JP5544818B2 - Melting method of high chromium steel - Google Patents

Melting method of high chromium steel Download PDF

Info

Publication number
JP5544818B2
JP5544818B2 JP2009238790A JP2009238790A JP5544818B2 JP 5544818 B2 JP5544818 B2 JP 5544818B2 JP 2009238790 A JP2009238790 A JP 2009238790A JP 2009238790 A JP2009238790 A JP 2009238790A JP 5544818 B2 JP5544818 B2 JP 5544818B2
Authority
JP
Japan
Prior art keywords
chromium
steel
refining
converter
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009238790A
Other languages
Japanese (ja)
Other versions
JP2011084782A (en
Inventor
洋 岩▲崎▼
史一 長谷川
浩 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009238790A priority Critical patent/JP5544818B2/en
Publication of JP2011084782A publication Critical patent/JP2011084782A/en
Application granted granted Critical
Publication of JP5544818B2 publication Critical patent/JP5544818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、転炉での脱炭精錬とその後の二次精錬での真空精錬とによって高クロム鋼を溶製する方法に関するものである。   The present invention relates to a method of melting high chromium steel by decarburization refining in a converter and subsequent vacuum refining in secondary refining.

クロムを9質量%以上含有する高クロム鋼を溶製する方法として、電気炉(アーク炉)を使用せずに、転炉でクロム含有溶銑及びフェロクロム(Fe−Cr合金鉄)を原料として脱炭精錬して含クロム粗溶鋼を溶製し、この含クロム粗溶鋼をVOD(Vacuum Oxygen De-carburization)法に代表される、二次精錬設備の真空精錬によって所定の成分に仕上げる方法が実施されている。転炉−VODプロセスにより、窒素含有量の低い高クロム鋼、具体的にはクロム濃度が17質量%以上とりわけ20質量%以上、窒素濃度が0.013質量%以下の高クロム鋼を安定して且つ効率的に溶製するためには、転炉出鋼後の含クロム粗溶鋼の窒素含有量は0.0105質量%程度以下である必要がある。   As a method of melting high chromium steel containing 9 mass% or more of chromium, decarburization using chromium-containing hot metal and ferrochrome (Fe-Cr alloy iron) as raw materials in a converter without using an electric furnace (arc furnace) A chrome-containing crude molten steel is smelted and refined, and a method of finishing this chrome-containing coarse molten steel into predetermined components by vacuum refining of secondary refining equipment, represented by the VOD (Vacuum Oxygen De-carburization) method, has been carried out. Yes. Converter-VOD process stabilizes high chromium steel with low nitrogen content, specifically high chromium steel with chromium concentration of 17% by mass or more, especially 20% by mass or more and nitrogen concentration of 0.013% by mass or less. And in order to melt efficiently, the nitrogen content of the chromium-containing crude molten steel after the converter steel is required to be about 0.0105% by mass or less.

しかしながら、溶鋼中の平衡溶解窒素濃度は、溶鋼中のクロム濃度の増加に伴って増加することが熱力学的に知られており、また、これと裏腹に、溶鋼からの脱窒素能力は、溶鋼中のクロム濃度の増加に伴って低下することが知られており、従来、転炉での脱炭精錬の末期に溶鋼中の窒素濃度が増加してしまい、転炉−VODプロセスにより、安定して低窒素高クロム鋼を溶製することは困難であった。尚、転炉出鋼後の含クロム粗溶鋼の窒素濃度が高い場合には、VOD工程で脱窒処理が必要となり、VOD処理時間を延長させるなどの弊害が発生した。   However, it is thermodynamically known that the equilibrium dissolved nitrogen concentration in the molten steel increases with an increase in the chromium concentration in the molten steel. On the contrary, the denitrification ability from the molten steel is It is known that the concentration of chromium in the molten steel decreases as the concentration of chromium in the steel increases. Conventionally, the nitrogen concentration in the molten steel increases at the end of decarburization and refining in the converter, and is stabilized by the converter-VOD process. Therefore, it has been difficult to produce low nitrogen high chromium steel. In addition, when the nitrogen concentration of the chromium-containing crude molten steel after the converter steel is high, denitrification treatment is required in the VOD process, and there are problems such as extending the VOD treatment time.

これを解決し、転炉−VODプロセスによって安定して低窒素高クロム鋼を溶製する手段として、特許文献1には、「転炉精錬における脱炭吹錬終了時のステンレス粗溶鋼の炭素濃度を0.5質量%以下として、前記脱炭吹錬により生じるクロム含有スラグを転炉内に未還元状態のまま残してステンレス粗溶鋼を取鍋に出鋼し、前記転炉精錬に続く真空精錬で該ステンレス粗溶鋼の脱炭処理及び脱ガス処理を行うことを特徴とする極低窒素ステンレス鋼の製造方法」が提案されている。   As a means for solving this problem and stably melting low nitrogen high chromium steel by the converter-VOD process, Patent Document 1 states that “the carbon concentration of the crude stainless steel at the end of decarburization blowing in converter refining” Is reduced to 0.5 mass% or less, and the chromium-containing slag generated by the decarburization blowing is left in the converter in an unreduced state, and the stainless coarse molten steel is taken out into a ladle, followed by vacuum refining following the converter refining And a process for producing an ultra-low nitrogen stainless steel characterized by performing decarburization treatment and degassing treatment of the stainless crude molten steel ”.

