WO2018216660A1 - Method for manufacturing high manganese steel ingot - Google Patents

Method for manufacturing high manganese steel ingot Download PDF

Info

Publication number
WO2018216660A1
WO2018216660A1 PCT/JP2018/019526 JP2018019526W WO2018216660A1 WO 2018216660 A1 WO2018216660 A1 WO 2018216660A1 JP 2018019526 W JP2018019526 W JP 2018019526W WO 2018216660 A1 WO2018216660 A1 WO 2018216660A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese
steel
molten metal
molten steel
concentration
Prior art date
Application number
PCT/JP2018/019526
Other languages
French (fr)
Japanese (ja)
Inventor
勇輔 藤井
中井 由枝
信彦 小田
太 小笠原
菊池 直樹
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201880032038.3A priority Critical patent/CN110621793A/en
Priority to JP2019506740A priority patent/JP6551626B2/en
Priority to EP18806216.0A priority patent/EP3633051B1/en
Priority to KR1020197033815A priority patent/KR102315999B1/en
Publication of WO2018216660A1 publication Critical patent/WO2018216660A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0068Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by introducing material into a current of streaming metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Definitions

  • the present invention relates to a method for melting high manganese steel.
  • Manganese has the advantage of improving the strength of the steel material by adding it to the steel. Manganese also has the advantage of reacting with sulfur remaining in the steel as an inevitable impurity to form MnS, preventing the formation of harmful FeS and suppressing the influence of sulfur in the steel material. For this reason, most of the steel material contains manganese. In recent years, low-carbon and high-manganese steels with low carbon content and high manganese content that have both high tensile strength and high workability have been developed to reduce the weight of structures. Widely used as steel plates and automotive steel plates.
  • manganese sources used for adjusting the manganese concentration in molten steel include manganese ore, high carbon ferromanganese (carbon content: 7.5 mass% or less), medium carbon ferromanganese (carbon content: 2). 0.0 mass%), low carbon ferromanganese (carbon content: 1.0 mass% or less), silicomanganese (carbon content: 2.0 mass% or less), metal manganese (carbon content: 0.01 mass%) % Or less) is generally used.
  • these manganese sources become expensive as the carbon content decreases, except for manganese ore. Therefore, for the purpose of reducing the manufacturing cost, a method for melting manganese-containing steel using manganese ore or high carbon ferromanganese, which is an inexpensive manganese source, has been proposed.
  • Patent Document 1 as a method of melting high manganese steel, the carbon concentration is 1. when the steel is discharged to a ladle after rinsing with a bottom blowing gas after the completion of the converter blowing.
  • high-carbon ferromanganese of 0% by mass or more is introduced, aluminum is introduced, deoxidation treatment is performed, and then RH gas degassing treatment is performed.
  • Patent Document 2 as a method for melting high manganese steel, manganese ore is used to decarburize and refine hot metal while reducing manganese ore, and after decarburization is finished, deoxidation of molten steel with aluminum is performed.
  • JP 2013-112855 A Japanese Patent No. 4534734 Japanese Patent Laid-Open No. 5-125428
  • the present invention has been made paying attention to the above-mentioned problems, and when producing a high manganese steel containing 5 mass% or more of manganese, a high manganese yield can be obtained, and a high efficiency can be obtained. It aims at providing the manufacturing method of the high manganese steel which can be manufactured.
  • the hot metal is decarburized in the converter to make the hot metal a molten steel with a low carbon concentration.
  • the decarburization step and the decarburization step by adding a manganese source and a silicon source to the molten steel accommodated in the converter, after the reduction step of reducing the molten steel, after the reduction step, A degassing step of vacuum degassing the molten steel with a vacuum degassing device, and in the reduction step, the silicon source so as to satisfy the formula (1) according to the amount of the manganese source added.
  • x Mn Manganese concentration in the manganese source (mass%)
  • xSi silicon concentration (mass%) in the silicon source
  • W Mn Amount of manganese source added (kg / t)
  • W Si Amount of silicon source added (kg / t)
  • a high manganese steel that can provide a high manganese yield and can be smelted with high efficiency when melting high manganese steel containing 5 mass% or more of manganese.
  • a melting method is provided.
  • the decarburization process which decarburizes the molten metal 2 (it is also called "molten iron") which is the molten metal accommodated in the converter 1 is performed (S100).
  • the molten metal 2 is molten iron discharged from the blast furnace, and after being discharged from the blast furnace, it is transferred to a steelmaking factory as a next process in a transfer container that can store molten iron such as a hot metal ladle or a torpedo car.
  • a dephosphorization process for reducing the phosphorus concentration of the hot metal is performed before charging the hot metal into the converter 1. preferable.
  • an oxygen source such as solid oxygen such as iron oxide or gaseous oxygen and a medium solvent containing lime are added to the hot metal contained in the hot metal transfer container, and the hot metal becomes gaseous oxygen or a gas for stirring.
  • the dephosphorization reaction proceeds as a result of stirring.
  • the phosphorus concentration of the hot metal is lower than the upper limit concentration of the final component standard of the high manganese steel.
  • the phosphorus concentration in the hot metal is 0.05 mass above the upper limit of the component standard. It is more preferable to carry out the dephosphorization treatment until it becomes about%, and then remove the slag generated by the treatment (also referred to as “removing”). Furthermore, in order to lower the phosphorus concentration of the hot metal below the upper limit of the component standard, desiliconization is performed before dephosphorization, and silicon that inhibits efficient dephosphorization reaction is removed in advance. Is preferred.
  • the molten metal 2 that is the molten iron conveyed in the conveying container is transferred to the molten iron ladle and then charged into the converter 1 that is the primary refining furnace.
  • scrap serving as an iron source may be charged into the furnace body 10.
  • the converter 1 is a conventional converter facility, and includes a furnace body 10, an upper blowing lance 11, a plurality of bottom blowing nozzles 12, and a chute 13, as shown in FIG.
  • the furnace body 10 is a barrel-type or pear-type refining furnace having a furnace port as an opening at the top, and a refractory is provided inside.
  • the upper blowing lance 11 is disposed above the furnace body 10 and configured to be movable up and down in the vertical direction (up and down direction in FIG. 2).
  • a plurality of nozzle holes are formed at the lower end of the upper blowing lance 11, and the molten metal 2 in which the oxidizing gas containing at least oxygen supplied from a supply facility (not shown) is accommodated in the furnace body 10 from the plurality of nozzle holes.
  • the plurality of bottom blowing nozzles 12 are provided at the bottom of the furnace body 10, and agitation gas that is an inert gas such as argon or nitrogen supplied from a supply device (not shown) is blown into the molten metal 2 accommodated in the furnace body 10.
  • agitation gas that is an inert gas such as argon or nitrogen supplied from a supply device (not shown) is blown into the molten metal 2 accommodated in the furnace body 10.
  • the chute 13 is arranged above the furnace body 10, connected to a plurality of unillustrated furnace hoppers for storing various auxiliary materials such as lime-containing medium solvent and alloyed iron, and auxiliary materials cut out from each furnace hopper. Is added into the furnace body 10.
  • oxidizing gas is injected from the top blowing lance 11 into the molten metal 2 (also referred to as “acid feeding”) while stirring the molten metal 2 accommodated in the furnace body 10 with the stirring gas blown from the bottom blowing nozzle 12.
  • decarburization treatment also referred to as “decarburization blowing”
  • the decarburization reaction proceeds by the oxygen blown into the molten metal 2 by the top blowing lance 11 and the carbon in the molten metal 2 reacting.
  • an auxiliary raw material such as alloy iron containing Cr or Ni is added to the chute 13. Is added to the molten metal 2.
  • decarburization blowing is performed until the carbon concentration of the molten metal 2 falls within a predetermined range, and the molten metal 2 is changed from molten iron having a high carbon concentration to molten steel having a low carbon concentration.
  • the predetermined range of the carbon concentration is preferably 0.05% by mass or more and 0.2% by mass or less.
  • a manganese source and a silicon source are added into the furnace body 10 in which the molten metal 2 is accommodated, and a reduction step is performed in which the molten metal 2 that is molten steel is reduced (S102).
  • Manganese sources are ores, alloys and metals containing manganese.
  • the manganese source for example, manganese ore, high carbon ferromanganese, medium carbon ferromanganese, low carbon ferromanganese, silicomanganese, metal manganese, and the like can be used.
  • the silicon source is an ore, an alloy, or a metal containing silicon (silicon).
  • the silicon source for example, ferrosilicon or silicomanganese can be used.
  • the manganese source and the silicon source may be added from the furnace port via the chute 13 or may be added from the furnace port of the furnace body 10 using a scrap chute (not shown) used for charging the scrap. Good. Further, when adding the manganese source and the silicon source, the molten metal 2 is added while being stirred by blowing a stirring gas from the plurality of bottom blowing nozzles 12.
  • the manganese source is added in an amount corresponding to the target manganese concentration, which is a component standard of high manganese steel. That is, the addition amount of the manganese source is determined by the manganese content of the manganese source, the carbon concentration of the molten metal 2 and the like according to the target manganese concentration. At this time, the record of the yield of the manganese source may be considered. In the reduction process, it is not necessary to set the manganese concentration of the molten metal 2 to a target concentration, and the manganese concentration of the molten metal 2 is set to a lower concentration than the target concentration so that it can be adjusted in the degassing step described later. May be.
  • the addition amount of the manganese source in the reduction step is preferable to increase the addition amount of the manganese source in the reduction step as much as possible relative to the addition amount of the manganese source in the degassing step. Furthermore, from the viewpoint of reducing the cost for processing, it is preferable to use manganese ore or an inexpensive manganese source with a high carbon concentration as much as possible, as long as there is no effect on the adjustment of components other than manganese such as carbon.
  • the silicon source is added in an addition amount that satisfies the following formula (1).
  • x Mn is the manganese concentration (mass%) in the manganese source
  • x Si is the silicon concentration (mass%) in the silicon source
  • WMn is the added amount of the manganese source (kg / t)
  • W Si Indicates the added amount (kg / t) of the silicon source. That is, the silicon source is added in an amount corresponding to the added amount of the manganese source to be added.
  • the stirring gas is blown from the plurality of bottom blowing nozzles 12, and the molten metal 2 is stirred for a predetermined time.
  • the molten metal 2 after the decarburization step has a high oxygen potential, when a manganese source is added to the molten metal 2, manganese in the manganese source is oxidized and not oxidized in the molten metal 2, and manganese oxide (MnO ) And included in the slag 3.
  • the silicon source is added in addition to the manganese source, manganese in the manganese source and manganese oxide in the slag 3 generated by the decarburization process are reduced by the reaction represented by the following formula (2).
  • the manganese concentration of the molten metal 2 becomes high.
  • the oxygen potential of the molten metal 2 is lowered by preferentially oxidizing silicon in the silicon source.
  • the addition amount of the silicon source is lower than the range of the formula (1), that is, when the addition amount of the silicon source is small, the reduction reaction of manganese oxide does not proceed, so the manganese concentration of the molten metal 2 may be increased. become unable.
  • the addition amount of the silicon source becomes higher than the range of the formula (1), that is, when the addition amount of the silicon source is large, the addition amount of lime for adjusting the basicity becomes too large. The cost is high.
  • the silicon concentration of the molten metal 2 becomes high and may exceed the upper limit of a component specification value. In such a case, it is necessary to perform a silicon removal treatment for reducing the silicon concentration of the molten metal 2 in the next step, which is not preferable.
  • the molten metal 2 of the furnace body 10 is transferred to the ladle (also referred to as “tapping steel”).
  • the ladle also referred to as “tapping steel”.
  • lime of 5 kg / t or more and 10 kg / t or less is previously placed in the pan in an amount per 1 t of the molten metal.
  • Preliminary lime in the ladle can prevent the generation of white smoke at the time of steelmaking and suppress the increase in the sulfur concentration of the molten metal 2 due to the sulfurization from the slag 3.
  • the vacuum degassing apparatus 5 performs a vacuum degassing process on the molten metal 2 that is molten steel (S104).
  • the vacuum degassing device 5 is a VOD type degassing device, and performs degassing processing by stirring the molten metal 2 accommodated in the ladle 4 under reduced pressure.
  • the vacuum degassing apparatus 5 includes a vacuum chamber 50, an exhaust pipe 51, a stirring gas supply path 52, an upper blowing lance 53, and a supply port 54.
  • the vacuum chamber 50 is a container that can accommodate the ladle 4 therein, and has a detachable upper lid 500 so that the ladle 4 can be taken in and out.
  • the exhaust pipe 51 is provided on the side surface of the vacuum chamber 50 and is connected to an exhaust device (not shown).
  • the stirring gas supply path 52 is arranged from the outside to the inside of the vacuum chamber 50, and the tip on the inner side of the vacuum chamber 50 is connected to the blowing port 40 of the ladle 4.
  • the stirring gas supply path 52 is connected to a stirring gas supply device (not shown) at the inner end of the vacuum chamber 50, and a stirring gas such as argon gas supplied from the stirring gas supply device is blown into the inlet of the ladle 4. 40.
  • the upper blowing lance 53 is inserted into the center of the upper lid 500 and is configured to be able to move up and down in the vertical direction (vertical direction in FIG. 3).
  • the upper blowing lance 53 has a nozzle hole formed at the lower end, and an oxidizing gas containing at least oxygen supplied from a supply facility (not shown) is supplied from the nozzle hole to the molten metal 2 accommodated in the ladle 4.
  • the supply port 54 is formed in the upper lid 500 and is connected to a plurality of furnace hoppers (not shown) that store various auxiliary materials such as a solvate containing lime and iron alloy, and takes out the auxiliary materials cut out from each of the furnace hoppers. It is an inlet for adding to the molten metal 2 accommodated in the pan 4.
  • the molten gas 2 is stirred by blowing the stirring gas from the blowing port 40, and then the exhaust pipe 51 is evacuated using the exhaust device.
  • Vacuum degassing treatment is performed by reducing the pressure in the chamber 50.
  • the auxiliary component for component adjustment is set so as to be within the target component range according to the components of the molten metal 2 before or during the vacuum degassing process.
  • the raw material is added to the molten metal 2 through the supply port 54.
  • the amount of manganese source such as metal manganese, high carbon ferromanganese, low carbon ferromanganese, etc. necessary for component adjustment Only add to molten metal 2.
  • auxiliary materials containing each component are added to the molten metal 2.
  • secondary materials used for adjusting the composition of slag 3 and promoting desulfurization reaction such as CaO-containing material, MgO-containing material, aluminum-containing material, Al 2 O 3 -containing material, SiO 2 -containing material May be added to the molten metal 2.
  • the stirring power ⁇ (W / t) represented by the following formula (4) is 300 W / t or more and 1300 W / t or less.
  • the stirring power ⁇ is less than 300 W / t, the stirring power becomes small, so that it takes time for the denitrification process and the dehydrogenation process, and the processing time for the vacuum degassing process is extended, which is not preferable.
  • the stirring power ⁇ is larger than 1300 W / t, the amount of slag 3 entrapped in the molten metal 2 increases, and the defect rate due to slag inclusions increases, which is not preferable.
  • Q n is the flow rate of the stirring gas (Nm 3 / min)
  • T l is the temperature (K) of the molten metal 2
  • W m is the weight (t) of the molten metal 2
  • ⁇ l is the molten metal 2 Density (kg / m 3 )
  • h is the height of the molten metal surface (m) which is the depth of the molten metal 2 in the ladle 4
  • P 1 is the atmospheric pressure (Torr)
  • is the energy transfer efficiency ( ⁇ )
  • T n Indicates the temperature (K) of the stirring gas.
  • One Torr is (101325/760) Pa.
  • a temperature increasing process for raising the temperature of the molten metal 2 may be performed during the vacuum degassing process.
  • an oxidizing gas containing oxygen is injected from the upper blowing lance 53 onto the molten metal 2.
  • the dynamic pressure P (kPa) of the oxidizing gas jet injected from the top blowing lance 53 is 10 kPa or more and 50 kPa or less. It is preferable to control as described above. By controlling the dynamic pressure P within the above range, the molten metal 2 can be efficiently heated while minimizing the evaporation of manganese from the molten metal 2.
  • ⁇ g is the density of the oxidizing gas (kg / Nm 3 )
  • U is the flow velocity (m / sec) of the oxidizing gas jetted from the nozzle of the top blowing lance 53 at the nozzle tip.
  • F represents the flow rate of the oxidizing gas (Nm 3 / h)
  • S represents the cross-sectional area (m 2 ) of the nozzle of the top blowing lance 53.
  • molten steel with a predetermined target component concentration is produced.
  • a molten slab or the like is continuously cast to produce a high-manganese steel slab having a predetermined shape such as a slab.
  • the vacuum degassing apparatus 5 is a VOD type refining apparatus, but the present invention is not limited to such an example.
  • the vacuum degassing device 5 may be an RH degassing device or a DH degassing device.
  • the vacuum degassing apparatus is an RH type degassing apparatus, in order to suppress the evaporation of manganese, the molten steel represented by the following formula (7) is used under the condition that the space pressure in the vacuum tank is 50 Torr to 100 Torr.
  • the reflux amount Q (t / min) is preferably 150 t / min or more and 200 t / min or less.
  • the treatment may be performed at a tank internal pressure of less than 50 Torr, but after the denitrification and dehydrogenation, the treatment is performed at a tank internal pressure of 50 Torr or more and 100 Torr or less. It is preferable to carry out.
  • K is a constant
  • G is the flow rate (NL / min) of the recirculation gas blown from the dip tube
  • D is the inner diameter (m) of the dip tube
  • P 2 is the external pressure (Torr)
  • P Reference numeral 3 represents the internal space pressure (Torr) of the vacuum chamber.
  • the molten metal 2 which is the molten steel manufactured with the converter 1 was used as the molten metal 2 processed with the vacuum degassing apparatus 5, this invention is not limited to this example.
  • the molten steel manufactured in the converter 1 may be used as the molten metal 2 to be processed by the vacuum degassing device 5 by combining the molten steel melted in another refining furnace.
  • the manganese concentration of the molten steel manufactured by the converter 1 can be lowered by increasing the manganese concentration of the molten steel melted in another refining furnace.
  • the manganese gas and the silicon source are added to the reduction step, and then the stirring gas is blown from the plurality of bottom blowing nozzles 12 to stir the molten metal 2 for a predetermined time.
  • the stirring gas is blown from the plurality of bottom blowing nozzles 12 to stir the molten metal 2 for a predetermined time.
  • oxidizing gas from the top blowing lance 11 may be injected in addition to blowing the stirring gas.
  • the heat treatment may be performed by an oxidation reaction with an oxidizing gas.
  • dephosphorization processing was performed to hot metal before decarburization processing
  • this invention is not limited to this example.
  • a desulfurization treatment for reducing the sulfur concentration in the hot metal may be performed before the dephosphorization process or after the dephosphorization process depending on the equipment configuration.
  • the dephosphorization process was performed with respect to the hot metal accommodated in the hot metal conveyance container, this invention is not limited to this example.
  • the dephosphorization treatment may be, for example, a method of performing treatment by injecting an oxidizing gas from an upper blowing lance to hot metal accommodated in a converter type refining furnace.
  • the method for melting high manganese steel is to decarburize hot metal (molten metal 2) in converter 1 when melting steel containing 5 mass% or more of manganese.
  • a manganese source and a silicon source to the molten steel housed in the converter 1 after the decarburization step (step S100) in which the molten iron has a low carbon concentration (molten metal 2) and the decarburization step
  • a reduction process for reducing the molten steel
  • a degassing process (Step S104) for performing a vacuum degassing process on the molten steel in the vacuum degassing apparatus 5 after the reduction process
  • a manganese source is added according to the target manganese concentration of the steel, and a silicon source is added so as to satisfy equation (1).
  • the reduction reaction of the formula (2) can be promoted, manganese in the added manganese source can be easily retained in the molten metal 2. Further, since the manganese source is added in the converter 1, heat loss (decrease in the temperature of the molten metal 2) due to the addition of the manganese source can be suppressed. Furthermore, since the molten metal 2 can be subjected to a heat treatment in the converter 1 after the addition of the manganese source, the heat treatment can be efficiently performed. Furthermore, it is possible to suppress the addition of an excessive silicon source more than an amount sufficient for promoting the reduction reaction, and it is not necessary to perform a desiliconization process in the degassing process. Can do.
  • the vacuum degassing device 5 As the vacuum degassing device 5, a device for stirring the molten steel by blowing a stirring gas from the bottom of the ladle containing the molten steel is used.
  • the vacuum degassing process is performed while stirring the molten steel under the condition that the stirring power ⁇ represented by the above is 300 W / t or more and 1300 W / t or less.
  • the time required for the denitrification process and the dehydrogenation process can be shortened, and further, the slag 3 can be prevented from being caught in the molten metal 2. For this reason, the processing time of a vacuum degassing process can be shortened.
  • Example 1 performed by the present inventors will be described.
  • the hot metal discharged from the blast furnace was subjected to hot metal pretreatment of desiliconization treatment and dephosphorization treatment, so that the phosphorus concentration was 0.010% by mass.
  • a high manganese steel having a manganese concentration of 5% by mass or more was melted by performing a decarburization process, a reduction process, and a degassing process on the hot metal.
  • the components of the molten high manganese steel are as follows: carbon concentration: 0.145 mass% to 0.155 mass%, manganese concentration: 24 mass% to 25 mass%, silicon concentration: 0.1 mass% or more It was 0.2 mass% or less, sulfur concentration: 0.002 mass% or less, nitrogen concentration: 100 ppm or less, and hydrogen concentration: 5 ppm or less.
  • the molten metal 2 that has been subjected to the hot metal pretreatment is decarburized, and decarburized and blown until the carbon concentration reaches 0.05% by mass to obtain molten steel. .
  • the reduction step high-carbon ferromanganese and metal manganese were added as a manganese source to molten metal 2 that was a decarburized molten steel, and ferrosilicon was added as a silicon source. Then, while stirring the molten metal 2 with the stirring gas, the acid supply from the top blowing lance 11 was continued and the reduction treatment was performed to dissolve the manganese source and increase the manganese concentration of the molten metal 2.
  • the addition amount of the silicon source satisfies the formula (1).
  • lime was added together with the manganese source.
  • the manganese concentration of the molten metal 2 at the end of the reduction treatment was approximately 24% by mass.
  • about 0.8 kg of metal aluminum was added per ton of molten steel to the molten metal 2 to be tapped. .
  • the degassing process was performed on the molten metal 2 that was 150 tons of molten steel that had undergone the reduction step, using the VOD type vacuum degassing device 5 as in the above embodiment.
  • degassing was performed by blowing the Ar gas at a flow rate of 2000 Nl / min into the molten metal 2 from the inlet 40 of the ladle 4 and stirring the molten metal 2 while setting the internal space pressure of the vacuum chamber 50 to 2 Torr.
  • metal manganese and high carbon ferromanganese were added to the molten metal 2 during the degassing process to adjust the components.
  • Example 1 shows the amount of silicon source added in the reduction step, the Mn yield, the silicon concentration of the molten metal 2 during steel output, and the time required for the degassing process in the degassing step as the results of Example 1.
  • the Mn yield in Table 1 indicates how much manganese contained in the manganese source used in the reduction process was added to the molten metal 2, that is, the manganese content in the manganese source was that of the molten metal 2 before and after the reduction process. It shows how much it contributed to the increase in manganese concentration.
  • the silicon contained in the molten metal 2 is oxidized and removed by injecting an oxidizing gas from the top blowing lance 53 onto the molten metal 2.
  • an oxidizing gas from the top blowing lance 53 onto the molten metal 2.
  • Example 2 performed by the present inventors will be described.
  • high manganese steel was melted by a melting method similar to that in Example 1-4 under a plurality of conditions in which the stirring power ⁇ in the degassing step was changed.
  • the components of the molten high manganese steel are as follows: carbon concentration: 0.145 mass% to 0.155 mass%, manganese concentration: 24 mass% to 25 mass%, silicon concentration: 0.1 mass% or more It was 0.2 mass% or less, sulfur concentration: 0.002 mass% or less, nitrogen concentration: 100 ppm or less, and hydrogen concentration: 5 ppm or less.
  • the decarburization process was performed on the molten metal 2 that was the hot metal that had been subjected to the hot metal pretreatment in the converter 1, and the carbon concentration was 0.05 mass%. Until then, decarburization was blown into molten steel.
  • a reduction process similarly to Example 1-4, a 35 kg / t silicon source was added and the molten metal 2 was subjected to a reduction treatment. The manganese concentration of the molten metal 2 at the end of the reduction treatment was approximately 24% by mass.
  • the molten metal 2 was degassed by the vacuum degassing apparatus 5 as in Example 1-4. In the degassing step, the degassing process was performed under a plurality of conditions in which the stirring power ⁇ was arbitrarily changed by adjusting the flow rate of Ar gas blown from the blowing port 40 of the ladle 4.
  • Example 2 As a result of Example 2 shown in Table 2, the amount of silicon source added in the reduction process, the Mn yield, the silicon concentration of the molten metal 2 during steel output, the stirring power in the degassing process, and the time required for degassing in the degassing process Indicates.
  • Table 2 in Example 2, high manganese steel was melted under 10 conditions of Examples 2-1 to 2-10 having different stirring power in the degassing step.
  • the stirring power ⁇ in the degassing step in Example 1-4 corresponds to that in Example 2-1.
  • the other melting conditions were the same as those in Example 1-4.
  • Example 2-1 in which the stirring power ⁇ is less than 300 W / t , 2-2 and stirring power ⁇ exceeding 1300 W / t, it was confirmed that the time required for the degassing treatment was shortened compared to Examples 2-9 and 2-10. This is considered to be because dehydrogenation, denitrogenation, and floating of inclusions in the vacuum degassing process were promoted by applying an appropriate stirring power to the molten metal 2 to perform stirring.

Abstract

Provided is a method for manufacturing high manganese steel ingots with which ingots can be manufactured with high efficiency and a high manganese yield can be obtained when manufacturing ingots of high manganese steel that includes 5% by mass or more manganese. This method comprises, when ingots of steel that includes 5% by mass or more manganese are manufactured, a decarbonization step (step S100) for forming the hot metal into molten steel (melt (2)) with a low carbon concentration by a decarbonization treatment performed on the hot metal (melt (2)) in a converter furnace (1), a reduction step (step S102) for reducing treatment of the molten steel by adding a manganese source and a silicon source to the molten steel accommodated in the converter furnace (1) after the decarbonization step, and a degassing step (step S104) for performing vacuum degassing treatment on the molten steel in a vacuum degassing device (5) after the reduction step. In the reduction step, the manganese source is added according to the target manganese concentration of the steel, and the silicon source is added so as to satisfy Equation (1).

