため脱炭速度を充分に上昇
できなかった。
In normal refining, as decarburization progresses, the contribution of oxygen gas injection to the decarburization reaction decreases, the contribution to metal oxidation increases, and the amount of input reducing agent increases. Therefore, by enriching the diluent gas using the AOD method, it is possible to lower the 960 partial pressure and increase the contribution of oxygen gas to the decarburization reaction, thereby suppressing metal oxidation and preventing an increase in the amount of reducing agent. However, in the AOD method, the cost of diluent gas increases due to enrichment of the diluent gas, the decarburization rate decreases due to a decrease in the amount of oxygen gas blown, and the refining time increases, resulting in an increase in the cost of side personnel. One way to increase the decarburization rate is to increase the oxygen blowing speed, but this method is not recommended due to equipment limitations such as blowing pressure, blowing nozzle diameter, dust collection hood, cooling capacity, etc., and operational problems such as splashing. Blowing gas velocity is limited. For this reason, the decarburization rate could not be sufficiently increased because the oxygen blowing rate reached the maximum rate depending on the ratio with the diluent gas selected at that time.

本発明は希釈ガスと酸素ガスとの同時吹込みによる溶鋼
の脱炭精錬方法における、脱炭速度の低下、メタル酸化
などの諸問題を解決した方法であって、その要旨とする
ところは、下記のとおシである。
The present invention is a method for decarburizing molten steel by simultaneous injection of diluent gas and oxygen gas, which solves various problems such as a decrease in decarburization rate and metal oxidation. This is Notooshi.

2重管羽口の外管から保護ガ′スを、内管から希釈ガス
と酸素ガスとの混合ガスを溶鋼中に吹込むことによシ脱
炭精錬を行なう方法において(1)溶鋼中〔C〕含有量
0.7%までの領域において前記2重管羽口の内管から
酸素ガスのみを吹込むこと、 (2)溶鋼中[C)含有量0.7%から0.05〜02
5襲の領域において前記内管から希釈ガスと酸素ガスと
の比率を、溶鋼中〔C〕含有量に応じて連続的に変化せ
しめて吹込むこと、 (3)溶鋼中〔C〕含有量0.25〜005ヂから最終
〔C〕値迄の領域において前記内管から希釈ガスのみを
吹込むこと、 を特徴とする含クロム溶鋼の脱炭法・ 以下本発明の詳細な説明する。
In a method of decarburizing refining by injecting a protective gas from the outer tube of a double-tube tuyere and a mixed gas of diluent gas and oxygen gas from the inner tube into the molten steel, (1) C] Injecting only oxygen gas from the inner tube of the double tube tuyere in the range up to 0.7% content, (2) In molten steel [C) Content from 0.7% to 0.05~02
(3) Injecting diluent gas and oxygen gas from the inner pipe in the five-stroke region while continuously changing the ratio of dilution gas and oxygen gas according to the [C] content in the molten steel; (3) [C] content in the molten steel is 0; A method for decarburizing chromium-containing molten steel, characterized in that only diluent gas is blown into the inner tube in the range from .25 to .005 to the final [C] value.The present invention will be described in detail below.