通常、転炉での脱炭吹錬により生じるクロム含有スラグに、フェロシリコン(Fe−Si合金鉄)や金属Alなどの強還元材を添加し、クロム含有スラグ中のクロム酸化物をクロムに還元してステンレス粗溶鋼中に回収するが、特許文献1では、クロム含有スラグを未還元状態のままとするので、転炉内のステンレス粗溶鋼の溶解酸素濃度を高く維持でき、転炉から取鍋に出鋼する際の窒素のピックアップが防止され、二次精錬前のステンレス粗溶鋼の窒素濃度を低く抑えることができるとしている。   Usually, a strong reducing material such as ferrosilicon (Fe-Si alloy iron) or metal Al is added to chromium-containing slag produced by decarburization blowing in the converter, and the chromium oxide in the chromium-containing slag is reduced to chromium. However, in Patent Document 1, since the chromium-containing slag is left in an unreduced state, the dissolved oxygen concentration of the stainless crude molten steel in the converter can be maintained high, and the ladle from the converter can be maintained. Nitrogen pick-up at the time of steel production is prevented, and the nitrogen concentration of the stainless steel before the secondary refining can be kept low.

特開平11−140530号公報JP-A-11-140530

確かに特許文献1によって出鋼時の含クロム粗溶鋼の窒素ピックアップは防止されるが、転炉脱炭精錬末期の炉内に侵入する空気に起因する窒素ピックアップは防止できない。つまり、転炉脱炭精錬末期の炉内に侵入する空気に起因する窒素ピックアップを効率的に防止しない限り、転炉−VODプロセスなど、転炉と二次精錬とを組み合わせたプロセスで安定して低窒素高クロム鋼を溶製することはできない。   Although patent document 1 certainly prevents the nitrogen pick-up of the chromium-containing crude molten steel at the time of steel production, it cannot prevent the nitrogen pick-up caused by the air entering the furnace at the end of the converter decarburization refining. In other words, unless a nitrogen pickup caused by air entering the furnace at the end of converter decarburization and refining is efficiently prevented, a process combining a converter and secondary refining, such as a converter-VOD process, is stable. Low nitrogen high chromium steel cannot be melted.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、転炉での脱炭精錬とVOD法のような二次精錬設備での真空精錬とを組み合わせて、クロムを9質量%以上含有する高クロム鋼を溶製するにあたり、転炉脱炭精錬末期における窒素のピックを防止し、窒素含有量の低い高クロム鋼を安定して溶製することのできる高クロム鋼の溶製方法を提供することである。   The present invention has been made in view of the above circumstances, and the object is to combine 9 masses of chromium by combining decarburization refining in a converter and vacuum refining in a secondary refining facility such as the VOD method. When high-chromium steel containing more than 10% is melted, high-chromium steel can be stably melted by preventing the picking of nitrogen at the end of converter decarburization and refining high-chromium steel with low nitrogen content. It is to provide a manufacturing method.

上記課題を解決するための第1の発明に係る高クロム鋼の溶製方法は、転炉での脱炭精錬によって含クロム粗溶鋼を溶製し、次いで、取鍋内に出鋼された前記含クロム粗溶鋼を二次精錬設備で真空精錬してクロムを9質量%以上含有する高クロム鋼を溶製する高クロム鋼の溶製方法において、転炉からの出鋼時の溶鋼温度が1730℃以上になるように脱炭精錬条件を調整して脱炭精錬を実施し、これにより転炉内に存在するスラグの滓化を促進させ、空気からの含クロム粗溶鋼への吸窒を防止することを特徴とするものである。   In the method for melting high chromium steel according to the first invention for solving the above-mentioned problem, the chromium-containing crude molten steel is melted by decarburization refining in a converter, and then the steel is discharged into a ladle. In a method for producing high chromium steel, in which high-chromium steel containing 9 mass% or more of chromium is melted by vacuum refining chromium-containing crude molten steel in a secondary refining facility, the molten steel temperature at the time of steel removal from a converter is 1730 Decarburization and refining is carried out by adjusting the decarburization and refining conditions so that the temperature is higher than ℃, thereby promoting the hatching of slag present in the converter and preventing the nitrogen absorption from the chromium-containing crude molten steel It is characterized by doing.

第2の発明に係る高クロム鋼の溶製方法は、第1の発明において、転炉内のスラグ質量(kg)と、転炉スラグラインの炉内断面積(m2)との比を335kg/m2以上とすることを特徴とするものである。 The method for melting high-chromium steel according to the second invention is based on the first invention, wherein the ratio of the slag mass (kg) in the converter to the in-furnace cross-sectional area (m 2 ) of the converter slag line is 335 kg. / M 2 or more.

第3の発明に係る高クロム鋼の溶製方法は、第1または第2の発明において、前記高クロム鋼の窒素含有量は0.013質量%以下であることを特徴とするものである。   The method for melting high chromium steel according to the third invention is characterized in that, in the first or second invention, the high chromium steel has a nitrogen content of 0.013 mass% or less.