Description

高マンガン鋼の溶製方法Method for melting high manganese steel
 本発明は、高マンガン鋼の溶製方法に関する。 The present invention relates to a method for melting high manganese steel.
 マンガンは、鋼中に添加することにより、鋼材料の強度を向上させる利点がある。また、マンガンは、不可避的不純物として鋼中に残留する硫黄と反応してMnSを形成し、有害なFeSの生成を防止して鋼材料における硫黄の影響を抑制するなどの利点がある。このことから、鋼材料の大半は、マンガンを含有している。近年では、構造物の軽量化を目的として、高い引張強さと高い加工性とを両立させた、炭素含有量が低く、マンガン含有量が高い、低炭素・高マンガン鋼が開発され、ラインパイプ用鋼板や自動車用鋼板などとして広く使用されている。 Manganese has the advantage of improving the strength of the steel material by adding it to the steel. Manganese also has the advantage of reacting with sulfur remaining in the steel as an inevitable impurity to form MnS, preventing the formation of harmful FeS and suppressing the influence of sulfur in the steel material. For this reason, most of the steel material contains manganese. In recent years, low-carbon and high-manganese steels with low carbon content and high manganese content that have both high tensile strength and high workability have been developed to reduce the weight of structures. Widely used as steel plates and automotive steel plates.
 製鋼工程において、溶鋼中のマンガン濃度を調整するために用いるマンガン源としては、マンガン鉱石や高炭素フェロマンガン(炭素含有量:7.5質量%以下)、中炭素フェロマンガン(炭素含有量:2.0質量%以下)、低炭素フェロマンガン(炭素含有量:1.0質量%以下)、シリコマンガン(炭素含有量:2.0質量%以下)、金属マンガン(炭素含有量:0.01質量%以下)などが一般的に用いられる。また、これらのマンガン源では、マンガン鉱石を除いて、炭素含有量が低くなるほどに高価となる。従って、製造コストの低減を目的として、安価なマンガン源である、マンガン鉱石や高炭素フェロマンガンを使用してマンガン含有鋼を溶製する方法が提案されている。 In the steelmaking process, manganese sources used for adjusting the manganese concentration in molten steel include manganese ore, high carbon ferromanganese (carbon content: 7.5 mass% or less), medium carbon ferromanganese (carbon content: 2). 0.0 mass%), low carbon ferromanganese (carbon content: 1.0 mass% or less), silicomanganese (carbon content: 2.0 mass% or less), metal manganese (carbon content: 0.01 mass%) % Or less) is generally used. Moreover, these manganese sources become expensive as the carbon content decreases, except for manganese ore. Therefore, for the purpose of reducing the manufacturing cost, a method for melting manganese-containing steel using manganese ore or high carbon ferromanganese, which is an inexpensive manganese source, has been proposed.
 例えば、特許文献1には、高マンガン鋼を溶製する方法として、転炉の吹錬終了後、底吹きガスによるリンシング処理を行ってから取鍋へ出鋼する際に、炭素濃度が1.0質量%以上の高炭素フェロマンガンを投入した後にアルミニウムを投入して脱酸処理し、その後、RHガス脱ガス処理を施す方法が提案されている。
 また、特許文献2には、高マンガン鋼を溶製する方法として、マンガン鉱石を使用して、マンガン鉱石を還元しながら溶銑の脱炭精錬を行ない、脱炭終了後はアルミニウムによる溶鋼の脱酸処理を施さないまま溶鋼を真空脱ガス設備に搬送し、酸素ガスと不活性ガスとの混合ガスを吹き付けて脱炭処理を施す溶製方法が提案されている。
 さらに、特許文献3には、高マンガン鋼を溶製する方法として、マンガン濃度が8質量%以上の高Mn溶銑を、0.1質量%以下の炭素濃度になるまで減圧下で脱炭精錬する際に、精錬気体を搬送ガスとして、Mn酸化物を含有する粉体状の脱炭精錬用添加剤を溶銑に吹き付ける方法が提案されている。
For example, in Patent Document 1, as a method of melting high manganese steel, the carbon concentration is 1. when the steel is discharged to a ladle after rinsing with a bottom blowing gas after the completion of the converter blowing. There has been proposed a method in which high-carbon ferromanganese of 0% by mass or more is introduced, aluminum is introduced, deoxidation treatment is performed, and then RH gas degassing treatment is performed.
Further, in Patent Document 2, as a method for melting high manganese steel, manganese ore is used to decarburize and refine hot metal while reducing manganese ore, and after decarburization is finished, deoxidation of molten steel with aluminum is performed. There has been proposed a melting method in which molten steel is transported to a vacuum degassing facility without being treated, and a decarburization treatment is performed by blowing a mixed gas of oxygen gas and inert gas.
Furthermore, in Patent Document 3, as a method for melting high manganese steel, high Mn hot metal having a manganese concentration of 8% by mass or more is decarburized and refined under reduced pressure until the carbon concentration becomes 0.1% by mass or less. At this time, a method has been proposed in which a refining gas is used as a carrier gas and a powdery decarburization refining additive containing Mn oxide is sprayed onto the hot metal.
特開2013-112855号公報JP 2013-112855 A 特許第4534734号公報Japanese Patent No. 4534734 特開平5-125428号公報Japanese Patent Laid-Open No. 5-125428
 ところで、特許文献1~3の高マンガン鋼の溶製方法では、転炉での溶銑の脱炭吹錬時に転炉内に投入したマンガン鉱石を還元したり、転炉からの出鋼時や取鍋精錬時、真空脱ガス精錬時にマンガン源を溶鋼に添加したりすることによって溶鋼のマンガン濃度を上げている。
 しかしながら、このような溶製方法において、脱炭吹錬時あるいは出鋼時にマンガン源を添加した場合、添加されたマンガン源の歩留りが低いため、多量のマンガン源を添加する必要があり、処理時間の増加とマンガンコストの増加が問題となる。また、出鋼時や取鍋精錬時、真空脱ガス精錬時にマンガン源を添加する場合、マンガン源の溶解による熱ロスが発生するため、転炉以降のプロセスにて溶鋼を昇熱させる必要が出てくる。しかし、取鍋精錬装置や真空脱ガス装置による溶鋼の昇熱処理は、転炉での昇熱処理に比べて効率が悪く処理に掛かるコストの増加が問題となる。特に、マンガン濃度が5質量%以上の高マンガン鋼では、これらの問題が顕著となる。
By the way, in the smelting method of high manganese steels disclosed in Patent Documents 1 to 3, manganese ore introduced into the converter is reduced during decarburization and blowing of hot metal in the converter, or when the steel is removed from the converter or removed. The manganese concentration of the molten steel is increased by adding a manganese source to the molten steel during hot pot refining or vacuum degassing.
However, in such a smelting method, when a manganese source is added at the time of decarburization blowing or steeling, since the yield of the added manganese source is low, it is necessary to add a large amount of manganese source, and the processing time Increases in manganese and cost of manganese are problems. In addition, when a manganese source is added during steelmaking, ladle refining, or vacuum degassing refining, heat loss occurs due to dissolution of the manganese source, so it is necessary to raise the temperature of the molten steel in the process after the converter. Come. However, the heat treatment of molten steel using a ladle refining device or a vacuum degassing device is less efficient than the heat treatment in a converter and increases the cost of the treatment. In particular, in the case of high manganese steel having a manganese concentration of 5% by mass or more, these problems become significant.
 そこで、本発明は、上記の課題に着目してなされたものであり、マンガンを5質量%以上含む高マンガン鋼を溶製するに際に、高いマンガン歩留りを得ることができ、高効率で溶製をすることができる、高マンガン鋼の溶製方法を提供することを目的としている。 Therefore, the present invention has been made paying attention to the above-mentioned problems, and when producing a high manganese steel containing 5 mass% or more of manganese, a high manganese yield can be obtained, and a high efficiency can be obtained. It aims at providing the manufacturing method of the high manganese steel which can be manufactured.
 本発明の一態様によれば、マンガンを5質量%以上含有する鋼を溶製する際に、転炉にて、溶銑に脱炭処理を施すことで、上記溶銑を炭素濃度の低い溶鋼とする脱炭工程と、この脱炭工程の後、上記転炉に収容された前記溶鋼に、マンガン源及びシリコン源を添加することで、上記溶鋼を還元処理する還元工程と、上記還元工程の後、真空脱ガス装置にて、上記溶鋼に真空脱ガス処理を行う脱ガス工程と、を備え、上記還元工程では、上記マンガン源の添加量に応じて、(1)式を満たすように上記シリコン源を添加することを特徴とする高マンガン鋼の溶製方法が提供される。 According to one aspect of the present invention, when steel containing 5 mass% or more of manganese is melted, the hot metal is decarburized in the converter to make the hot metal a molten steel with a low carbon concentration. After the decarburization step and the decarburization step, by adding a manganese source and a silicon source to the molten steel accommodated in the converter, after the reduction step of reducing the molten steel, after the reduction step, A degassing step of vacuum degassing the molten steel with a vacuum degassing device, and in the reduction step, the silicon source so as to satisfy the formula (1) according to the amount of the manganese source added. There is provided a method for melting high manganese steel characterized by adding
Figure JPOXMLDOC01-appb-M000003
   xMn:マンガン源中のマンガン濃度(質量%)
   xSi:シリコン源中のシリコン濃度(質量%)
   WMn:マンガン源の添加量(kg/t)
   WSi:シリコン源の添加量(kg/t)
Figure JPOXMLDOC01-appb-M000003
x Mn : Manganese concentration in the manganese source (mass%)
xSi : silicon concentration (mass%) in the silicon source
W Mn : Amount of manganese source added (kg / t)
W Si : Amount of silicon source added (kg / t)
 本発明の一態様によれば、マンガンを5質量%以上含む高マンガン鋼を溶製するに際に、高いマンガン歩留りを得ることができ、高効率で溶製をすることができる、高マンガン鋼の溶製方法が提供される。 According to one aspect of the present invention, a high manganese steel that can provide a high manganese yield and can be smelted with high efficiency when melting high manganese steel containing 5 mass% or more of manganese. A melting method is provided.
本発明の一態様に係る高マンガン鋼の溶製方法を示すフローチャートである。It is a flowchart which shows the melting method of the high manganese steel which concerns on 1 aspect of this invention. 転炉を示す模式図である。It is a schematic diagram which shows a converter. 真空脱ガス装置を示す模式図である。It is a schematic diagram which shows a vacuum degassing apparatus.
 以下の詳細な説明では、本発明の完全な理解を提供するように、本発明の実施形態を例示して多くの特定の細部について説明する。しかしながら、かかる特定の細部の説明がなくても1つ以上の実施態様が実施できることは明らかであろう。また、図面は、簡潔にするために、周知の構造及び装置が略図で示されている。
 <高マンガン鋼の溶製方法>
 図1~図3を参照して、本発明の一実施形態に係る高マンガン鋼の溶製方法について説明する。本実施形態では、高炉から出銑された溶銑に対して、後述する精錬処理を施すことで、マンガンを5質量%以上含有する溶鋼である高マンガン鋼を溶製する。
In the following detailed description, numerous specific details are set forth, illustrating embodiments of the present invention, in order to provide a thorough understanding of the present invention. However, it will be apparent that one or more embodiments may be practiced without such specific details. In the drawings, well-known structures and devices are schematically shown for simplicity.
<Method of melting high manganese steel>
A method for melting high manganese steel according to an embodiment of the present invention will be described with reference to FIGS. In this embodiment, the high manganese steel which is a molten steel which contains 5 mass% or more of manganese is melted by performing the refining process mentioned later with respect to the hot metal extracted from the blast furnace.
 まず、図1及び図2に示すように、転炉1に収容された溶銑である溶湯2(「溶鉄」ともいう。)に脱炭処理を施す脱炭工程を行う(S100)。
 溶湯2は、高炉から出銑された溶銑であり、高炉から出銑された後に溶銑鍋やトーピードカー等の溶銑を収容可能な搬送容器で次工程となる製鋼工場へと搬送される。なお、転炉1で使用される石灰源等の媒溶剤を少なくするためには、溶銑を転炉1に装入する前に、溶銑の燐濃度を低減させる脱燐処理が施されることが好ましい。脱燐処理では、溶銑搬送容器に収容された溶銑に対して、酸化鉄等の固体酸素や気体酸素といった酸素源と、石灰を含む媒溶剤とが添加され、溶銑が気体酸素や攪拌用の気体によって攪拌されることで脱燐反応が進む。なお、脱燐処理では、転炉1で使用される媒溶剤を最大限少なくするためには、溶銑の燐濃度を高マンガン鋼の最終的な成分規格の上限濃度よりも低くすることが好ましい。さらに、後工程において添加されるマンガン源からの溶銑への燐ピックアップや、スラグからの復燐による燐濃度の上昇が懸念されるため、溶銑の燐濃度が成分規格の上限値よりも0.05mass%程度低くなるまで脱燐処理を行い、その後、処理により生じたスラグを取り除く(「除滓する」ともいう。)ことがより好ましい。さらに、溶銑の燐濃度を成分規格の上限値よりも低くするためには、脱燐処理の前に脱珪処理が施され、効率的な脱燐反応を阻害する珪素を予め除去しておくことが好ましい。
First, as shown in FIG.1 and FIG.2, the decarburization process which decarburizes the molten metal 2 (it is also called "molten iron") which is the molten metal accommodated in the converter 1 is performed (S100).
The molten metal 2 is molten iron discharged from the blast furnace, and after being discharged from the blast furnace, it is transferred to a steelmaking factory as a next process in a transfer container that can store molten iron such as a hot metal ladle or a torpedo car. In order to reduce the medium solvent such as lime source used in the converter 1, a dephosphorization process for reducing the phosphorus concentration of the hot metal is performed before charging the hot metal into the converter 1. preferable. In the dephosphorization process, an oxygen source such as solid oxygen such as iron oxide or gaseous oxygen and a medium solvent containing lime are added to the hot metal contained in the hot metal transfer container, and the hot metal becomes gaseous oxygen or a gas for stirring. The dephosphorization reaction proceeds as a result of stirring. In the dephosphorization treatment, in order to minimize the medium solvent used in the converter 1, it is preferable that the phosphorus concentration of the hot metal is lower than the upper limit concentration of the final component standard of the high manganese steel. Furthermore, since there is a concern about the increase in phosphorus concentration due to phosphorus pickup from the manganese source added in the post-process to the hot metal and recovery from the slag, the phosphorus concentration in the hot metal is 0.05 mass above the upper limit of the component standard. It is more preferable to carry out the dephosphorization treatment until it becomes about%, and then remove the slag generated by the treatment (also referred to as “removing”). Furthermore, in order to lower the phosphorus concentration of the hot metal below the upper limit of the component standard, desiliconization is performed before dephosphorization, and silicon that inhibits efficient dephosphorization reaction is removed in advance. Is preferred.