第1図は2重管羽口を用い内管から酸素ガスと希釈ガス
を、外管から保護ガスを溶鋼中に吹込む脱炭精錬におい
て、溶鋼中〔C〕重量濃度(以下単に溶鋼中〔C〕と記
す)と酸素アルゴンの比率(02/Ar )と吹込酸素
ガスの脱炭に消費される比率(以下脱炭酸素効率あるい
はη0と記す)の関係を示す。溶鋼中[C]が0.7%
までの領域では02/Ar比が無限大、即ち酸素のみの
吹錬を行なってもη0は02 /Ar比=4/1とほぼ
同等である。すなわち溶鋼中〔りが0.7%ま°であれ
ば酸素ガスのみを吹込んだ際の脱炭酸素効率と、酸素ガ
スと希釈ガスを所定の比率で吹込んだ際の脱炭酸素効率
との間に差が生じない。従って溶鋼中〔C〕が0.7%
までは2重管羽口の内管からの希釈ガスの吹込を止めて
、酸素ガス吹込だけの精錬を行なえば、希釈ガス吹込が
ないためその吹込ガス量に相当する酸素吹込ガス量が増
大できるのて脱炭速度を上昇させることができ、精錬時
間を短縮することができる。
Figure 1 shows the weight concentration of [C] in molten steel (hereinafter simply [C] in molten steel) during decarburization refining using a double-tube tuyere to inject oxygen gas and diluent gas into molten steel from the inner tube and protective gas from the outer tube. The relationship between the oxygen argon ratio (02/Ar) and the ratio of the blown oxygen gas consumed for decarburization (hereinafter referred to as decarburization oxygen efficiency or η0) is shown. [C] in molten steel is 0.7%
In the above range, the 02/Ar ratio is infinite, that is, even if only oxygen is used for blowing, η0 is almost equal to the 02/Ar ratio=4/1. In other words, if the content of molten steel is less than 0.7%, the decarburization oxygen efficiency when only oxygen gas is injected, and the decarburization oxygen efficiency when oxygen gas and diluent gas are injected at a predetermined ratio. There is no difference between Therefore, [C] in molten steel is 0.7%
Until then, if the injection of diluent gas from the inner tube of the double-pipe tuyere is stopped and refining is performed with only oxygen gas injection, the amount of oxygen injection gas corresponding to the amount of injection gas can be increased since there is no dilution gas injection. The decarburization rate can be increased and the refining time can be shortened.

本工程において溶鋼中[CX 0.7%)を次の方法で
予測する。
In this process, [CX 0.7%) in molten steel is predicted by the following method.

酸素ガスのみ吹込時の脱炭−酸素効率はほぼ80%一定
であるから吹込み開始時の溶鋼中〔C〕分析値と溶鋼量
及びその後添加する冷却材、合金類からの新たに混入す
る[C)量から溶鋼中〔C〕含有重量を計算し、0.7
%迄脱炭するに要する酸素量を決定し、溶鋼中〔C〕が
07係になるように計算によシ求めた量の酸素ガスを吹
込む。
Since the decarburization-oxygen efficiency when only oxygen gas is injected is approximately 80% constant, the analysis value of [C] in the molten steel at the start of injection, the amount of molten steel, and the newly mixed in from the coolant and alloys added afterwards [C] C) Calculate the weight of [C] contained in the molten steel from the amount, and find out 0.7
Determine the amount of oxygen required to decarburize up to %, and inject the calculated amount of oxygen gas so that the [C] in the molten steel becomes 07%.

溶鋼量の把握は次式で行なう。The amount of molten steel is determined using the following formula.

(装入溶鋼量+除材量子合金量−メタル酸化量−〇酸化
量) 第2図は溶鋼中CCIが07φ以下における酸素ガス/
希釈ガス比率と溶鋼中〔C〕と脱炭酸素効率の関係を示
す。
(Amount of molten steel charged + Amount of quantum alloy removed - Amount of metal oxidation - Amount of oxidation) Figure 2 shows the oxygen gas /
The relationship between the dilution gas ratio, [C] in molten steel, and decarburization oxygen efficiency is shown.

酸素ガス/希釈ガス−4/′1を選択した場合、溶鋼中
〔C〕が0.7%までの脱炭酸素効率は飽和値(約80
% )で推移するが、溶鋼中〔C〕0.7係以下では該
溶鋼中〔C〕の低下に従い低下してくる。
When oxygen gas/diluent gas -4/'1 is selected, the decarburization oxygen efficiency up to 0.7% [C] in molten steel is the saturation value (approximately 80
%), but below the coefficient [C] in molten steel of 0.7, it decreases as the [C] in molten steel decreases.

すなわち0.7%以下では溶鋼中〔C〕が低下するにつ
れ溶鋼中メタル成分の酸化が増加し、吹止後の還元剤消
費量が増大する。
That is, if it is less than 0.7%, as the [C] content in the molten steel decreases, the oxidation of the metal components in the molten steel increases, and the amount of reducing agent consumed after blow-off increases.