本発明によれば、転炉から出鋼時の含クロム粗溶鋼の温度が1730℃以上になるように脱炭精錬を実施するので、脱炭精錬末期の炉内の含クロム粗溶鋼は、滓化・溶融したスラグで覆われ、炉内に巻き込まれた空気と炉内の含クロム粗溶鋼との接触が絶たれ、空気からの窒素のピックアップが防止され、窒素含有量の低い高クロム鋼を安定して溶製することが実現される。また、炉内のスラグ量を所定量以上に確保することで、窒素のピックアップがより一層防止される。これにより、二次精錬設備での真空精錬処理時間の延長が回避され、低窒素高クロム鋼の生産性の向上、それに伴う製造コストの削減など、工業上有益な効果がもたらされる。   According to the present invention, since the decarburization refining is performed so that the temperature of the chromium-containing coarse molten steel at the time of steel removal from the converter is 1730 ° C. or higher, the chromium-containing coarse molten steel in the final stage of the decarburization refining is High-chromium steel with low nitrogen content, which is covered with slag that has been converted and melted, and the contact between the air entrained in the furnace and the chrome-containing coarse molten steel in the furnace is cut off, preventing the pickup of nitrogen from the air Stable melting is realized. Further, by securing the amount of slag in the furnace to a predetermined amount or more, the pickup of nitrogen is further prevented. This avoids extending the vacuum refining process time in the secondary refining equipment, and brings about industrially beneficial effects such as an improvement in the productivity of low nitrogen high chromium steel and a reduction in manufacturing costs associated therewith.

本発明を実施する際に用いた転炉設備の概略断面図である。It is a schematic sectional drawing of the converter equipment used when implementing this invention. 脱炭精錬末期における窒素のピックアップに及ぼす出鋼温度の影響を示す図である。It is a figure which shows the influence of the tapping temperature on the nitrogen pick-up in the decarburization refining end stage. 脱炭精錬末期における窒素のピックアップに及ぼす炉内スラグ量の影響を示す図である。It is a figure which shows the influence of the amount of slag in a furnace which has on the pickup of nitrogen in the decarburization refining end stage.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明に係る高クロム鋼の溶製方法を実施する際に用いた転炉設備の概略断面図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view of a converter facility used when carrying out the method of melting high chromium steel according to the present invention.

図1に示すように、本発明で使用した転炉設備は、外殻を鉄皮2とし、鉄皮2の内面側に耐火物3が施工された転炉本体1と、この転炉本体1の内部に挿入され、上下移動が可能な上吹きランス4とを備えている。転炉本体1の底部には、鉄皮2及び耐火物3を貫通する複数本の底吹き羽口5が設置され、また、転炉本体1の側壁上部には、溶製した含クロム粗溶鋼8を取鍋(図示せず)に出鋼するための出鋼口7が設置されている。それぞれの底吹き羽口5はガス導入管6に接続されている。上吹きランス4からは、精錬用ガスとして、工業用純酸素ガス及びアルゴンガスなどの不活性ガスが任意の流量で任意の期間に、つまり、工業用純酸素ガス単独、不活性ガス単独、または種々の混合比の工業用純酸素ガスと不活性ガスとの混合ガスが、任意の流量で任意の期間に炉内の含クロム粗溶鋼8に吹き込まれるように構成されている。   As shown in FIG. 1, the converter equipment used in the present invention has a converter body 1 in which an outer shell is an iron shell 2 and a refractory 3 is constructed on the inner surface side of the iron shell 2, and this converter body 1. And an upper blowing lance 4 that can be moved up and down. At the bottom of the converter main body 1, a plurality of bottom blowing tuyere 5 penetrating the iron shell 2 and the refractory 3 are installed. A steel outlet 7 for setting steel 8 in a ladle (not shown) is provided. Each bottom blowing tuyere 5 is connected to a gas introduction pipe 6. From the top blowing lance 4, as the refining gas, an inert gas such as an industrial pure oxygen gas and an argon gas is used at an arbitrary flow rate for an arbitrary period, that is, an industrial pure oxygen gas alone, an inert gas alone, or A mixture of industrial pure oxygen gas and inert gas having various mixing ratios is blown into the chromium-containing crude molten steel 8 in the furnace at an arbitrary flow rate for an arbitrary period.