 脱炭工程では、脱炭処理を行う前に、搬送容器で搬送された溶銑である溶湯2を、溶銑鍋に移注した後に、一次精錬炉である転炉1に装入する。なお、溶湯2を装入する前に、鉄源となるスクラップが炉体10に装入されてもよい。
 転炉1は、慣用的な転炉設備であり、図2に示すように、炉体10と、上吹きランス11と、複数の底吹きノズル12と、シュート13とを備える。炉体10は、上部に開口部である炉口を有する樽型または西洋梨型の精錬炉であり、内部に耐火物が設けられる。上吹きランス11は、炉体10の上方に配され、鉛直方向(図2の上下方向)に昇降可能に構成される。上吹きランス11は、下端に複数のノズル孔が形成され、この複数のノズル孔から、不図示の供給設備から供給される少なくとも酸素を含む酸化性ガスを、炉体10に収容された溶湯2に噴射する。複数の底吹きノズル12は、炉体10の底部に設けられ、不図示の供給装置から供給されるアルゴンや窒素等の不活性ガスである攪拌ガスを炉体10に収容された溶湯2に吹き込むことで、溶湯2を攪拌させる。シュート13は、炉体10の上方に配され、石灰を含む媒溶剤や合金鉄等の各種副原料を貯蔵する不図示の複数の炉上ホッパーに接続され、各炉上ホッパーから切り出される副原料を炉体10内部へと添加する。
In the decarburization process, before performing the decarburization process, the molten metal 2 that is the molten iron conveyed in the conveying container is transferred to the molten iron ladle and then charged into the converter 1 that is the primary refining furnace. In addition, before charging the molten metal 2, scrap serving as an iron source may be charged into the furnace body 10.
The converter 1 is a conventional converter facility, and includes a furnace body 10, an upper blowing lance 11, a plurality of bottom blowing nozzles 12, and a chute 13, as shown in FIG. The furnace body 10 is a barrel-type or pear-type refining furnace having a furnace port as an opening at the top, and a refractory is provided inside. The upper blowing lance 11 is disposed above the furnace body 10 and configured to be movable up and down in the vertical direction (up and down direction in FIG. 2). A plurality of nozzle holes are formed at the lower end of the upper blowing lance 11, and the molten metal 2 in which the oxidizing gas containing at least oxygen supplied from a supply facility (not shown) is accommodated in the furnace body 10 from the plurality of nozzle holes. To spray. The plurality of bottom blowing nozzles 12 are provided at the bottom of the furnace body 10, and agitation gas that is an inert gas such as argon or nitrogen supplied from a supply device (not shown) is blown into the molten metal 2 accommodated in the furnace body 10. Thus, the molten metal 2 is stirred. The chute 13 is arranged above the furnace body 10, connected to a plurality of unillustrated furnace hoppers for storing various auxiliary materials such as lime-containing medium solvent and alloyed iron, and auxiliary materials cut out from each furnace hopper. Is added into the furnace body 10.
 脱炭工程では、底吹きノズル12から吹き込まれる攪拌ガスで炉体10に収容された溶湯2を攪拌させながら、上吹きランス11から溶湯2に酸化性ガスを噴射(「送酸」ともいう。)し、溶湯2に酸素を供給することで、大気圧下で脱炭処理(「脱炭吹錬」ともいう。)を行う。脱炭吹錬では、上吹きランス11により溶湯2に吹き込まれる酸素と、溶湯2中の炭素とが反応することで、脱炭反応が進行する。なお、高マンガン鋼の成分規格にCrやNiが含まれる場合(添加が必須である場合)には、脱炭吹錬中に、CrやNiを含有する合金鉄等の副原料を、シュート13を介して溶湯2に添加する。脱炭工程では、溶湯2の炭素濃度が所定の範囲となるまで脱炭吹錬が行われ、溶湯2が炭素濃度の高い溶銑から炭素濃度の低い溶鋼となる。このときの、炭素濃度の所定の範囲は、0.05質量%以上0.2質量%以下であることが好ましい。これは、脱炭工程後の溶湯2の炭素濃度が0.05質量%未満となる場合、溶湯2の酸素ポテンシャルが高くなり、マンガン源の歩留が低下してしまうからである。一方、脱炭工程後の溶湯2の炭素濃度が0.2質量%より大きくなる場合、二次精錬工程での脱炭処理が必要となり、処理コストが増加する。そして、溶湯2の炭素濃度が所定の範囲となると、炉体10内への酸化性ガスの供給を停止し、脱炭工程が終了する。 In the decarburization step, oxidizing gas is injected from the top blowing lance 11 into the molten metal 2 (also referred to as “acid feeding”) while stirring the molten metal 2 accommodated in the furnace body 10 with the stirring gas blown from the bottom blowing nozzle 12. Then, decarburization treatment (also referred to as “decarburization blowing”) is performed under atmospheric pressure by supplying oxygen to the molten metal 2. In the decarburization blowing, the decarburization reaction proceeds by the oxygen blown into the molten metal 2 by the top blowing lance 11 and the carbon in the molten metal 2 reacting. In addition, when Cr and Ni are included in the component standard of the high manganese steel (when addition is essential), during the decarburization blowing, an auxiliary raw material such as alloy iron containing Cr or Ni is added to the chute 13. Is added to the molten metal 2. In the decarburization step, decarburization blowing is performed until the carbon concentration of the molten metal 2 falls within a predetermined range, and the molten metal 2 is changed from molten iron having a high carbon concentration to molten steel having a low carbon concentration. At this time, the predetermined range of the carbon concentration is preferably 0.05% by mass or more and 0.2% by mass or less. This is because when the carbon concentration of the molten metal 2 after the decarburization step is less than 0.05% by mass, the oxygen potential of the molten metal 2 is increased and the yield of the manganese source is decreased. On the other hand, when the carbon concentration of the molten metal 2 after the decarburization process is greater than 0.2% by mass, a decarburization process in the secondary refining process is necessary, and the processing cost increases. And if the carbon concentration of the molten metal 2 becomes a predetermined range, supply of the oxidizing gas into the furnace body 10 will be stopped, and a decarburization process will be complete | finished.
 脱炭工程の後、溶湯2が収容された炉体10内に、マンガン源とシリコン源とを添加し、溶鋼である溶湯2を還元処理する還元工程を行う(S102)。マンガン源は、マンガンを含有する鉱石や合金、金属である。マンガン源には、例えば、マンガン鉱石や高炭素フェロマンガン、中炭素フェロマンガン、低炭素フェロマンガン、シリコマンガン、金属マンガン等を用いることができる。シリコン源は、シリコン(珪素)を含有する鉱石や合金、金属である。シリコン源には、例えば、フェロシリコンやシリコマンガン等を用いることができる。マンガン源及びシリコン源は、シュート13を介して炉口から添加されてもよく、また、スクラップの装入に用いられるスクラップシュート(不図示)を用いて炉体10の炉口から添加されてもよい。さらに、マンガン源とシリコン源とを添加する際には、複数の底吹きノズル12から攪拌ガスを吹き込んで溶湯2を攪拌させながら添加させる。 After the decarburization step, a manganese source and a silicon source are added into the furnace body 10 in which the molten metal 2 is accommodated, and a reduction step is performed in which the molten metal 2 that is molten steel is reduced (S102). Manganese sources are ores, alloys and metals containing manganese. As the manganese source, for example, manganese ore, high carbon ferromanganese, medium carbon ferromanganese, low carbon ferromanganese, silicomanganese, metal manganese, and the like can be used. The silicon source is an ore, an alloy, or a metal containing silicon (silicon). As the silicon source, for example, ferrosilicon or silicomanganese can be used. The manganese source and the silicon source may be added from the furnace port via the chute 13 or may be added from the furnace port of the furnace body 10 using a scrap chute (not shown) used for charging the scrap. Good. Further, when adding the manganese source and the silicon source, the molten metal 2 is added while being stirred by blowing a stirring gas from the plurality of bottom blowing nozzles 12.
 還元工程では、高マンガン鋼の成分規格である、目標とするマンガン濃度に応じた添加量でマンガン源を添加する。つまり、マンガン源の添加量は、目標とするマンガン濃度に応じて、マンガン源のマンガン含有量や溶湯2の炭素濃度等によって決定される。この際、マンガン源の歩留りの実績が考慮されてもよい。また、還元工程では、溶湯2のマンガン濃度を目標とする濃度にする必要はなく、後述する脱ガス工程にて調整可能なように、溶湯2のマンガン濃度を目標とする濃度よりも低い濃度にしてもよい。なお、熱効率の観点からは、脱ガス工程でのマンガン源の添加量に対して、還元工程でのマンガン源の添加量をできるだけ多くすることが好ましい。さらに、処理に掛かるコストを低減する観点からは、炭素等のマンガン以外の成分調整に影響がなければ、マンガン鉱石や炭素濃度の高い安価なマンガン源をできるだけ使用することが好ましい。 In the reduction process, the manganese source is added in an amount corresponding to the target manganese concentration, which is a component standard of high manganese steel. That is, the addition amount of the manganese source is determined by the manganese content of the manganese source, the carbon concentration of the molten metal 2 and the like according to the target manganese concentration. At this time, the record of the yield of the manganese source may be considered. In the reduction process, it is not necessary to set the manganese concentration of the molten metal 2 to a target concentration, and the manganese concentration of the molten metal 2 is set to a lower concentration than the target concentration so that it can be adjusted in the degassing step described later. May be. From the viewpoint of thermal efficiency, it is preferable to increase the addition amount of the manganese source in the reduction step as much as possible relative to the addition amount of the manganese source in the degassing step. Furthermore, from the viewpoint of reducing the cost for processing, it is preferable to use manganese ore or an inexpensive manganese source with a high carbon concentration as much as possible, as long as there is no effect on the adjustment of components other than manganese such as carbon.
 シリコン源は、下記(1)式を満たす添加量で添加される。(1)式において、xMnはマンガン源中のマンガン濃度(質量%)、xSiはシリコン源中のシリコン濃度(質量%)、WMnはマンガン源の添加量(kg/t)、WSiはシリコン源の添加量(kg/t)をそれぞれ示す。つまり、シリコン源は、添加するマンガン源の添加量に応じた量だけ添加される。 The silicon source is added in an addition amount that satisfies the following formula (1). In the formula (1), x Mn is the manganese concentration (mass%) in the manganese source, x Si is the silicon concentration (mass%) in the silicon source, WMn is the added amount of the manganese source (kg / t), W Si Indicates the added amount (kg / t) of the silicon source. That is, the silicon source is added in an amount corresponding to the added amount of the manganese source to be added.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、還元工程では、マンガン源及びシリコン源を添加した後、複数の底吹きノズル12から攪拌ガスを吹き込んで、所定の時間、溶湯2を攪拌させる。
 ここで、脱炭工程後の溶湯2は酸素ポテンシャルが高いため、この溶湯2にマンガン源を添加すると、マンガン源中のマンガンは溶湯2内に歩留らずに、酸化されて酸化マンガン(MnO)となってスラグ3に含まれる。しかし、本実施形態では、マンガン源に加えてシリコン源を添加するため、マンガン源中のマンガンや脱炭工程によって生じたスラグ3中の酸化マンガンが、下記(2)式で示される反応によって還元されることで、溶湯2のマンガン濃度が高くなる。また、シリコン源中のシリコンが優先的に酸化されることで、溶湯2の酸素ポテンシャルが下がる。これにより、マンガン源中のマンガンが溶湯2に歩留り易くなり、溶湯2のマンガン濃度が高くなる。
  2(MnO)+[Si]=(SiO)+2[Mn] ・・・(2)
In addition, in the reduction process, after adding the manganese source and the silicon source, the stirring gas is blown from the plurality of bottom blowing nozzles 12, and the molten metal 2 is stirred for a predetermined time.
Here, since the molten metal 2 after the decarburization step has a high oxygen potential, when a manganese source is added to the molten metal 2, manganese in the manganese source is oxidized and not oxidized in the molten metal 2, and manganese oxide (MnO ) And included in the slag 3. However, in this embodiment, since the silicon source is added in addition to the manganese source, manganese in the manganese source and manganese oxide in the slag 3 generated by the decarburization process are reduced by the reaction represented by the following formula (2). By doing so, the manganese concentration of the molten metal 2 becomes high. Moreover, the oxygen potential of the molten metal 2 is lowered by preferentially oxidizing silicon in the silicon source. Thereby, the manganese in a manganese source becomes easy to yield in the molten metal 2, and the manganese concentration of the molten metal 2 becomes high.
2 (MnO) + [Si] = (SiO 2 ) +2 [Mn] (2)