そこで従来法ではメタル酸化がある程度増大する前の段
階で希釈ガス富化のガス比率、例えば酸素ガス/希釈ガ
ス=2/1を選択する。このガス比率で吹錬を続行しメ
タル酸化が増大してくれば更に希釈ガス富化のガス比率
を選択し、吹錬を続行する。従来法ではとの様に酸素ガ
ス/希釈ガス比率を3〜6ステツプで切替える方法で脱
炭を行なっていたため脱炭酸素効率が低下する〔c〕域
が生ずることは不可避であった。図中、C)+/Ar=
4/1〜2/l〜1/2テ溶鋼中〔c〕が0.5%乃至
0.25 %まで吹錬した場合の脱炭酸素効率を実線矢
印で示す。
Therefore, in the conventional method, the gas ratio for enriching the diluent gas, for example, oxygen gas/diluent gas=2/1, is selected at a stage before metal oxidation increases to a certain extent. Blowing is continued at this gas ratio, and if metal oxidation increases, a gas ratio further enriching the diluent gas is selected and blowing is continued. In the conventional method, decarburization was carried out by switching the oxygen gas/diluent gas ratio in 3 to 6 steps as in the previous method, so it was inevitable that a region [c] would occur in which the decarburization oxygen efficiency decreased. In the figure, C)+/Ar=
The decarburization oxygen efficiency when 4/1 to 2/1 to 1/2 molten steel [c] is blown to 0.5% to 0.25% is shown by the solid arrow.

この脱炭酸素効率の低下を解決するには溶鋼中〔C〕に
応じ飽和脱炭酸素効率(約80%)になる様に時々刻々
と酸素ガス/希釈ガス比率を切替えていくことによシ可
能である。この場合脱炭酸素効率は例えば溶鋼中[C]
が0.7%から0.25%まで脱炭した場合、図中点線
矢印の様な推移を示す。
In order to solve this decrease in decarburization oxygen efficiency, the oxygen gas/diluent gas ratio must be changed from time to time to achieve a saturated decarburization oxygen efficiency (approximately 80%) depending on the [C] in the molten steel. It is possible. In this case, the decarburization oxygen efficiency is, for example, in molten steel [C]
When decarburization occurs from 0.7% to 0.25%, the transition is as shown by the dotted line arrow in the figure.

即ち図中斜線部分が連続切替法による脱炭酸素効率の向
上効果を表わしたものであシメタル酸化量が低減しそれ
に従い還元剤量も低減しコスト的に大きな利点となる。
That is, the shaded area in the figure represents the effect of improving decarburization oxygen efficiency by the continuous switching method, which reduces the amount of oxidized metal and accordingly reduces the amount of reducing agent, which is a great advantage in terms of cost.

この際021 Arのガス比率は ηo=(a+bγ)〔チChi a:鋼種による定数 b:炉口数による定数 〔チ(:)1:溶鋼中〔C〕予測値 の式を用いてη(1′;80%およびγ=f(C%すi
)として設定すべきガス比率を求める仁とが出来る。
At this time, the gas ratio of 021 Ar is ηo = (a + bγ) [Chi Chi a: constant depending on the steel type b: constant depending on the number of furnace ports [chi (:) 1: in molten steel [C] Using the formula of predicted value, η (1';80% and γ=f(C%s i
) can be used to find the gas ratio that should be set.

この間、溶鋼量の把握を行ない、必要脱炭量を求め吹込
酸素量を決定する。
During this time, the amount of molten steel is ascertained, the required amount of decarburization is determined, and the amount of oxygen to be blown is determined.

酸素ガス/希釈ガス比率を溶鋼中〔C〕に応じて連続的
に切換えていく時の溶鋼中[C+は〔C〕含有量/溶鋼
量×1400で表わされるので、時々刻々変化する〔C
〕含有量の把握と共に時々刻々変化する溶鋼量の把握が
必要である。
When the oxygen gas/diluent gas ratio is continuously changed according to [C] in molten steel, [C+] is expressed as [C] content/amount of molten steel x 1400, so it changes from time to time [C]
] It is necessary to understand the amount of molten steel, which changes from time to time, as well as the content.