また、底吹き羽口5からも精錬用ガスとして工業用純酸素ガス及びアルゴンガスなどの不活性ガスが任意の流量で任意の期間に、つまり、工業用純酸素ガス単独、不活性ガス単独、または種々の混合比の工業用純酸素ガスと不活性ガスとの混合ガスが、任意の流量で任意の期間に炉内の含クロム粗溶鋼8に吹き込まれる。また、羽口を二重管構造として、内管からは精錬用ガスとして工業用純酸素ガス単独、不活性ガス単独、または種々の混合比の工業用純酸素ガスと不活性ガスとの混合ガス、内管と外管との間隙からは羽口冷却用ガスとしてプロパン等の炭化水素ガスもしくは不活性ガスを吹き込むようにしてもよい。この場合は、例えば特開昭59−13011号公報に開示されるような羽口及びガス導入管の構成とするのがよい。尚、図示はしないが転炉本体1の両側壁外面には転炉本体1を保持するトラニオン軸が設けられ、このトラニオン軸を回転軸として転炉本体1は回転可能に構成されている。   In addition, an inert gas such as an industrial pure oxygen gas and an argon gas as a refining gas from the bottom blowing tuyere 5 at an arbitrary flow rate for an arbitrary period, that is, an industrial pure oxygen gas alone, an inert gas alone, Alternatively, a mixed gas of industrial pure oxygen gas and inert gas having various mixing ratios is blown into the chromium-containing crude molten steel 8 in the furnace at an arbitrary flow rate for an arbitrary period. Also, the tuyere has a double-pipe structure, and from the inner pipe, industrial pure oxygen gas alone, inert gas alone, or a mixture of industrial pure oxygen gas and inert gas in various mixing ratios as a refining gas A hydrocarbon gas such as propane or an inert gas may be blown from the gap between the inner tube and the outer tube as a tuyere cooling gas. In this case, for example, a tuyere and a gas introduction pipe as disclosed in JP-A-59-13011 are preferable. Although not shown, trunnion shafts for holding the converter main body 1 are provided on the outer surfaces of both side walls of the converter main body 1, and the converter main body 1 is configured to be rotatable about the trunnion shaft as a rotation axis.

転炉本体1に、クロム含有溶銑及び必要に応じてフェロクロム或いは高クロム鋼のスクラップを主原料として装入し、生石灰、クロム鉱石、ドロマイト、鉄鉱石などを副原料として装入し、上吹きランス4及び底吹き羽口5から上述のような精錬用ガスを吹き込み、酸素ガス中の酸素とクロム含有溶銑中の炭素とを反応させてクロム含有溶銑の脱炭精錬(「脱炭吹錬」とも呼ぶ)を推進させる。添加した副原料は一部溶融し、スラグ9を形成する。この脱炭精錬においては、クロム含有溶銑中のクロムの酸化ロスを抑制するために、脱炭精錬の後半(精錬時間の60%を超えた期間)は、上吹きランス4からの工業用純酸素ガスの供給を停止し、底吹き羽口5からの吹き込みのみとした。スラグ9の代表的な組成は、CaOが15〜35質量%、SiO2が5〜20質量%、Al23が10質量%以下、MgOが10質量%以下、Cr23が30〜55質量%である。 The converter body 1 is charged with chromium-containing hot metal and, if necessary, ferrochrome or high-chromium steel scrap as the main raw material, with quick lime, chrome ore, dolomite, iron ore, etc. as auxiliary raw materials, and the top blow lance 4 and bottom blowing tuyere 5 are blown with the above-mentioned refining gas, and the oxygen in the oxygen gas reacts with the carbon in the chromium-containing hot metal to decarburize and refine the chromium-containing hot metal (also called “decarburization blowing”). Promote). A part of the added auxiliary material is melted to form slag 9. In this decarburization refining, in order to suppress the oxidation loss of chromium in the chromium-containing hot metal, the second half of the decarburization refining (a period exceeding 60% of the refining time) is the industrial pure oxygen from the top blowing lance 4 The gas supply was stopped, and only blowing from the bottom blowing tuyere 5 was performed. Typical composition of the slag 9, CaO 15 to 35 wt%, SiO 2 is 5 to 20 wt%, Al 2 O 3 is 10 wt% or less, MgO is 10 mass% or less, 30 is Cr 2 O 3 55% by mass.

クロム含有溶銑の炭素濃度は、そのクロム含有量及び温度にもよるが5〜7質量%程度であり、クロム含有溶銑は、この脱炭精錬によって脱炭処理されて含クロム粗溶鋼8が溶製される。脱炭精錬終了時の含クロム粗溶鋼8の炭素濃度は、特に規定するものではないが0.4質量%程度以下とすることが好ましい。これ以上に高いと次工程のVOD法に代表される二次精錬設備での真空精錬、つまり真空脱炭精錬時間が長引くので好ましくない。一方、脱炭精錬終了時の含クロム粗溶鋼8の炭素濃度が余りに低いとクロムの酸化ロスが増大するので、脱炭精錬終了時の含クロム粗溶鋼8の炭素濃度は0.05質量%以上を確保することが好ましい。   The carbon concentration of the chromium-containing hot metal is about 5 to 7% by mass, although it depends on the chromium content and temperature, and the chromium-containing hot metal is decarburized by this decarburization refining, and the chromium-containing crude molten steel 8 is melted. Is done. The carbon concentration of the chromium-containing crude molten steel 8 at the end of decarburization refining is not particularly specified, but is preferably about 0.4% by mass or less. If it is higher than this, it is not preferable because the time for vacuum refining in the secondary refining equipment represented by the VOD method in the next step, that is, the vacuum decarburization refining time is prolonged. On the other hand, if the carbon concentration of the chromium-containing crude molten steel 8 at the end of decarburization refining is too low, the oxidation loss of chromium increases, so the carbon concentration of the chromium-containing coarse molten steel 8 at the end of decarburization refining is 0.05% by mass or more. Is preferably ensured.