 さらに、還元工程では、スラグ3中のSiOの濃度(質量%)に対するCaOの濃度(質量%)の比で定義される、スラグ3の塩基度(CaO/SiO)が、1.6以上2.4以上となるように、炉体10内に石灰を添加することが好ましい。これにより、スラグ3の滓化及び下記(3)式で示される溶湯2の脱硫が促進される。
  2[S]+[Si]+2(CaO)=2(CaS)+(SiO) ・・・(3)
Furthermore, in the reduction step, the basicity (CaO / SiO 2 ) of the slag 3 defined by the ratio of the CaO concentration (mass%) to the SiO 2 concentration (mass%) in the slag 3 is 1.6 or more. It is preferable to add lime to the furnace body 10 so as to be 2.4 or more. Thereby, hatching of the slag 3 and desulfurization of the molten metal 2 shown by the following formula (3) are promoted.
2 [S] + [Si] +2 (CaO) = 2 (CaS) + (SiO 2 ) (3)
 なお、シリコン源の添加量が(1)式の範囲よりも低くなる場合、つまりシリコン源の添加量が少ない場合、酸化マンガンの還元反応が進まなくなるため、溶湯2のマンガン濃度を高くすることができなくなる。一方、シリコン源の添加量が(1)式の範囲よりも高くなる場合、つまりシリコン源の添加量が多い場合、塩基度を調整するための石灰の添加量が多くなりすぎるため、精錬処理に掛かるコストが嵩む。また、シリコン源の添加量が多い場合、溶湯2のシリコン濃度が高くなり、成分規格値の上限を超える可能性がある。このような場合、次工程において溶湯2のシリコン濃度を低減させる脱シリコン処理を行う必要が生じるため、好ましくない。 In addition, when the addition amount of the silicon source is lower than the range of the formula (1), that is, when the addition amount of the silicon source is small, the reduction reaction of manganese oxide does not proceed, so the manganese concentration of the molten metal 2 may be increased. become unable. On the other hand, when the addition amount of the silicon source becomes higher than the range of the formula (1), that is, when the addition amount of the silicon source is large, the addition amount of lime for adjusting the basicity becomes too large. The cost is high. Moreover, when there is much addition amount of a silicon source, the silicon concentration of the molten metal 2 becomes high and may exceed the upper limit of a component specification value. In such a case, it is necessary to perform a silicon removal treatment for reducing the silicon concentration of the molten metal 2 in the next step, which is not preferable.
 さらに、還元工程では、還元処理が終了すると、炉体10の溶湯2を取鍋に移注(「出鋼」ともいう。)する。この際、予め、溶湯1t当たりに対する量で、5kg/t以上10kg/t以下の石灰を取鍋内に前置きすることが好ましい。取鍋に石灰を前置きすることで、出鋼時の白煙の発生を防止するとともに、スラグ3からの復硫による溶湯2の硫黄濃度の上昇を抑えることができる。 Furthermore, in the reduction process, when the reduction process is completed, the molten metal 2 of the furnace body 10 is transferred to the ladle (also referred to as “tapping steel”). At this time, it is preferable that lime of 5 kg / t or more and 10 kg / t or less is previously placed in the pan in an amount per 1 t of the molten metal. Preliminary lime in the ladle can prevent the generation of white smoke at the time of steelmaking and suppress the increase in the sulfur concentration of the molten metal 2 due to the sulfurization from the slag 3.
 還元工程の後、真空脱ガス装置5にて溶鋼である溶湯2に、真空脱ガス処理を施す脱ガス工程を行う(S104)。真空脱ガス装置5は、VOD方式の脱ガス装置であり、取鍋4に収容された溶湯2を、減圧下で攪拌処理することで脱ガス処理を施す。真空脱ガス装置5は、真空槽50と、排気管51と、攪拌ガス供給経路52と、上吹きランス53と、供給口54とを有する。真空槽50は、取鍋4を内部に収容可能な容器であり、取鍋4を内部に出し入れ可能なように着脱式の上蓋500を有する。排気管51は、真空槽50の側面に設けられ、不図示の排気装置に接続される。攪拌ガス供給経路52は、真空槽50の外部から内部に配され、真空槽50の内部側の先端が取鍋4の吹き込み口40に接続される。また、攪拌ガス供給経路52は、真空槽50の内部側の先端が不図示の攪拌ガス供給装置に接続され、攪拌ガス供給装置から供給されるアルゴンガスなどの攪拌ガスを取鍋4の吹き込み口40に供給する。上吹きランス53は、上蓋500の中央に挿通して、鉛直方向(図3の上下方向)に昇降可能に構成される。また、上吹きランス53は、下端にノズル孔が形成され、不図示の供給設備から供給される少なくとも酸素を含む酸化性ガスをノズル孔から、取鍋4に収容された溶湯2に酸化性ガスを噴射する。供給口54は、上蓋500に形成され、石灰を含む媒溶剤や合金鉄等の各種副原料を貯蔵する不図示の複数の炉上ホッパーに接続され、各炉上ホッパーから切り出される副原料を取鍋4に収容された溶湯2へと添加する投入口である。 After the reduction process, a degassing process is performed in which the vacuum degassing apparatus 5 performs a vacuum degassing process on the molten metal 2 that is molten steel (S104). The vacuum degassing device 5 is a VOD type degassing device, and performs degassing processing by stirring the molten metal 2 accommodated in the ladle 4 under reduced pressure. The vacuum degassing apparatus 5 includes a vacuum chamber 50, an exhaust pipe 51, a stirring gas supply path 52, an upper blowing lance 53, and a supply port 54. The vacuum chamber 50 is a container that can accommodate the ladle 4 therein, and has a detachable upper lid 500 so that the ladle 4 can be taken in and out. The exhaust pipe 51 is provided on the side surface of the vacuum chamber 50 and is connected to an exhaust device (not shown). The stirring gas supply path 52 is arranged from the outside to the inside of the vacuum chamber 50, and the tip on the inner side of the vacuum chamber 50 is connected to the blowing port 40 of the ladle 4. The stirring gas supply path 52 is connected to a stirring gas supply device (not shown) at the inner end of the vacuum chamber 50, and a stirring gas such as argon gas supplied from the stirring gas supply device is blown into the inlet of the ladle 4. 40. The upper blowing lance 53 is inserted into the center of the upper lid 500 and is configured to be able to move up and down in the vertical direction (vertical direction in FIG. 3). Further, the upper blowing lance 53 has a nozzle hole formed at the lower end, and an oxidizing gas containing at least oxygen supplied from a supply facility (not shown) is supplied from the nozzle hole to the molten metal 2 accommodated in the ladle 4. Inject. The supply port 54 is formed in the upper lid 500 and is connected to a plurality of furnace hoppers (not shown) that store various auxiliary materials such as a solvate containing lime and iron alloy, and takes out the auxiliary materials cut out from each of the furnace hoppers. It is an inlet for adding to the molten metal 2 accommodated in the pan 4.
 脱ガス工程では、取鍋4を真空槽50内に収容した後、吹き込み口40から攪拌ガスを吹き込むことで溶湯2を攪拌させながら、排気装置を用いて排気管51から排気を行い、真空槽50内を減圧することで真空脱ガス処理を行う。このような真空脱ガス処理をすることで、溶湯2中のガス成分(窒素や水素等)の除去や、溶湯2の成分の均一化、溶湯2の介在物等の除去、溶湯2の温度の調整等を行う。また、脱ガス工程では、真空脱ガス処理を行う際に、真空脱ガス処理の処理前あるいは処理途中の溶湯2の成分に応じて、目標とする成分範囲になるように、成分調整用の副原料を、供給口54を通じて溶湯2に添加する。この際、真空脱ガス処理前の溶湯2のマンガン濃度が目標濃度よりも低い場合には、金属マンガンや高炭素フェロマンガン、低炭素フェロマンガン等のマンガン源を、成分調整のために必要な量だけ溶湯2に添加する。また、Al、Ni、Cr、Cu、Nb、Ti、V、Ca、B等の成分調整が必要な場合には、各成分を含有する副原料を溶湯2に添加する。さらに、脱硫等を目的に、CaO含有物質やMgO含有物質、アルミニウム含有物質、Al含有物質、SiO含有物質等の、スラグ3の組成の調整や脱硫反応の促進に用いられる副原料を溶湯2に添加してもよい。 In the degassing step, after the ladle 4 is accommodated in the vacuum chamber 50, the molten gas 2 is stirred by blowing the stirring gas from the blowing port 40, and then the exhaust pipe 51 is evacuated using the exhaust device. Vacuum degassing treatment is performed by reducing the pressure in the chamber 50. By performing such vacuum degassing treatment, the removal of gas components (such as nitrogen and hydrogen) in the molten metal 2, the homogenization of the components of the molten metal 2, the removal of inclusions in the molten metal 2, the temperature of the molten metal 2 Make adjustments. Further, in the degassing step, when performing the vacuum degassing process, the auxiliary component for component adjustment is set so as to be within the target component range according to the components of the molten metal 2 before or during the vacuum degassing process. The raw material is added to the molten metal 2 through the supply port 54. At this time, if the manganese concentration of the molten metal 2 before the vacuum degassing treatment is lower than the target concentration, the amount of manganese source such as metal manganese, high carbon ferromanganese, low carbon ferromanganese, etc. necessary for component adjustment Only add to molten metal 2. Further, when it is necessary to adjust the components such as Al, Ni, Cr, Cu, Nb, Ti, V, Ca, B, etc., auxiliary materials containing each component are added to the molten metal 2. Further, for the purpose of desulfurization and the like, secondary materials used for adjusting the composition of slag 3 and promoting desulfurization reaction, such as CaO-containing material, MgO-containing material, aluminum-containing material, Al 2 O 3 -containing material, SiO 2 -containing material May be added to the molten metal 2.
 また、脱ガス工程では、下記(4)式で示される攪拌動力ε(W/t)が、300W/t以上、1300W/t以下となる条件で溶湯2を攪拌することが好ましい。攪拌動力εが300W/t未満となる場合、攪拌力が小さくなるため、脱窒処理や脱水素処理に時間を要し、真空脱ガス処理の処理時間が延長するため好ましくない。また、攪拌動力εが1300W/tよりも大きい場合、溶湯2へのスラグ3の巻き込み量が多くなり、スラグ系介在物に起因した不良率が増加するため好ましくない。なお、(4)式において、Qは攪拌ガスの流量(Nm/min)、Tは溶湯2の温度(K)、Wは溶湯2の重量(t)、ρは溶湯2の密度(kg/m)、hは取鍋4内の溶湯2の深さである湯面高さ(m)、Pは雰囲気圧力(Torr)、ηはエネルギー伝達効率(-)、Tは攪拌ガスの温度(K)をそれぞれ示す。また、1Torrは(101325/760)Paである。 In the degassing step, it is preferable to stir the molten metal 2 under the condition that the stirring power ε (W / t) represented by the following formula (4) is 300 W / t or more and 1300 W / t or less. When the stirring power ε is less than 300 W / t, the stirring power becomes small, so that it takes time for the denitrification process and the dehydrogenation process, and the processing time for the vacuum degassing process is extended, which is not preferable. On the other hand, when the stirring power ε is larger than 1300 W / t, the amount of slag 3 entrapped in the molten metal 2 increases, and the defect rate due to slag inclusions increases, which is not preferable. In the equation (4), Q n is the flow rate of the stirring gas (Nm 3 / min), T l is the temperature (K) of the molten metal 2, W m is the weight (t) of the molten metal 2, and ρ l is the molten metal 2 Density (kg / m 3 ), h is the height of the molten metal surface (m) which is the depth of the molten metal 2 in the ladle 4, P 1 is the atmospheric pressure (Torr), η is the energy transfer efficiency (−), T n Indicates the temperature (K) of the stirring gas. One Torr is (101325/760) Pa.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 さらに、脱ガス工程では、溶湯2の温度が脱ガス工程終了後の目標とする温度よりも低い場合には、真空脱ガス処理中に溶湯2の温度を上げる昇温処理を行ってもよい。昇温処理では、供給口54から溶湯2にアルミニウムを添加した後、上吹きランス53から酸素を含有した酸化性ガスを溶湯2に噴射する。これにより、溶湯2内のアルミニウムと、酸化性ガスの酸素とが反応することで、溶湯2の温度を上昇させることができる。なお、昇温処理では、(5)式及び(6)式から計算される、上吹きランス53から噴射される酸化性ガスの噴流の動圧P(kPa)を、10kPa以上、50kPa以下となるように制御することが好ましい。動圧Pを上記範囲に制御することで、溶湯2からのマンガンの蒸発を最低限に抑えながらも、効率よく溶湯2を昇熱させることができる。なお、(5)式において、ρは酸化性ガスの密度(kg/Nm)、Uは上吹きランス53のノズルから噴出される酸化性ガスのノズル先端での流速(m/sec)をそれぞれ示す。また、(6)式において、Fは酸化性ガスの流量(Nm/h)、Sは上吹きランス53のノズルの断面積(m)を示す。 Furthermore, in the degassing step, when the temperature of the molten metal 2 is lower than the target temperature after the degassing step, a temperature increasing process for raising the temperature of the molten metal 2 may be performed during the vacuum degassing process. In the temperature raising process, after adding aluminum to the molten metal 2 from the supply port 54, an oxidizing gas containing oxygen is injected from the upper blowing lance 53 onto the molten metal 2. Thereby, the temperature of the molten metal 2 can be raised because the aluminum in the molten metal 2 and oxygen of oxidizing gas react. In the temperature raising process, the dynamic pressure P (kPa) of the oxidizing gas jet injected from the top blowing lance 53, calculated from the equations (5) and (6), is 10 kPa or more and 50 kPa or less. It is preferable to control as described above. By controlling the dynamic pressure P within the above range, the molten metal 2 can be efficiently heated while minimizing the evaporation of manganese from the molten metal 2. In equation (5), ρ g is the density of the oxidizing gas (kg / Nm 3 ), and U is the flow velocity (m / sec) of the oxidizing gas jetted from the nozzle of the top blowing lance 53 at the nozzle tip. Each is shown. In the equation (6), F represents the flow rate of the oxidizing gas (Nm 3 / h), and S represents the cross-sectional area (m 2 ) of the nozzle of the top blowing lance 53.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 脱ガス工程を経ることで、目標とする所定の成分濃度の溶鋼が溶製される。なお、脱ガス工程の後は、溶製された溶鋼を連続鋳造することで、スラブ等の所定の形状の高マンガン鋼の鋳片が製造される。 By passing through the degassing process, molten steel with a predetermined target component concentration is produced. In addition, after the degassing step, a molten slab or the like is continuously cast to produce a high-manganese steel slab having a predetermined shape such as a slab.