〔C〕含有量の把握は吹込まれた酸素ガスの約80チが
脱炭に消費されるため前記によシ予測した溶鋼中〔C〕
含有重量と吹込酸素ガス量を把握していれば脱炭量の把
握が出来、従って〔c〕含有量の把握ができる。溶鋼量
の把握は吹込まれた酸素ガスの脱炭に消費された以外の
酸素がメタル分を酸化するのでメタル分の酸化量を前記
吹込酸素ガス量と脱炭酸素効率80%から把握し前記工
程で計算した溶鋼量に加えれは溶鋼量の把握ができる。
The content of [C] in the molten steel was determined as predicted above because approximately 80 g of the injected oxygen gas is consumed for decarburization.
If the content weight and the amount of oxygen gas blown are known, the amount of decarburization can be determined, and therefore the [c] content can be determined. The amount of molten steel can be determined by determining the amount of oxidized metal from the amount of oxygen gas blown and the decarburization efficiency of 80%, since oxygen other than that consumed for decarburization of the injected oxygen gas oxidizes the metal. In addition to the amount of molten steel calculated in , the amount of molten steel can be grasped.

メタル分の酸化量はa[Si]十b[cr:]+ c[
Mn)−+−d[Fe]で表示される。この時、a g
 b g c 、dはそれぞれ81 + Cr + M
n g Feの酸化ロス量の係数である。
The amount of oxidation of the metal component is a [Si] + b [cr: ] + c [
Mn) −+−d[Fe]. At this time, a g
b g c, d are each 81 + Cr + M
It is a coefficient of the amount of oxidation loss of n g Fe.

メタル酸化に消費される酸素のうちSt酸化に優先的に
消費される。
Of the oxygen consumed in metal oxidation, it is preferentially consumed in St oxidation.

上記の様にして求められた[C)含有量と溶鋼量からそ
の時の〔C〕重量濃度を算出し、それに応じた酸素ガス
/8釈ガスの比率を選定してガスプローする。微小時間
経過後にその時吹込まれた微小酸素量から脱炭量、メタ
ル酸化量を上記方法にょシ算出し、溶鋼中〔C〕を算出
しそれに応じた酸素ガス/希釈ガスの比率を選定してガ
スプローする。
The [C] weight concentration at that time is calculated from the [C] content and the amount of molten steel determined as described above, and the ratio of oxygen gas/octane gas is selected accordingly and gas blowing is performed. After a minute time has elapsed, the amount of decarburization and the amount of metal oxidation are calculated using the above method from the minute amount of oxygen injected at that time, the amount of [C] in the molten steel is calculated, and the ratio of oxygen gas/dilution gas is selected accordingly, and the gas blow do.

この様にして溶鋼中〔c〕が0.7%から溶鋼中[C1
が0.25〜0.05%−iでの領域でガス比率の連続
切替を実施し極めて効率よく脱炭することが可能となる
In this way, [c] in the molten steel changes from 0.7% to [C1] in the molten steel.
It becomes possible to perform extremely efficient decarburization by continuously switching the gas ratio in the range of 0.25 to 0.05%-i.

本工程においても途中で溶鋼中の炭素を分析し予測[I
CE値を修正することばArガスロス又は還元剤ロスを
防止する土で極めて有効である。
During this process, carbon in molten steel is analyzed and predicted [I
Modifying the CE value is extremely effective in soils to prevent Ar gas loss or reducing agent loss.

第3図は本工程において溶鋼中(c) %に応じて02
/Ar比率を連続的に変化させた例を示す。
Figure 3 shows the percentage of (c) in molten steel in this process.
An example in which the /Ar ratio is continuously changed is shown.

第4図は酸素ガスとアルゴンガ′スを1:2の比で吹込
んだ従来法と、アルゴンガスのみを一吹込んだ場合の溶
鋼中〔C〕と、脱炭反応速度との関係°を示す。図にお
いてアルゴンガ′スのみを吹込んだ場合の脱炭反応速度
は溶鋼中[C]が0.25係超では従来法と比べて低下
しているが、溶鋼中〔C〕が0.25〜0.15%では
同等であり、また溶鋼中〔C〕が0.15 ’%よシ低
い域では従来法よシ高い。
Figure 4 shows the relationship between [C] in molten steel and the decarburization reaction rate in the conventional method where oxygen gas and argon gas were injected at a ratio of 1:2 and when only argon gas was injected once. show. In the figure, the decarburization reaction rate when only argon gas is injected is lower than the conventional method when [C] in molten steel exceeds 0.25, but when [C] in molten steel is 0.25~ At 0.15%, it is equivalent, and in the range where [C] in molten steel is lower than 0.15'%, it is higher than the conventional method.