このようにして行う脱炭精錬において、精錬末期(吹錬末期)の空気に起因する窒素のピックアップを防止する方法を種々検討した。ここで、脱炭精錬末期に窒素がピックアップする理由は以下の通りである。即ち、脱炭精錬末期は、クロム含有溶銑中の炭素濃度が低くなり、脱炭反応の生成物であるCOガスの発生量が減少する。脱炭反応が盛んな時期は発生するCOガスを未燃焼のまま回収するが、COガス発生量の少なくなる脱炭精錬末期は回収せずに煙道で燃焼させる。この燃焼用の空気が転炉本体1の炉口から転炉本体1の内部にまで侵入し、含クロム粗溶鋼8の窒素濃度が上昇する。   In the decarburization refining performed in this way, various methods for preventing nitrogen pickup caused by air at the end of refining (end of blowing) were studied. Here, the reason why nitrogen is picked up at the end of decarburization refining is as follows. That is, at the end of decarburization refining, the carbon concentration in the chromium-containing hot metal becomes low, and the amount of CO gas generated as a product of the decarburization reaction decreases. When the decarburization reaction is active, the generated CO gas is recovered without being burned, but at the end of the decarburization refining where the amount of generated CO gas is reduced, it is burned in the flue without being recovered. This combustion air enters from the furnace port of the converter main body 1 to the inside of the converter main body 1, and the nitrogen concentration of the chromium-containing coarse molten steel 8 increases.

先ず、炉内のスラグ量をほぼ一定に維持した状態で、出鋼時の含クロム粗溶鋼8の温度(「出鋼温度」という)を変化させ、脱炭精錬末期における窒素のピックアップに及ぼす出鋼温度の影響を調査した。図2に調査結果を示す。図2に示すように、出鋼温度の上昇に伴って窒素のピックアップ量が少なくなり、出鋼温度が1730℃以上の範囲では窒素のピックアップ量を0.0060質量%以下に抑制できることが確認できた。   First, while maintaining the amount of slag in the furnace almost constant, the temperature of the chromium-containing coarse molten steel 8 at the time of steelmaking (referred to as “steeling temperature”) is changed to affect the nitrogen pick-up at the end of decarburization refining. The effect of steel temperature was investigated. The survey results are shown in FIG. As shown in FIG. 2, it can be confirmed that the amount of nitrogen pick-up decreases as the steel output temperature rises, and that the amount of nitrogen pick-up can be suppressed to 0.0060 mass% or less when the steel output temperature is 1730 ° C. or higher. It was.

この理由は以下の通りである。脱炭精錬時のスラグ9の組成は上記の通りであり、スラグ9中のCr23濃度が上記範囲内の平均的な45質量%の場合、CaO−SiO2−Cr23の3元系状態図によれば、1700℃では、スラグ9は液相−Cr23(固相)の二相共存領域となり、一方、1600℃の場合は、前記の二相共存領域ではあるものの、液相の領域が大幅に減少する。即ち、スラグ9の温度は含クロム粗溶鋼8の温度と同等であり、出鋼温度が高くなるほどスラグ9が滓化し、出鋼温度が1730℃以上の範囲では、含クロム粗溶鋼8は、滓化したスラグ9で覆われて空気との接触が絶たれ、窒素のピックアップが抑制されるからである。また、滓化したスラグ9はフォーミング(泡立ち)しやすく、スラグ9が底吹き羽口5から吹き込まれるガスによってフォーミングして空気を遮断することも窒素のピックアップ抑制に寄与する。 The reason is as follows. The composition of the slag during decarburization refining is as defined above, when the Cr 2 O 3 concentration in the slag in average 45 wt% within the above range, 3 of CaO-SiO 2 -Cr 2 O 3 According to the original system phase diagram, at 1700 ° C., the slag 9 becomes a two-phase coexistence region of liquid phase—Cr 2 O 3 (solid phase), whereas at 1600 ° C., it is the aforementioned two-phase coexistence region. The liquid phase area is greatly reduced. That is, the temperature of the slag 9 is equivalent to the temperature of the chromium-containing coarse molten steel 8, and the slag 9 hatches as the steel output temperature becomes higher. This is because the contact with the air is covered with the slag 9 and the pickup of nitrogen is suppressed. Further, the hatched slag 9 is easy to form (bubble), and the formation of the slag 9 by the gas blown from the bottom blowing tuyere 5 to shut off the air also contributes to suppression of nitrogen pickup.

また、上記の結果から、炉内に存在するスラグ9の質量も窒素のピックアップに影響することが予想されたので、副原料(主に生石灰)の添加量を調整して、炉内に存在するスラグ9の質量を変化させ、脱炭精錬末期における窒素のピックアップに及ぼす影響を調査した。この場合、スラグ9による空気の遮断効果は、炉内に存在するスラグ9の厚みに相関すると考えられたので、転炉内のスラグ質量(kg)と、転炉スラグラインの炉内断面積(m2)との比(以下、「比A」と記す)を指標として調査した。転炉スラグラインの炉内断面積(m2)は、スラグライン部の内径(転炉本体1の中心軸から耐火物3の表面までの距離)をr(m)とすると、転炉スラグラインの炉内断面積=πr2(m2)で求めることができる。 Moreover, since it was estimated from the above results that the mass of the slag 9 existing in the furnace also affects the pickup of nitrogen, the amount of auxiliary raw material (mainly quick lime) is adjusted to exist in the furnace. The mass of the slag 9 was changed, and the influence on the nitrogen pickup at the end of decarburization refining was investigated. In this case, since the air blocking effect by the slag 9 was considered to correlate with the thickness of the slag 9 existing in the furnace, the slag mass (kg) in the converter and the cross-sectional area in the furnace of the converter slag line ( m 2 ) (hereinafter referred to as “ratio A”) as an index. The cross-sectional area (m 2 ) of the converter slag line is the converter slag line, where r (m) is the inner diameter of the slag line (the distance from the central axis of the converter main body 1 to the surface of the refractory 3). In-furnace cross-sectional area = πr 2 (m 2 ).