 <変形例>
 以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態とともに種々の変形例を含む本発明の別の実施形態も明らかである。従って、特許請求の範囲に記載された発明の実施形態には、本明細書に記載したこれらの変形例を単独または組み合わせて含む実施形態も網羅すると解すべきである。
<Modification>
Although the present invention has been described above with reference to specific embodiments, it is not intended that the present invention be limited by these descriptions. By referring to the description of the present invention, other embodiments of the present invention will be apparent to those skilled in the art, including various modifications along with the disclosed embodiments. Therefore, it should be understood that the embodiments of the present invention described in the claims also include embodiments including these modifications described in the present specification alone or in combination.
 例えば、上記実施形態では、真空脱ガス装置5がVOD方式の精錬装置としたが、本発明はかかる例に限定されない。例えば、真空脱ガス装置5は、RH方式の脱ガス装置やDH方式の脱ガス装置であってもよい。なお、真空脱ガス装置がRH方式の脱ガス装置である場合、マンガンの蒸発を抑えるため、真空槽の槽内空間圧力が50Torr~100Torrとなる条件において、下記(7)式で示される溶鋼の還流量Q(t/min)を150t/min以上、200t/min以下とすることが好ましい。なお、溶鋼の脱窒素や脱水素が必要な場合には、50Torr未満の槽内空間圧力で処理を行ってもよいが、脱窒素及び脱水素後は50Torr以上100Torr以下の槽内空間圧力で処理を行うことが好ましい。(7)式において、Kは定数、Gは浸漬管から吹き込む環流用の吹込みガスの流量(NL/min)、Dは浸漬管の内径(m)、Pは外部圧力(Torr)、Pは真空槽の槽内空間圧力(Torr)をそれぞれ示す。 For example, in the above embodiment, the vacuum degassing apparatus 5 is a VOD type refining apparatus, but the present invention is not limited to such an example. For example, the vacuum degassing device 5 may be an RH degassing device or a DH degassing device. When the vacuum degassing apparatus is an RH type degassing apparatus, in order to suppress the evaporation of manganese, the molten steel represented by the following formula (7) is used under the condition that the space pressure in the vacuum tank is 50 Torr to 100 Torr. The reflux amount Q (t / min) is preferably 150 t / min or more and 200 t / min or less. If denitrification or dehydrogenation of the molten steel is required, the treatment may be performed at a tank internal pressure of less than 50 Torr, but after the denitrification and dehydrogenation, the treatment is performed at a tank internal pressure of 50 Torr or more and 100 Torr or less. It is preferable to carry out. In the equation (7), K is a constant, G is the flow rate (NL / min) of the recirculation gas blown from the dip tube, D is the inner diameter (m) of the dip tube, P 2 is the external pressure (Torr), P Reference numeral 3 represents the internal space pressure (Torr) of the vacuum chamber.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 また、上記実施形態では、転炉1で製造された溶鋼である溶湯2のみを、真空脱ガス装置5で処理する溶湯2として用いるとしたが、本発明はかかる例に限定されない。例えば、転炉1で製造された溶鋼に、別の精錬炉で溶製した溶鋼を合わせた合わせ湯を、真空脱ガス装置5で処理する溶湯2として用いてもよい。この場合、別の精錬炉で溶製した溶鋼のマンガン濃度を高くすることで、転炉1で製造される溶鋼のマンガン濃度を低くすることができる。 Moreover, in the said embodiment, although only the molten metal 2 which is the molten steel manufactured with the converter 1 was used as the molten metal 2 processed with the vacuum degassing apparatus 5, this invention is not limited to this example. For example, the molten steel manufactured in the converter 1 may be used as the molten metal 2 to be processed by the vacuum degassing device 5 by combining the molten steel melted in another refining furnace. In this case, the manganese concentration of the molten steel manufactured by the converter 1 can be lowered by increasing the manganese concentration of the molten steel melted in another refining furnace.
 さらに、上記実施形態では、還元工程には、マンガン源及びシリコン源を添加した後、複数の底吹きノズル12から攪拌ガスを吹き込んで、所定の時間、溶湯2を攪拌させるとしたが、本発明はかかる例に限定されない。還元工程では、撹拌ガスの吹き込みに加えて、上吹きランス11からの酸化性ガスを噴射してもよい。特に、溶湯2の温度を上昇させる必要がある場合には、酸化性ガスによる酸化反応によって昇熱処理を行ってもよい。 Furthermore, in the above-described embodiment, the manganese gas and the silicon source are added to the reduction step, and then the stirring gas is blown from the plurality of bottom blowing nozzles 12 to stir the molten metal 2 for a predetermined time. Is not limited to such an example. In the reduction step, oxidizing gas from the top blowing lance 11 may be injected in addition to blowing the stirring gas. In particular, when it is necessary to raise the temperature of the molten metal 2, the heat treatment may be performed by an oxidation reaction with an oxidizing gas.
 さらに、上記実施形態では、脱炭処理の前に溶銑に脱燐処理を施すとしたが、本発明はかかる例に限定されない。例えば、脱炭処理の前に、脱燐処理に加えて、溶銑中の硫黄濃度を低減する脱硫処理が行われてもよい。脱硫処理は、設備構成に応じて、脱燐処理の前あるいは脱燐処理の後に行われてもよい。
 さらに、上記実施形態では、溶銑搬送容器に収容された溶銑に対して脱燐処理を施すとしたが、本発明はかかる例に限定されない。脱燐処理は、例えば、転炉型精錬炉に収容された溶銑に対して、上吹きランスから酸化性ガスを噴射することで処理を行う方法であってもよい。
Furthermore, in the said embodiment, although dephosphorization processing was performed to hot metal before decarburization processing, this invention is not limited to this example. For example, before the decarburization treatment, in addition to the dephosphorization treatment, a desulfurization treatment for reducing the sulfur concentration in the hot metal may be performed. The desulfurization process may be performed before the dephosphorization process or after the dephosphorization process depending on the equipment configuration.
Furthermore, in the said embodiment, although the dephosphorization process was performed with respect to the hot metal accommodated in the hot metal conveyance container, this invention is not limited to this example. The dephosphorization treatment may be, for example, a method of performing treatment by injecting an oxidizing gas from an upper blowing lance to hot metal accommodated in a converter type refining furnace.
 <実施形態の効果>
 (1)本発明の一態様に係る高マンガン鋼の溶製方法は、マンガンを5質量%以上含有する鋼を溶製する際に、転炉1にて、溶銑(溶湯2)に脱炭処理を施すことで、溶銑を炭素濃度の低い溶鋼(溶湯2)とする脱炭工程(ステップS100)と、脱炭工程の後、転炉1に収容された溶鋼に、マンガン源及びシリコン源を添加することで、溶鋼を還元処理する還元工程(ステップS102)と、還元工程の後、真空脱ガス装置5にて、溶鋼に真空脱ガス処理を行う脱ガス工程(ステップS104)と、を備え、還元工程では、目標とする鋼のマンガン濃度に応じてマンガン源を添加し、(1)式を満たすようにシリコン源を添加する。
<Effect of embodiment>
(1) The method for melting high manganese steel according to one aspect of the present invention is to decarburize hot metal (molten metal 2) in converter 1 when melting steel containing 5 mass% or more of manganese. By adding a manganese source and a silicon source to the molten steel housed in the converter 1 after the decarburization step (step S100) in which the molten iron has a low carbon concentration (molten metal 2) and the decarburization step Thus, a reduction process (Step S102) for reducing the molten steel, and a degassing process (Step S104) for performing a vacuum degassing process on the molten steel in the vacuum degassing apparatus 5 after the reduction process, In the reduction step, a manganese source is added according to the target manganese concentration of the steel, and a silicon source is added so as to satisfy equation (1).
 上記(1)の構成によれば、(2)式の還元反応を促進させることができるため、添加されたマンガン源中のマンガンが溶湯2中に歩留り易くなる。また、マンガン源の添加を転炉1内で行うため、マンガン源の添加による熱ロス(溶湯2の温度の低下)を抑えることができる。さらに、マンガン源の添加後に、転炉1内で溶湯2を昇熱処理することができるため、効率よく昇熱処理を行うことができる。さらに、還元反応の促進に十分な量以上の過剰なシリコン源の添加を抑えることができ、脱ガス工程において脱シリコン処理をする必要がなくなるため、短い処理時間で効率よく脱ガス処理を行うことができる。脱ガス処理時間が長くなると、処理に係るコストが増大することに加え、生産能率の低下することとなる。つまり、上記(1)の構成によれば、マンガンを5質量%以上含む高マンガン鋼を溶製するに際に、高いマンガン歩留りを得ることができ、高効率で高マンガン鋼を溶製することができる。 According to the configuration of (1) above, since the reduction reaction of the formula (2) can be promoted, manganese in the added manganese source can be easily retained in the molten metal 2. Further, since the manganese source is added in the converter 1, heat loss (decrease in the temperature of the molten metal 2) due to the addition of the manganese source can be suppressed. Furthermore, since the molten metal 2 can be subjected to a heat treatment in the converter 1 after the addition of the manganese source, the heat treatment can be efficiently performed. Furthermore, it is possible to suppress the addition of an excessive silicon source more than an amount sufficient for promoting the reduction reaction, and it is not necessary to perform a desiliconization process in the degassing process. Can do. When the degassing treatment time is lengthened, the cost for the treatment is increased and the production efficiency is lowered. That is, according to the structure of said (1), when melting high manganese steel containing 5 mass% or more of manganese, a high manganese yield can be obtained and high manganese steel is melted with high efficiency. Can do.
 (2)上記(1)の構成において、真空脱ガス装置5として、溶鋼を収容する取鍋の底から攪拌ガスを吹き込むことで溶鋼を攪拌する装置を用い、脱ガス工程では、(4)式で示される攪拌動力εが、300W/t以上、1300W/t以下となる条件で、溶鋼を攪拌しながら真空脱ガス処理を行う。
 上記(2)の構成によれば、脱窒処理や脱水素処理に要する時間を短くすることができ、さらに溶湯2へのスラグ3の巻き込みを抑えることができる。このため、真空脱ガス処理の処理時間を短くするができる。
(2) In the configuration of the above (1), as the vacuum degassing device 5, a device for stirring the molten steel by blowing a stirring gas from the bottom of the ladle containing the molten steel is used. The vacuum degassing process is performed while stirring the molten steel under the condition that the stirring power ε represented by the above is 300 W / t or more and 1300 W / t or less.
According to the configuration of (2) above, the time required for the denitrification process and the dehydrogenation process can be shortened, and further, the slag 3 can be prevented from being caught in the molten metal 2. For this reason, the processing time of a vacuum degassing process can be shortened.
 次に、本発明者らが行った実施例1について説明する。実施例1では、高炉から出銑された溶銑に対して、脱珪処理及び脱燐処理の溶銑予備処理を施し、燐濃度を0.010質量%とした。この溶銑に対して、上記実施形態と同様に、脱炭工程、還元工程及び脱ガス工程を行うことで、マンガン濃度が5質量%以上の高マンガン鋼を溶製した。なお、溶製された高マンガン鋼の成分は、炭素濃度:0.145質量%以上0.155質量%以下、マンガン濃度:24質量%以上25質量%以下、シリコン濃度:0.1質量%以上0.2質量%以下、硫黄濃度:0.002質量%以下、窒素濃度:100ppm以下、水素濃度:5ppm以下であった。 Next, Example 1 performed by the present inventors will be described. In Example 1, the hot metal discharged from the blast furnace was subjected to hot metal pretreatment of desiliconization treatment and dephosphorization treatment, so that the phosphorus concentration was 0.010% by mass. Similar to the above embodiment, a high manganese steel having a manganese concentration of 5% by mass or more was melted by performing a decarburization process, a reduction process, and a degassing process on the hot metal. The components of the molten high manganese steel are as follows: carbon concentration: 0.145 mass% to 0.155 mass%, manganese concentration: 24 mass% to 25 mass%, silicon concentration: 0.1 mass% or more It was 0.2 mass% or less, sulfur concentration: 0.002 mass% or less, nitrogen concentration: 100 ppm or less, and hydrogen concentration: 5 ppm or less.
 脱炭工程では、上記実施形態と同様に、溶銑予備処理を施した溶銑である溶湯2に脱炭処理を施し、炭素濃度が0.05質量%になるまで脱炭吹錬を施し溶鋼とした。
 還元工程では、脱炭処理を施した溶鋼である溶湯2に、高炭素フェロマンガンと金属マンガンとをマンガン源として添加し、フェロシリコンをシリコン源として添加した。そして、攪拌ガスで溶湯2を攪拌させながら、さらに上吹きランス11からの送酸を継続して行い還元処理を施すことで、マンガン源を溶解させ、溶湯2のマンガン濃度を上昇させた。シリコン源の添加量は、(1)式を満たすものとした。また、還元工程では、マンガン源と共に、石灰を添加した。還元処理終了時の溶湯2のマンガン濃度は、およそ24質量%であった。さらに、還元工程では、転炉1から取鍋4へ溶湯2を移注(出鋼)する際、出鋼される溶湯2に対して、金属アルミニウムを溶鋼1トン当たりに約0.8kg添加した。
In the decarburization step, as in the above-described embodiment, the molten metal 2 that has been subjected to the hot metal pretreatment is decarburized, and decarburized and blown until the carbon concentration reaches 0.05% by mass to obtain molten steel. .