すなわち溶鋼中〔C〕が0.25 %以下まで脱炭した
後は酸素ガスの吹込みを止めても不活性ガスによる希釈
のみで溶鋼中〔C〕は該溶鋼中の酸素によって脱炭され
るのである。との脱炭に際して溶鋼中の酸素の減少に伴
いスラグ中の酸素が溶鋼中に移行しスラグ中のクロム醒
化物が還元されるので非常に好都合である。
In other words, after the [C] in the molten steel is decarburized to 0.25% or less, even if the oxygen gas injection is stopped, the [C] in the molten steel will be decarburized by the oxygen in the molten steel only by dilution with inert gas. It is. During decarburization, oxygen in the slag moves into the molten steel as the oxygen in the molten steel decreases, and the chromium carbide in the slag is reduced, which is very convenient.

なおりロム酸化物中の酸素の溶鋼への移行を積極的に進
行させるには、不活性ガ゛ス吹込と同時に脱炭に必要な
量の金属酸化物がスラグ中に残留する事を限度に還元剤
、おるいは必要に応じて還元剤と造滓剤を投入すること
が望ましい。
In order to actively promote the transfer of oxygen in the chromium oxide to molten steel, it is necessary to limit the amount of metal oxide required for decarburization remaining in the slag at the same time as inert gas injection. It is desirable to add a reducing agent or, if necessary, a reducing agent and a slag forming agent.

不活性ガスの吹込みによシスラグと溶鋼との接触の機会
が増大し、クロム酸化物中の酸素が溶鋼中に移行するた
め溶鋼中酸素と該溶鋼中〔C〕が効率よく反応し還元と
脱炭が著しく進行する。当然のことながら最終〔C〕値
であることが必要である。
By blowing inert gas, the chances of contact between the syslag and the molten steel increase, and the oxygen in the chromium oxide migrates into the molten steel, so that the oxygen in the molten steel reacts efficiently with [C] in the molten steel, resulting in reduction. Decarburization progresses significantly. Naturally, it needs to be the final [C] value.

本工程においてはスラグ中の金属酸化物よシ脱炭に必要
な酸素が供給されて該溶鋼中〔C〕との反応が生じるこ
と及びこの間においては酸素を吹込まないため金属酸化
物の還元に必要な還元剤の量が低減し、従来法で使用さ
れる還元剤よυ少ない量の還元剤で還゛元反応を完結さ
せることができる。
In this process, the metal oxides in the slag are supplied with the oxygen necessary for decarburization, causing a reaction with [C] in the molten steel, and during this time, no oxygen is blown into the molten steel, so the metal oxides are not reduced. The amount of reducing agent required is reduced, and the reduction reaction can be completed with a smaller amount of reducing agent than that used in conventional methods.

更に脱炭終了時点では既に還元反応が進行中であシ還元
期に移行しても還元に不足した分の還元剤あるいは必要
に応じて該還元剤と造滓剤を投入すればよく、大幅な還
元時間の短縮が可能であシ、耐火物溶損防止、精錬能率
向上効果が得られる。
Furthermore, at the end of decarburization, the reduction reaction is already in progress, and even if the reduction stage begins, it is only necessary to add the reducing agent and slag-forming agent for the amount that is insufficient for reduction, and the reduction can be significantly reduced. It is possible to shorten the reduction time, prevent corrosion of refractories, and improve refining efficiency.

本発明において2重管羽口の外管から吹込む保獲ガスと
してはアルゴン等の不活性ガス、炭酸ガス、窒素ガス、
水蒸気等を、また内管から吹込む希釈ガスとしてはアル
ゴン等の不活性ガス、窒素ガス等周知の他のガスを使用
可能である。また鋼種はステンレス鋼の他に希釈脱炭を
行う他のクロムを含む鋼種にも適用可能である。
In the present invention, the captured gas injected from the outer pipe of the double-pipe tuyere includes inert gas such as argon, carbon dioxide gas, nitrogen gas,
Water vapor or the like can be used, and other well-known gases such as inert gas such as argon, nitrogen gas, etc. can be used as the diluent gas blown from the inner tube. In addition to stainless steel, the present invention can also be applied to other chromium-containing steel types that undergo dilution decarburization.