図3に調査結果を示す。尚、図3では、出鋼温度が1730℃以上の場合と1730℃未満の場合とで比較して示している。図3に示すように、出鋼温度が1730℃以上の場合には、比Aが大きくなるとともに窒素のピックアップ量が少なくなることが確認でき、特に、比Aが335kg/m2以上の場合には、窒素ピックアップ量を安定して0.0035質量%以下に制御できることが分かった。一方、出鋼温度が1730℃未満の場合には、比Aの増加に伴って窒素ピックアップ量が少なくなる傾向は一致するが、出鋼温度が1730℃以上の場合に比較して、窒素ピックアップ量に0.0015質量%以上の格差があることが確認できた。 The survey results are shown in FIG. In addition, in FIG. 3, it has shown in comparison with the case where a steel output temperature is 1730 degreeC or more and the case where it is less than 1730 degreeC. As shown in FIG. 3, when the steel output temperature is 1730 ° C. or higher, it can be confirmed that the ratio A increases and the amount of nitrogen pick-up decreases, particularly when the ratio A is 335 kg / m 2 or higher. It was found that the amount of nitrogen pickup could be stably controlled to 0.0035% by mass or less. On the other hand, when the steel output temperature is less than 1730 ° C., the tendency that the amount of nitrogen pick-up decreases as the ratio A increases coincides, but the amount of nitrogen pick-up is compared with the case where the steel output temperature is 1730 ° C. or higher. It was confirmed that there was a difference of 0.0015% by mass or more.

本発明は、これらの試験結果に基づきなされたもので、転炉での脱炭精錬によって含クロム粗溶鋼8を溶製し、次いで、取鍋内に出鋼された前記含クロム粗溶鋼8を二次精錬設備で真空精錬してクロムを9質量%以上含有する高クロム鋼を溶製する高クロム鋼の溶製方法において、転炉からの出鋼時の溶鋼温度が1730℃以上になるように脱炭精錬条件を調整して脱炭精錬を実施し、これにより転炉内に存在するスラグ9の滓化を促進させ、空気からの含クロム粗溶鋼8への吸窒を防止することを特徴とする。この場合に、比Aを335kg/m2以上とすることが好ましい。尚、少なくとも脱炭精錬の末期は、上吹きランス4からの精錬用ガスの供給を停止し、底吹き羽口5からの吹き込みのみとする操業を前提とすることが好ましい。このことにより、上吹きランス4から吹き付けられる精錬ガスによって形成される裸湯(スラグが押しのけられて含クロム粗溶鋼の表面が炉内雰囲気に露出した部分)をなくすことができ、空気からの吸窒をより一層低減することが期待できるからである。 The present invention was made on the basis of these test results. The chromium-containing coarse molten steel 8 was melted by decarburization refining in a converter, and then the chromium-containing coarse molten steel 8 put out in a ladle was used. In the high chrome steel melting method, in which high chrome steel containing 9% by mass or more of chrome is melted by vacuum refining in the secondary refining equipment, the molten steel temperature at the time of steel removal from the converter is over 1730 ° C. The decarburization and refining conditions are adjusted to the above, thereby promoting the hatching of the slag 9 existing in the converter and preventing the nitrogen from being absorbed into the chromium-containing crude molten steel 8 from the air. Features. In this case, the ratio A is preferably 335 kg / m 2 or more. At least at the end of decarburization refining, it is preferable to presuppose an operation in which the supply of the refining gas from the top blowing lance 4 is stopped and only the blowing from the bottom blowing tuyere 5 is performed. As a result, it is possible to eliminate the bare hot water formed by the refining gas blown from the top blowing lance 4 (the portion where the surface of the chrome-containing crude molten steel is exposed to the furnace atmosphere due to the slag being pushed away). This is because it can be expected to further reduce nitrogen.

以上説明したように、本発明によれば、脱炭精錬末期の炉内の含クロム粗溶鋼8は、滓化・溶融したスラグ9で覆われ、炉内に巻き込まれた空気と炉内の含クロム粗溶鋼8との接触が絶たれ、空気からの窒素のピックアップが防止されて、窒素含有量の低い高クロム鋼を安定して溶製することが実現される。また、比Aを335kg/m2以上として、炉内のスラグ量を確保することにより、窒素のピックアップがより一層防止される。 As described above, according to the present invention, the chromium-containing crude molten steel 8 in the furnace at the end of decarburization refining is covered with the hatched and melted slag 9, and the air entrained in the furnace and the contents in the furnace are contained. The contact with the chromium smelted molten steel 8 is cut off, the pickup of nitrogen from the air is prevented, and stable production of high chromium steel having a low nitrogen content is realized. Further, by setting the ratio A to 335 kg / m 2 or more and securing the amount of slag in the furnace, the pickup of nitrogen is further prevented.