In the reduction step, high-carbon ferromanganese and metal manganese were added as a manganese source to molten metal 2 that was a decarburized molten steel, and ferrosilicon was added as a silicon source. Then, while stirring the molten metal 2 with the stirring gas, the acid supply from the top blowing lance 11 was continued and the reduction treatment was performed to dissolve the manganese source and increase the manganese concentration of the molten metal 2. The addition amount of the silicon source satisfies the formula (1). In the reduction step, lime was added together with the manganese source. The manganese concentration of the molten metal 2 at the end of the reduction treatment was approximately 24% by mass. Furthermore, in the reduction process, when transferring the molten metal 2 from the converter 1 to the ladle 4 (tapping steel), about 0.8 kg of metal aluminum was added per ton of molten steel to the molten metal 2 to be tapped. .
 脱ガス工程では、還元工程を経た150トンの溶鋼である溶湯2に対して、上記実施形態と同様に、VOD方式の真空脱ガス装置5を用いて脱ガス処理を行った。脱ガス工程では、取鍋4の吹き込み口40から、2000Nl/minの流量のArガスを溶湯2に吹き込み攪拌させながら、真空槽50の槽内空間圧力を2Torrにして脱ガス処理を行った。また、脱ガス工程では、脱ガス処理中に、溶湯2に金属マンガン及び高炭素フェロマンガンを添加し成分調整を行った。 In the degassing step, the degassing process was performed on the molten metal 2 that was 150 tons of molten steel that had undergone the reduction step, using the VOD type vacuum degassing device 5 as in the above embodiment. In the degassing step, degassing was performed by blowing the Ar gas at a flow rate of 2000 Nl / min into the molten metal 2 from the inlet 40 of the ladle 4 and stirring the molten metal 2 while setting the internal space pressure of the vacuum chamber 50 to 2 Torr. In the degassing step, metal manganese and high carbon ferromanganese were added to the molten metal 2 during the degassing process to adjust the components.
 また、実施例1では、比較として、還元工程においてシリコン源の添加量が(1)式を満たさない条件でも高マンガン鋼の溶製を行った(比較例1)。なお、比較例1では、還元工程におけるシリコン源の添加量以外の条件については、実施例1と同様とした。
 表1に実施例1の結果として、還元工程におけるシリコン源の添加量、Mn歩留り、出鋼時の溶湯2のシリコン濃度及び脱ガス工程における脱ガス処理に要した時間を示す。なお、表1において、0.013×WMn×xMn/xSiは(1)式に示す範囲の下限値、0.150×WMn×xMn/xSiは(1)式に示す範囲の上限値をそれぞれ示す。表1に示すように、実施例1では、シリコン源の添加量WSiが(1)式の範囲内となる実施例1-1~1-6の6条件、及びシリコン源の添加量WSiが(1)式の範囲外となる比較例1-1~1-4の4条件の計10条件で高マンガン鋼を溶製した。また、表1におけるMn歩留りは、還元工程において用いられたマンガン源に含まれるマンガンが溶湯2にどれだけ添加されたか、つまり、マンガン源に含まれるマンガン分が、還元工程前後での溶湯2のマンガン濃度の増加にどれだけ寄与したかを示すものである。
Moreover, in Example 1, as a comparison, high manganese steel was melted even under conditions where the addition amount of the silicon source did not satisfy the formula (1) in the reduction step (Comparative Example 1). In Comparative Example 1, the conditions other than the addition amount of the silicon source in the reduction step were the same as those in Example 1.
Table 1 shows the amount of silicon source added in the reduction step, the Mn yield, the silicon concentration of the molten metal 2 during steel output, and the time required for the degassing process in the degassing step as the results of Example 1. In Table 1, 0.013 × W Mn × x Mn / x Si is the lower limit value of the range shown in Formula (1), and 0.150 × W Mn × x Mn / x Si is the range shown in Formula (1). The upper limit value of each is shown. As shown in Table 1, in Example 1, Examples 1-1 to 1-6 of 6 conditions amount W Si of the silicon source is within the range of (1), and the amount W Si of the silicon source A high manganese steel was melted under a total of 10 conditions including 4 conditions of Comparative Examples 1-1 to 1-4 in which the value was outside the range of the formula (1). Further, the Mn yield in Table 1 indicates how much manganese contained in the manganese source used in the reduction process was added to the molten metal 2, that is, the manganese content in the manganese source was that of the molten metal 2 before and after the reduction process. It shows how much it contributed to the increase in manganese concentration.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1に示すように、比較例1-1,1-2の条件では、他の条件に比べてマンガン歩留りが46%以下と低位となった。これは、シリコン源の添加量が少なかったために、(2)式で示されるスラグ3の還元反応が十分に進行しなかったことが原因であると考えられる。比較例1-1,1-2では、Mn歩留りが低かったため、脱ガス工程においてシリコン源を添加して還元処理を行い、その後成分及び温度の調整を行う必要があり、脱ガス工程に要した時間が実施例1-1~1-6に比べ長くなった。 As shown in Table 1, under the conditions of Comparative Examples 1-1 and 1-2, the manganese yield was as low as 46% or less compared to the other conditions. This is considered to be caused by the fact that the reduction reaction of the slag 3 represented by the formula (2) did not proceed sufficiently because the addition amount of the silicon source was small. In Comparative Examples 1-1 and 1-2, since the Mn yield was low, it was necessary to perform a reduction treatment by adding a silicon source in the degassing step, and then to adjust the components and temperature, which was necessary for the degassing step. The time was longer than in Examples 1-1 to 1-6.
 また、比較例1-3,1-4の条件では、マンガン歩留りは高くなったものの、出鋼時のシリコン濃度が規格上限値である0.20質量%を超えてしまった。これは、(2)式で示されるスラグ3の還元反応や(3)式で示される脱硫反応で消費される量以上のシリコンが溶湯2に供給されたためであると考えられる。比較例1-3,1-4では、出鋼時のシリコン濃度が高かったため、脱ガス処理工程において脱シリコン処理を行う必要があり、脱ガス工程に要した時間が実施例1-1~1-6に比べ長くなった。なお、脱シリコン処理では、上吹きランス53から酸化性ガスを溶湯2に噴射することで、溶湯2に含まれるシリコンが酸化除去される。
 一方、実施例1-1~1-6の条件では、還元工程において高いマンガン歩留りを得られ、さらに必要以上にシリコン源が添加されなかったことで出鋼時のシリコン濃度を低くすることができた。このため、脱ガス工程に要する時間を短くすることができた。
Further, under the conditions of Comparative Examples 1-3 and 1-4, the manganese yield was high, but the silicon concentration at the time of steel output exceeded the standard upper limit of 0.20% by mass. This is considered to be because more silicon than the amount consumed by the reduction reaction of the slag 3 represented by the formula (2) and the desulfurization reaction represented by the formula (3) was supplied to the molten metal 2. In Comparative Examples 1-3 and 1-4, since the silicon concentration at the time of steel output was high, it was necessary to perform the desiliconization process in the degassing process, and the time required for the degassing process was as described in Examples 1-1 to 1. Longer than -6. In the silicon removal process, the silicon contained in the molten metal 2 is oxidized and removed by injecting an oxidizing gas from the top blowing lance 53 onto the molten metal 2.
On the other hand, under the conditions of Examples 1-1 to 1-6, a high manganese yield can be obtained in the reduction process, and the silicon concentration at the time of steel output can be lowered by not adding a silicon source more than necessary. It was. For this reason, the time required for the degassing step could be shortened.
 次に、本発明者らが行った実施例2について説明する。実施例2では、実施例1-4と同様な溶製方法で、脱ガス工程での攪拌動力εを変更した複数の条件で高マンガン鋼の溶製を行った。なお、溶製された高マンガン鋼の成分は、炭素濃度:0.145質量%以上0.155質量%以下、マンガン濃度:24質量%以上25質量%以下、シリコン濃度:0.1質量%以上0.2質量%以下、硫黄濃度:0.002質量%以下、窒素濃度:100ppm以下、水素濃度:5ppm以下であった。 Next, Example 2 performed by the present inventors will be described. In Example 2, high manganese steel was melted by a melting method similar to that in Example 1-4 under a plurality of conditions in which the stirring power ε in the degassing step was changed. The components of the molten high manganese steel are as follows: carbon concentration: 0.145 mass% to 0.155 mass%, manganese concentration: 24 mass% to 25 mass%, silicon concentration: 0.1 mass% or more It was 0.2 mass% or less, sulfur concentration: 0.002 mass% or less, nitrogen concentration: 100 ppm or less, and hydrogen concentration: 5 ppm or less.
 具体的には、脱炭工程として、実施例1-4と同様に、転炉1にて溶銑予備処理を施した溶銑である溶湯2に脱炭処理を施し、炭素濃度が0.05質量%になるまで脱炭吹錬を施し溶鋼とした。次いで、還元工程として、実施例1-4と同様に、35kg/tのシリコン源を添加して溶湯2に還元処理を施した。還元処理終了時の溶湯2のマンガン濃度は、およそ24質量%であった。さらに、脱ガス工程として、実施例1-4と同様に、真空脱ガス装置5にて溶湯2に脱ガス処理を施した。脱ガス工程では、取鍋4の吹き込み口40から吹き込むArガスの流量を調整することで、攪拌動力εを任意に変更した複数の条件で脱ガス処理を行った。 Specifically, as in the decarburization step, similarly to Example 1-4, the decarburization process was performed on the molten metal 2 that was the hot metal that had been subjected to the hot metal pretreatment in the converter 1, and the carbon concentration was 0.05 mass%. Until then, decarburization was blown into molten steel. Next, as a reduction process, similarly to Example 1-4, a 35 kg / t silicon source was added and the molten metal 2 was subjected to a reduction treatment. The manganese concentration of the molten metal 2 at the end of the reduction treatment was approximately 24% by mass. Further, as a degassing step, the molten metal 2 was degassed by the vacuum degassing apparatus 5 as in Example 1-4. In the degassing step, the degassing process was performed under a plurality of conditions in which the stirring power ε was arbitrarily changed by adjusting the flow rate of Ar gas blown from the blowing port 40 of the ladle 4.
 表2に実施例2の結果として、還元工程におけるシリコン源の添加量、Mn歩留り、出鋼時の溶湯2のシリコン濃度、脱ガス工程における攪拌動力及び脱ガス工程における脱ガス処理に要した時間を示す。表2に示すように、実施例2では、脱ガス工程における攪拌動力が異なる実施例2-1~2-10の10条件で高マンガン鋼を溶製した。なお、実施例1-4における脱ガス工程での攪拌動力εは、実施例2-1に相当する。また、実施例2-1~2-10において、上記以外の溶製条件については、実施例1-4と同じとした。 As a result of Example 2 shown in Table 2, the amount of silicon source added in the reduction process, the Mn yield, the silicon concentration of the molten metal 2 during steel output, the stirring power in the degassing process, and the time required for degassing in the degassing process Indicates. As shown in Table 2, in Example 2, high manganese steel was melted under 10 conditions of Examples 2-1 to 2-10 having different stirring power in the degassing step. The stirring power ε in the degassing step in Example 1-4 corresponds to that in Example 2-1. In Examples 2-1 to 2-10, the other melting conditions were the same as those in Example 1-4.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表2に示すように、攪拌動力εが300W/t以上、1300W/t以下となる実施例2-3~2-8の条件では、攪拌動力εが300W/t未満となる実施例2-1,2-2や攪拌動力εが1300W/t超となる実施例2-9,2-10に比べ、脱ガス処理に要する時間が短くなることが確認できた。これは、溶湯2に適切な攪拌動力を与えて攪拌を行うことで、真空脱ガス処理での脱水素、脱窒素及び介在物の浮上が促進されたためであると考えられる。 As shown in Table 2, under the conditions of Examples 2-3 to 2-8 in which the stirring power ε is 300 W / t or more and 1300 W / t or less, Example 2-1 in which the stirring power ε is less than 300 W / t , 2-2 and stirring power ε exceeding 1300 W / t, it was confirmed that the time required for the degassing treatment was shortened compared to Examples 2-9 and 2-10. This is considered to be because dehydrogenation, denitrogenation, and floating of inclusions in the vacuum degassing process were promoted by applying an appropriate stirring power to the molten metal 2 to perform stirring.
 これに対して、攪拌動力εが300W/t未満となる実施例2-1,2-2の条件では、攪拌が弱かったため、脱水素や脱窒素に時間を要したため、脱ガス処理に要する時間が長くなる結果となった。また、攪拌動力εが1300W/t超となる実施例2-9,2-10の条件では、攪拌が強過ぎたため、溶湯2へのスラグ3の巻き込み量が多くなり、溶湯2中のスラグ系介在物を浮上させるのに時間を要したため、脱ガス処理に要する時間が長くなる結果となった。 On the other hand, in the conditions of Examples 2-1 and 2-2 in which the stirring power ε was less than 300 W / t, since the stirring was weak, it took time for dehydrogenation and denitrogenation. The result became longer. Further, in the conditions of Examples 2-9 and 2-10 in which the stirring power ε exceeds 1300 W / t, since the stirring was too strong, the amount of slag 3 entrapped in the molten metal 2 increased, and the slag system in the molten metal 2 Since it took time to raise the inclusions, the time required for the degassing treatment was increased.
 1 転炉
 10 炉体
 11 上吹きランス
 12 底吹きノズル
 13 シュート
 2 溶湯
 3 スラグ
 4 取鍋
 40 吹き込み口
 5 真空脱ガス装置
 50 真空槽
 51 排気管
 52 攪拌ガス供給経路
 53 上吹きランス
 54 供給口
DESCRIPTION OF SYMBOLS 1 Converter 10 Furnace 11 Top blowing lance 12 Bottom blowing nozzle 13 Chute 2 Molten metal 3 Slag 4 Ladle 40 Blowing port 5 Vacuum degassing apparatus 50 Vacuum tank 51 Exhaust pipe 52 Stirring gas supply path 53 Top blowing lance 54 Supply port