次に本発明法をAOD法に適用した例と通常のAOD精
錬法とを比較して第5図を参考にして説明する。
Next, an example in which the method of the present invention is applied to an AOD method and a conventional AOD refining method will be compared and explained with reference to FIG.

第5図aは従来のAOD法を示し溶鋼中の炭素を\ 効率よく脱炭するために溶鋼中炭素量の推移に応じて吹
込む酸素とアルゴンの比率をステップ状に変えて溶鋼中
のクロムを極力酸化しないように脱炭していく。しかし
一般に溶鋼中のクロムが2%前後酸化されるため脱炭終
了後に造滓剤(CaO等)及び還元剤(Fe−8t等)
を添加し適度の時間不活性ガス吹込みにより溶鋼を攪拌
し、酸化したクロムを還元し、また前記還元剤と同時に
添加した造滓剤によって脱硫を行なった後に出鋼してい
る。
Figure 5a shows the conventional AOD method. In order to efficiently decarburize the carbon in molten steel, the ratio of oxygen and argon to be blown into the molten steel is changed stepwise according to the change in the amount of carbon in the molten steel. decarburize to avoid oxidation as much as possible. However, in general, about 2% of chromium in molten steel is oxidized, so after decarburization, slag forming agents (CaO, etc.) and reducing agents (Fe-8t, etc.) are used.
is added, the molten steel is stirred by inert gas injection for an appropriate period of time, oxidized chromium is reduced, and the molten steel is desulfurized using a slag-forming agent added at the same time as the reducing agent, and then the steel is tapped.

これに対して本発明では第5図すに示すように溶鋼中〔
C〕が0.7 %迄は羽口内管から酸素ガ゛スのみの吹
錬を行ない、溶鋼中〔C〕が0.7%から0.25〜0
.05%まではη0が約80係になる様に酸素、希釈ガ
ス比率を連続的に切換えながら酸素、希釈ガスの混合ガ
スを吹込み、溶鋼中〔C〕が0.25〜0、05%から
最終〔C〕まではArのみの吹込みによる脱炭及び還元
を行う。
In contrast, in the present invention, as shown in FIG.
To reduce [C] from 0.7% to 0.7%, blowing with only oxygen gas from the inner tube of the tuyere is performed to reduce [C] in the molten steel from 0.7% to 0.25~0.
.. Up to 0.05%, a mixed gas of oxygen and diluent gas is blown while continuously changing the oxygen and diluent gas ratio so that η0 is about 80%, and [C] in the molten steel is from 0.25 to 0.05%. Until the final step [C], decarburization and reduction are performed by blowing only Ar.

吹込酸素ガスのη0を極めて高く維持できるため、メタ
ル酸化量を低く押える事が可能となる。
Since η0 of the blown oxygen gas can be maintained extremely high, it is possible to keep the amount of metal oxidation low.

本発明法によシ、従来脱炭終了時約2%前後のクロム酸
化量が生じていたものを約1.4係前後のクロム酸化量
に抑える事が可能と々シ、これによシ従来法を100と
する還元剤量指数を約70に減少することができた。又
造滓剤量指数すを従来法の100から約70に減少する
ことができた。
According to the method of the present invention, it is possible to suppress the amount of chromium oxidation, which conventionally was around 2% at the end of decarburization, to around 1.4%. It was possible to reduce the reducing agent amount index to about 70, with the modulus being 100. In addition, the slag-forming agent amount index was able to be reduced from 100 in the conventional method to about 70.

以下ステンレス鋼の脱炭精錬における本発明の実施例を
示す。
Examples of the present invention in decarburization refining of stainless steel will be shown below.