図1に示す転炉設備(但し、底吹羽口は二重管構造のもの)を用いて本発明を実施した例を説明する。溶製した高クロム鋼は、クロム濃度が17〜18質量%、窒素濃度が0.012質量%以下、硫黄濃度が0.040質量%以下のステンレス鋼である。   An example in which the present invention is implemented using the converter equipment shown in FIG. 1 (however, the bottom blowing port has a double pipe structure) will be described. The molten high chromium steel is a stainless steel having a chromium concentration of 17 to 18% by mass, a nitrogen concentration of 0.012% by mass or less, and a sulfur concentration of 0.040% by mass or less.

転炉本体に、クロム含有溶銑及びフェロクロムを主原料として装入し、その後、生石灰、クロム鉱石、ドロマイトを副原料として装入し、上吹きランスから工業用純酸素ガスを供給し、一方、底吹き羽口の内管から工業用純酸素ガスを、内管と外管の間隙からは羽口冷却用ガスとしてプロパンを供給して脱炭精錬を開始した。脱炭精錬の後半(精錬時間の60%を超えた期間)は、上吹きランスからの工業用純酸素ガスの供給を停止し、底吹き羽口の内管から工業用純酸素ガスと不活性ガスとの混合ガスを供給し脱炭精錬を継続した。炉内のスラグの組成は、CaOが15〜35質量%、SiO2が5〜20質量%、Al23が0〜10質量%、MgOが4〜10質量%、Cr23が30〜55質量%であった。脱炭精錬の終了時点は、含クロム粗溶鋼の炭素濃度が0.08〜0.20質量%の範囲内とした。 The converter body is charged with chromium-containing hot metal and ferrochrome as the main raw materials, and then charged with quick lime, chromium ore and dolomite as auxiliary raw materials, and supplied with industrial pure oxygen gas from the top blowing lance, Decarburization and refining was started by supplying industrial pure oxygen gas from the inner tube of the blow tuyere and propane as the tuyere cooling gas from the gap between the inner and outer tubes. In the second half of the decarburization refining (a period exceeding 60% of the refining time), the supply of industrial pure oxygen gas from the top blowing lance was stopped, and the industrial pure oxygen gas and inert from the inner pipe of the bottom blowing tuyere The decarburization refining was continued by supplying a mixed gas with the gas. The composition of the slag in the furnace, CaO 15 to 35 wt%, SiO 2 is 5 to 20 wt%, Al 2 O 3 is 0 to 10 mass%, MgO 4-10 wt%, Cr 2 O 3 is 30 It was -55 mass%. At the end of decarburization refining, the carbon concentration of the chromium-containing crude molten steel was set within the range of 0.08 to 0.20 mass%.

主原料であるクロム含有溶銑とフェロクロムとの配合率、工業用純酸素ガスの供給量及び副原料の装入量を調整し、出鋼温度を1730℃以上に調整するとともに、副原料の装入量を調整して、比Aを335kg/m2以上に調整した。 Adjust the blending ratio of chromium-containing hot metal, which is the main raw material, and ferrochrome, the supply amount of industrial pure oxygen gas and the charging amount of the auxiliary raw material, adjust the steel output temperature to 1730 ° C or more and charge the auxiliary raw material. The amount was adjusted to adjust the ratio A to 335 kg / m 2 or more.

この脱炭精錬において、精錬途中で転炉本体にサブランスを投入し、溶湯から分析用試料を採取して窒素のピックアップ量を測定した。また、取鍋に出鋼後の含クロム粗溶鋼から分析用試料を採取して窒素の含有量を調査した。   In this decarburization refining, a sub lance was put into the converter body during refining, an analytical sample was taken from the molten metal, and the amount of nitrogen picked up was measured. Moreover, the analytical sample was extract | collected from the chromium-containing crude molten steel after steel-drawing to the ladle, and nitrogen content was investigated.

その結果、脱炭精錬末期の窒素のピックアップ量は平均値で0.0025質量%であり、対策前の窒素ピックアップ量平均値=0.0068質量%に対して大幅に少なくすることができた。また、出鋼後の含クロム粗溶鋼の窒素含有量は平均値で0.0091質量%であり、対策前の窒素含有量平均値=0.014質量%に対して大幅に低減できた。これにより、次工程のVOD工程では、処理時間を対策前の92分から86分へと短縮することが実現された。   As a result, the amount of nitrogen pick-up at the end of decarburization refining was 0.0025% by mass on average, which was significantly less than the average value of nitrogen pick-up before countermeasures = 0.068% by mass. Moreover, the nitrogen content of the chromium-containing crude molten steel after steelmaking was 0.0091% by mass on average, which was significantly reduced compared to the average nitrogen content before countermeasures = 0.014% by mass. As a result, in the next VOD process, the processing time was reduced from 92 minutes before the countermeasure to 86 minutes.