Claims (2)

  1.  マンガンを5質量%以上含有する鋼を溶製する際に、
     転炉にて、溶銑に脱炭処理を施すことで、前記溶銑を炭素濃度の低い溶鋼とする脱炭工程と、
     該脱炭工程の後、前記転炉に収容された前記溶鋼に、マンガン源及びシリコン源を添加することで、前記溶鋼を還元処理する還元工程と、
     前記還元工程の後、真空脱ガス装置にて、前記溶鋼に真空脱ガス処理を行う脱ガス工程と、
     を備え、
     前記還元工程では、前記マンガン源の添加量に応じて、(1)式を満たすように前記シリコン源を添加することを特徴とする高マンガン鋼の溶製方法。
    Figure JPOXMLDOC01-appb-M000001
       xMn:マンガン源中のマンガン濃度(質量%)
       xSi:シリコン源中のシリコン濃度(質量%)
       WMn:マンガン源の添加量(kg/t)
       WSi:シリコン源の添加量(kg/t)
    When melting steel containing 5 mass% or more of manganese,
    In the converter, by decarburizing the hot metal, the decarburization step to make the hot metal a molten steel with a low carbon concentration,
    After the decarburization step, a reduction step of reducing the molten steel by adding a manganese source and a silicon source to the molten steel accommodated in the converter;
    After the reduction step, a degassing step of performing vacuum degassing treatment on the molten steel in a vacuum degassing device;
    With
    In the reduction step, the silicon source is added so as to satisfy the formula (1) according to the amount of the manganese source added.
    Figure JPOXMLDOC01-appb-M000001
    x Mn : Manganese concentration in the manganese source (mass%)
    xSi : silicon concentration (mass%) in the silicon source
    W Mn : Amount of manganese source added (kg / t)
    W Si : Amount of silicon source added (kg / t)
  2.  前記真空脱ガス装置として、前記溶鋼を収容する取鍋の底から攪拌ガスを吹き込むことで前記溶鋼を攪拌する装置を用い、
     前記脱ガス工程では、(4)式で示される攪拌動力εが、300W/t以上、1300W/t以下となる条件で、前記溶鋼を攪拌しながら真空脱ガス処理を行うことを特徴とする請求項1に記載の高マンガン鋼の溶製方法。
    Figure JPOXMLDOC01-appb-M000002
       Q:攪拌ガスの流量(Nm/min)
       T:溶鋼の温度(K)
       W:溶鋼の重量(t)
       ρ:溶鋼の密度(kg/m
       h:湯面高さ(m)
       P:雰囲気圧力(Torr)
       η:エネルギー伝達効率(-)
       T:攪拌ガスの温度(K)
    As the vacuum degassing device, using a device for stirring the molten steel by blowing a stirring gas from the bottom of the ladle containing the molten steel,
    In the degassing step, a vacuum degassing process is performed while stirring the molten steel under a condition that the stirring power ε represented by the formula (4) is 300 W / t or more and 1300 W / t or less. Item 2. A method for melting high manganese steel according to Item 1.
    Figure JPOXMLDOC01-appb-M000002
    Q: Flow rate of stirring gas (Nm 3 / min)
    T l : Temperature of molten steel (K)
    W m : Weight of molten steel (t)
    ρ l : Density of molten steel (kg / m 3 )
    h: Hot water surface height (m)
    P 2 : Atmospheric pressure (Torr)
    η: Energy transfer efficiency (-)
    T n : Stirring gas temperature (K)
PCT/JP2018/019526 2017-05-25 2018-05-21 Method for manufacturing high manganese steel ingot WO2018216660A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880032038.3A CN110621793A (en) 2017-05-25 2018-05-21 Smelting method of high manganese steel
JP2019506740A JP6551626B2 (en) 2017-05-25 2018-05-21 Method of melting high manganese steel
EP18806216.0A EP3633051B1 (en) 2017-05-25 2018-05-21 Method for manufacturing high manganese steel ingot
KR1020197033815A KR102315999B1 (en) 2017-05-25 2018-05-21 A method for refining a high manganese steel and amanufacturing of a high manganese steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017103666 2017-05-25
JP2017-103666 2017-05-25