実施例1 吹錬開始から溶鋼中EC)が0.7係まで酸素のみの脱
炭を行ない、引き続き酸素ガス、希釈ガス比率を連続的
に切換えながら鋼中〔C〕が0.25%まで脱炭し、更
にArガ゛スのみの脱炭を鋼中〔C〕が0.06%にな
るまで実施した。その後還元剤と造滓剤を投入し還元及
び脱硫して出鋼した。
Example 1 Decarburization using only oxygen was performed from the start of blowing until the EC) in the molten steel reached 0.7%, and then decarburization was performed until the [C] in the steel reached 0.25% while continuously changing the oxygen gas and diluent gas ratios. After carbonization, decarburization using only Ar gas was carried out until the [C] content in the steel became 0.06%. After that, a reducing agent and a slag-forming agent were added to reduce and desulfurize the steel, and the steel was tapped.

実施例2 吹錬開始〔C〕から溶鋼中〔C〕が0.7%まで酸素の
みの脱炭を行ない、引き続き酸素ガス、希釈ガス比率を
連続的に切換えながら溶鋼中〔C〕が0.15%−tで
脱炭し、更にAr ffガス込に切替えると同時に脱炭
に必要な金属元素(FeOycr203 * MnO5
Nio)がスラグ中に残留する事を限度にFe−8tと
CaOを添加し、脱炭とSiによる還元を同時に進行さ
せ、鋼中〔C〕が0.06%になる壕で脱炭した。
Example 2 From the start of blowing [C], decarburization was performed using only oxygen until [C] in the molten steel reached 0.7%, and then, while continuously changing the oxygen gas and diluent gas ratios, [C] in the molten steel reached 0.7%. Decarburize at 15%-t, switch to include Ar ff gas, and at the same time add metal elements necessary for decarburization (FeOycr203 * MnO5
Fe-8t and CaO were added to limit the amount of NiO remaining in the slag, and decarburization and reduction with Si proceeded simultaneously, and decarburization was performed in a trench where [C] in the steel became 0.06%.

その後必要な量の還元剤と造滓剤を投入し、還元及び脱
硫して出鋼した。
After that, the required amount of reducing agent and slag-forming agent were added, and the steel was reduced and desulfurized and tapped.

表1に各実施例及び従来例によるCr歩留、還元剤量及
び造滓剤量を示す。
Table 1 shows the Cr yield, reducing agent amount, and slag forming agent amount for each example and conventional example.

表   1Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は脱炭酸素効率(η0)と、溶鋼中〔C
〕と、溶鋼中に吹込む酸素とアルゴンとの比(02/A
r )の関係を示す図、第3図は溶鋼中〔C〕と溶鋼中
に吹込む02/Ar比率の関係を示す図、第4図は脱炭
反応速度(〔%Cン分)と1′素吹止時の溶鋼中〔CE
 9度(重量係)と溶鋼中に吹込む酸素とアルゴンとの
比(02/Ar )の関係を示す図である。第5図は実
施例の概要を示す図で第5図(a)は従来例、第5図(
b)は本発明例である。 第2図 溶鋼中〔C〕(OA) 7 フ%4碕中CCJ   C%) 第4図 萌し先吹止時の腕4呵”#’CCフ転(重量 %つ第5
ゾ(a9 第5コ(b)
Figures 1 and 2 show the decarburization oxygen efficiency (η0) and the molten steel [C
] and the ratio of oxygen and argon to be blown into the molten steel (02/A
Figure 3 is a diagram showing the relationship between [C] in molten steel and the 02/Ar ratio injected into the molten steel, and Figure 4 is a diagram showing the relationship between the decarburization reaction rate ([%C) and 1 'In the molten steel at the time of bare blow-stop [CE
It is a figure showing the relationship between 9 degrees (weight ratio) and the ratio of oxygen to argon (02/Ar) blown into molten steel. FIG. 5 is a diagram showing an outline of the embodiment, and FIG. 5(a) is a conventional example, and FIG.
b) is an example of the present invention. Fig. 2 During molten steel [C] (OA) 7 Fu% 4 CCJ C%) Fig. 4 Arm 4'#' CC transfer at the end of eruption (Weight % 5)
zo (a9 5th ko (b)

Claims (1)