1 転炉本体
2 鉄皮
3 耐火物
4 上吹きランス
5 底吹き羽口
6 ガス導入管
7 出鋼口
8 含クロム粗溶鋼
9 スラグ
DESCRIPTION OF SYMBOLS 1 Converter body 2 Iron skin 3 Refractory 4 Top blowing lance 5 Bottom blowing tuyere 6 Gas introduction pipe 7 Steel outlet 8 Chrome-containing coarse molten steel 9 Slag

Claims (2)

転炉での脱炭精錬によって含クロム粗溶鋼を溶製し、次いで、取鍋内に出鋼された前記含クロム粗溶鋼を二次精錬設備で真空精錬してクロムを9質量%以上含有する高クロム鋼を溶製する高クロム鋼の溶製方法において、転炉からの出鋼時の溶鋼温度が1730℃以上になるように脱炭精錬条件を調整して脱炭精錬を実施し、これにより転炉内に存在するスラグの滓化を促進させるとともに、炉内のスラグ質量(kg)と転炉スラグラインの炉内断面積(m 2 )との比を335kg/m 2 以上として脱炭精錬を実施し、空気からの含クロム粗溶鋼への吸窒を防止することを特徴とする、高クロム鋼の溶製方法。 The chromium-containing coarse molten steel is melted by decarburization refining in a converter, and then the chromium-containing coarse molten steel put out in the ladle is vacuum-refined in a secondary refining equipment to contain 9% by mass or more of chromium. In the high chromium steel melting method for melting high chromium steel, decarburization refining is carried out by adjusting the decarburization refining conditions so that the molten steel temperature at the time of steel output from the converter is 1730 ° C or higher. de Rutotomoni promotes the slag formation of slag existing in the rolling furnace, the ratio of the slag weight in the furnace and (kg) and the furnace cross-sectional area of the converter slag line (m 2) as 335 kg / m 2 or more by A method for producing high-chromium steel, characterized by performing carbon refining to prevent nitrogen from being absorbed into the chromium-containing crude molten steel. 前記高クロム鋼の窒素含有量は0.013質量%以下であることを特徴とする、請求項1に記載の高クロム鋼の溶製方法。 The method for melting high chrome steel according to claim 1, wherein the high chromium steel has a nitrogen content of 0.013 mass% or less.
JP2009238790A 2009-10-16 2009-10-16 Melting method of high chromium steel Active JP5544818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009238790A JP5544818B2 (en) 2009-10-16 2009-10-16 Melting method of high chromium steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009238790A JP5544818B2 (en) 2009-10-16 2009-10-16 Melting method of high chromium steel

Publications (2)

Publication Number Publication Date
JP2011084782A JP2011084782A (en) 2011-04-28
JP5544818B2 true JP5544818B2 (en) 2014-07-09

Family

ID=44077946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009238790A Active JP5544818B2 (en) 2009-10-16 2009-10-16 Melting method of high chromium steel

Country Status (1)

Country Link
JP (1) JP5544818B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115558738B (en) * 2022-11-01 2023-10-20 鞍钢股份有限公司 Method for smelting high-chromium molten steel by using low oxygen potential of combined blown converter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285222A (en) * 2001-03-28 2002-10-03 Kawasaki Steel Corp Method for producing high chromium steel
JP4114346B2 (en) * 2001-11-21 2008-07-09 Jfeスチール株式会社 Manufacturing method of high Cr molten steel
JP3774674B2 (en) * 2002-04-01 2006-05-17 新日本製鐵株式会社 Method for producing low nitrogen-containing chromium molten steel
JP2004256854A (en) * 2003-02-25 2004-09-16 Jfe Steel Kk Method for decarbonization-refining stainless steel

Also Published As

Publication number Publication date
JP2011084782A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5954551B2 (en) Converter steelmaking
KR100749023B1 (en) Method for refining extra low phosphorous steel in converter
CN113699430A (en) Full-flow process for smelting low-sulfur low-phosphorus ultra-low-carbon steel
JP3428628B2 (en) Stainless steel desulfurization refining method
JP5983492B2 (en) Hot metal pretreatment method
US6068676A (en) Method and apparatus for producing high chromium content steels and/ or ferroalloys in an electric arc converter
JP5544818B2 (en) Melting method of high chromium steel
WO2018216660A1 (en) Method for manufacturing high manganese steel ingot
Aleksashin et al. Creation and growth of oxygen-converter steelmaking
JP2008184648A (en) Method for desiliconizing and dephosphorizing molten pig iron
JP3460595B2 (en) Melting method for extremely low sulfur steel
JP2006283164A (en) Method for desulfurize-treating chromium-contained molten iron
WO2020152945A1 (en) Method for producing low-carbon ferromanganese
JP3774674B2 (en) Method for producing low nitrogen-containing chromium molten steel
JP2003147430A (en) Reducing agent for steelmaking, and steelmaking method
CN115404309B (en) Molten steel deoxidizing method
JP7036993B2 (en) Method for producing low carbon ferromanganese
CN115558735B (en) Smelting method of pure iron
JP5949627B2 (en) Method of refining hot metal in converter
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JPH06228626A (en) Method for reforming slag as pretreatment of desulfurization
US4066442A (en) Method of making chrome steel in an electric arc furnace
KR102171769B1 (en) Method for processing molten material and stainless steel manufactured using the same
JP3560637B2 (en) Converter furnace blowing method for stainless steel
JPH0967608A (en) Production of stainless steel

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R150 Certificate of patent or registration of utility model

Ref document number: 5544818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250