Publications (1)

Publication Number Publication Date
WO2018216660A1 true WO2018216660A1 (en) 2018-11-29

Family

ID=64396816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019526 WO2018216660A1 (en) 2017-05-25 2018-05-21 Method for manufacturing high manganese steel ingot

Country Status (6)

Country Link
EP (1) EP3633051B1 (en)
JP (1) JP6551626B2 (en)
KR (1) KR102315999B1 (en)
CN (1) CN110621793A (en)
TW (1) TWI685577B (en)
WO (1) WO2018216660A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115478222A (en) * 2022-09-26 2022-12-16 河南中原特钢装备制造有限公司 Non-magnetic stainless steel with high purity and corrosion resistance and smelting method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111621621B (en) * 2020-05-12 2022-03-22 首钢集团有限公司 Control method of Mn in molten steel in RH vacuum treatment process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225715A (en) * 1988-03-03 1989-09-08 Nkk Corp Production of high manganese steel
JPH05125428A (en) 1991-11-01 1993-05-21 Sumitomo Metal Ind Ltd Method for decarburizing refining high mn steel
JP2008101232A (en) * 2006-10-17 2008-05-01 Daido Steel Co Ltd Method for producing high manganese steel
JP4534734B2 (en) 2004-11-29 2010-09-01 Jfeスチール株式会社 Melting method of low carbon high manganese steel
JP2013112855A (en) 2011-11-29 2013-06-10 Jfe Steel Corp Method for smelting low-carbon high-manganese steel
JP2016188401A (en) * 2015-03-30 2016-11-04 Jfeスチール株式会社 Method for melting high manganese steel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301815A (en) * 1988-05-30 1989-12-06 Sumitomo Metal Ind Ltd Smelting method of low carbon steel
CN1041843C (en) * 1993-06-30 1999-01-27 新日本制铁株式会社 Steel manufacturing method using converter
UA82962C2 (en) * 2005-12-02 2008-05-26 Sms Demag Ag Method and smelting unit for obtaining steel with high manganese and low carbon content
CN100434556C (en) * 2006-09-26 2008-11-19 山西太钢不锈钢股份有限公司 Method for adding Mn into high Mn content stainless steel in smelting process
TW200920859A (en) * 2007-11-02 2009-05-16 Walsin Lihwa Corp Steelmaking method of separately refining manganese and chromium for high manganese stainless steel
JP5509876B2 (en) * 2010-01-26 2014-06-04 Jfeスチール株式会社 Melting method of low carbon high manganese steel
CN102168160B (en) * 2011-03-08 2013-04-17 武汉钢铁(集团)公司 Converter steelmaking technology for directly reducing-alloying manganese ore
JP5408369B2 (en) * 2012-01-19 2014-02-05 Jfeスチール株式会社 Hot metal pretreatment method
CN102965584B (en) * 2012-12-17 2014-11-05 山西太钢不锈钢股份有限公司 High-nitrogen high-manganese stainless steel and smelting method thereof
PL2985359T3 (en) * 2013-04-11 2019-03-29 Posco Manganese-containing molten steel production method
CN104109736B (en) * 2014-06-20 2018-05-04 宝钢不锈钢有限公司 A kind of method of 304 stainless steel of AOD converter smeltings
CN105483314B (en) * 2016-01-04 2018-04-24 首钢总公司 A kind of control method for improving the residual manganese content of converter terminal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225715A (en) * 1988-03-03 1989-09-08 Nkk Corp Production of high manganese steel
JPH05125428A (en) 1991-11-01 1993-05-21 Sumitomo Metal Ind Ltd Method for decarburizing refining high mn steel
JP4534734B2 (en) 2004-11-29 2010-09-01 Jfeスチール株式会社 Melting method of low carbon high manganese steel
JP2008101232A (en) * 2006-10-17 2008-05-01 Daido Steel Co Ltd Method for producing high manganese steel
JP2013112855A (en) 2011-11-29 2013-06-10 Jfe Steel Corp Method for smelting low-carbon high-manganese steel
JP2016188401A (en) * 2015-03-30 2016-11-04 Jfeスチール株式会社 Method for melting high manganese steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633051A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115478222A (en) * 2022-09-26 2022-12-16 河南中原特钢装备制造有限公司 Non-magnetic stainless steel with high purity and corrosion resistance and smelting method thereof
CN115478222B (en) * 2022-09-26 2023-08-18 河南中原特钢装备制造有限公司 Nonmagnetic stainless steel with high purity and corrosion resistance and smelting method thereof

Also Published As

Publication number Publication date
TWI685577B (en) 2020-02-21
KR102315999B1 (en) 2021-10-21
KR20190142355A (en) 2019-12-26
EP3633051B1 (en) 2021-11-17
JP6551626B2 (en) 2019-07-31
EP3633051A1 (en) 2020-04-08
EP3633051A4 (en) 2020-04-08
TW201900897A (en) 2019-01-01
JPWO2018216660A1 (en) 2019-06-27
CN110621793A (en) 2019-12-27

Similar Documents

Publication Publication Date Title
US7901482B2 (en) Removal method of nitrogen in molten steel
JP4742740B2 (en) Method for melting low-sulfur steel
JPWO2017145877A1 (en) Method for refining molten steel in vacuum degassing equipment
JP6028755B2 (en) Method for melting low-sulfur steel
JP2011208170A (en) Method of producing manganese-containing low carbon steel
JP6551626B2 (en) Method of melting high manganese steel
JP6269550B2 (en) Method for melting high manganese steel
JP5614306B2 (en) Method for melting manganese-containing low carbon steel
JPH06240338A (en) Method for desulfurizing molten steel
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
JP2018100427A (en) Method for producing low sulfur steel
JP4534734B2 (en) Melting method of low carbon high manganese steel
KR101045972B1 (en) Refining method of highly clean ultra low carbon steel for soft two-piece can
JP3870627B2 (en) Method for producing high phosphorus extra low carbon steel
JPH07103416B2 (en) High carbon steel wire manufacturing method
KR101363923B1 (en) Method for producing of steel
KR20190072245A (en) Method of refining molten steel
JP5621618B2 (en) Method for melting manganese-containing low carbon steel
JP2005015890A (en) Method for producing low-carbon high-manganese steel
KR101412554B1 (en) Manufacturing method of ultra-low carbon steel
JP5515651B2 (en) Desulfurization method for molten steel
JP3339982B2 (en) Converter steelmaking method
JP2009114491A (en) Method for refining molten steel by rh-vacuum degassing apparatus
JP6028750B2 (en) Method for melting manganese-containing low carbon steel
JPH01312020A (en) Method for dephosphorizing molten iron by heating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506740

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197033815

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018806216

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018806216

Country of ref document: EP

Effective date: 20200102