【特許請求の範囲】 2重管羽目の外管から保護ガスを、内管がら希釈ガスと
酸素ガスとの混合ガスを溶鋼中に吹込むことによシ脱炭
精錬を行なう方法において、(1)溶鋼中[C]含有量
0.7%までの領域において前記2重管羽口の内管から
酸素ガスのみを吹込むこと、 (2)溶鋼中〔C〕含有量0.7%から0.05〜02
5チの領域において前記内管から希釈ガスの酸素ガスと
の比率を、溶鋼中〔c〕含有量に応じて連続的に変化せ
しめて吹込むこと、 (3)  溶鋼中〔C〕含有量0.25〜0.05%か
ら最終[C]値迄の領域において前記内管から希釈ガス
のみを吹込むこと、 を特徴とする含クロム溶鋼の脱炭法。
[Claims] In a method for decarburizing refining by injecting a protective gas from the outer tube of a double tube panel and a mixed gas of diluent gas and oxygen gas from the inner tube into molten steel, ) Injecting only oxygen gas from the inner tube of the double tube tuyere in the range where the [C] content in the molten steel is up to 0.7%, (2) The [C] content in the molten steel is from 0.7% to 0. .05~02
(3) Injecting the diluent gas into the oxygen gas from the inner pipe in the 5th region while continuously changing the ratio of the diluent gas to the oxygen gas in accordance with the [C] content in the molten steel. (3) The [C] content in the molten steel is 0. A method for decarburizing chromium-containing molten steel, characterized in that only diluent gas is blown from the inner tube in the range from .25 to 0.05% to the final [C] value.
JP21207682A 1982-12-04 1982-12-04 Decarburization of chromium-containing molten steel Pending JPS59104421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21207682A JPS59104421A (en) 1982-12-04 1982-12-04 Decarburization of chromium-containing molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21207682A JPS59104421A (en) 1982-12-04 1982-12-04 Decarburization of chromium-containing molten steel

Publications (1)

Publication Number Publication Date
JPS59104421A true JPS59104421A (en) 1984-06-16

Family

ID=16616460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21207682A Pending JPS59104421A (en) 1982-12-04 1982-12-04 Decarburization of chromium-containing molten steel

Country Status (1)

Country Link
JP (1) JPS59104421A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199849A (en) * 2007-02-15 2008-08-28 Fujikura Ltd Crimp-fixing device and fixing method for flexible printed wiring board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036209A (en) * 1973-06-20 1975-04-05
JPS51107215A (en) * 1975-03-19 1976-09-22 Nippon Steel Corp CHOGOKUTEITANSOSUTENRESUKONO YOSEIHOHO

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036209A (en) * 1973-06-20 1975-04-05
JPS51107215A (en) * 1975-03-19 1976-09-22 Nippon Steel Corp CHOGOKUTEITANSOSUTENRESUKONO YOSEIHOHO

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199849A (en) * 2007-02-15 2008-08-28 Fujikura Ltd Crimp-fixing device and fixing method for flexible printed wiring board

Similar Documents

Publication Publication Date Title
JP3428628B2 (en) Stainless steel desulfurization refining method
US3867135A (en) Metallurgical process
US4001012A (en) Method of producing stainless steel
JPS58130216A (en) Refining method of high alloy steel and stainless steel
JPS59104421A (en) Decarburization of chromium-containing molten steel
JP2008184648A (en) Method for desiliconizing and dephosphorizing molten pig iron
JP4022266B2 (en) Stainless steel melting method
JP3460595B2 (en) Melting method for extremely low sulfur steel
US4394165A (en) Method of preliminary desiliconization of molten iron by injecting gaseous oxygen
JPS6014812B2 (en) Method for preventing slopping during subsurface gas injection refining of steel
US4021233A (en) Metallurgical process
US4525209A (en) Process for producing low P chromium-containing steel
JPS6138248B2 (en)
JPH06228626A (en) Method for reforming slag as pretreatment of desulfurization
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JP3301683B2 (en) Desulfurization method of chromium-containing molten steel in decarburization refining
JP3309395B2 (en) Converter refining method
KR102581777B1 (en) method of manufacturing austenite stainless steel
JP5544818B2 (en) Melting method of high chromium steel
JPH08134528A (en) Production of extra low carbon steel
JPS62130210A (en) Production of stainless steel
JP2754983B2 (en) Converter refining method
US4066442A (en) Method of making chrome steel in an electric arc furnace
US4188206A (en) Metallurgical process
JPH0477045B2 (en)