JPH01225715A - Production of high manganese steel - Google Patents

Production of high manganese steel

Info

Publication number
JPH01225715A
JPH01225715A JP5018488A JP5018488A JPH01225715A JP H01225715 A JPH01225715 A JP H01225715A JP 5018488 A JP5018488 A JP 5018488A JP 5018488 A JP5018488 A JP 5018488A JP H01225715 A JPH01225715 A JP H01225715A
Authority
JP
Japan
Prior art keywords
manganese
reducing agent
blowing
slag
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5018488A
Other languages
Japanese (ja)
Inventor
Osamu Yamase
治 山瀬
Chihiro Taki
滝 千尋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP5018488A priority Critical patent/JPH01225715A/en
Publication of JPH01225715A publication Critical patent/JPH01225715A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce manganese shifted into slag under oxide state with reducing agent and to effectively make component in molten steel of the manganese by charging pretreated molten iron, adding manganese ore or manganese oxide and the reducing agent into molten iron and blowing. CONSTITUTION:The manganese ore, etc., as manganese source and the reducing agent of ferro-silicon, etc., are added into the pretreating molten iron charged in a converter body 1. Then, a lance 3 is inserted from furnace opening part 2 of the converter body 1 and oxygen gas is blown from tip part of the lance 3 to execute the oxygen blowing. During blowing operation, by blowing argon gas into the converter body 1 from gas blowing holes 4 arranged at the bottom part, molten steel 5 is stirred. In this case, as dephosphorizing agent is not needed, the slag 6 quantity is a little in the body 1 and the manganese quantity shifting from the slag is relatively a little. Therefore, by reducing the manganese content existing as MnO in the slag with the reducing agent, it can be made to the component in the molten steel.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、溶銑を転炉吹錬して高マンガン鋼を製造す
る高マンガン鋼の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing high manganese steel, which manufactures high manganese steel by blowing hot metal in a converter furnace.

[従来の技術] 従来、高マンガン鋼を製造する場合には、溶銑を転炉吹
錬し、吹錬後、溶鋼を取鍋に出鋼する。
[Prior Art] Conventionally, when manufacturing high manganese steel, hot metal is blown in a converter, and after blowing, the molten steel is tapped into a ladle.

次いで、取鍋内の溶鋼を電極によりアーク加熱しながら
アルゴンガスで撹拌して取鍋精錬し、その際に取鍋内の
溶鋼にフェロマンガンを添加して、マンガンを溶鋼中の
成分としている。また、フェロマンガンには若干の水素
が含まれており、この水素は鋼中の欠陥、となるから、
特に厚板用の場合には、取鍋吹錬後にRH脱ガス設備等
により溶鋼を脱ガス処理して溶鋼から水素を除去してい
る。
Next, the molten steel in the ladle is heated by an electrode with an arc and stirred with argon gas to refine the ladle. At this time, ferromanganese is added to the molten steel in the ladle to make manganese a component of the molten steel. In addition, ferromanganese contains some hydrogen, and this hydrogen causes defects in the steel.
Particularly in the case of thick plates, hydrogen is removed from the molten steel by degassing the molten steel using an RH degassing facility or the like after ladle blowing.

[発明が解決しようとする問題点] しかしながら、このように高マンガン鋼を製造する場合
には、工程数が多く、処理コストが著しく高くなってし
まうという間通点がある。
[Problems to be Solved by the Invention] However, when producing high manganese steel in this way, there is a drawback that the number of steps is large and the processing cost becomes extremely high.

この発明は斯かる事情に鑑みてなされたものであって、
製造工程を簡略化することができる高マンガン鋼の製造
方法を提供することを目的とする。
This invention was made in view of such circumstances, and
An object of the present invention is to provide a method for manufacturing high manganese steel that can simplify the manufacturing process.

[問題点を解決するための手段] この発明に係る高マンガン鋼の製造方法は、予備処理し
て燐濃度を低下させた溶銑を転炉に装入し、この溶銑に
マンガン鉱石又は酸化マンガン及び還元剤を添加し、転
炉内スラグ中に移行して酸化物状態で存在するマンガン
を還元剤で還元しつつ転炉吹錬することを特徴とする。
[Means for Solving the Problems] In the method for producing high manganese steel according to the present invention, hot metal that has been pretreated to reduce the phosphorus concentration is charged into a converter, and manganese ore or manganese oxide and manganese ore are added to the hot metal. The method is characterized by adding a reducing agent and performing converter blowing while reducing manganese that has migrated into the slag in the converter and exists in an oxide state with the reducing agent.

この場合に、還元剤としてフェロシリコン又はシリコン
を使用することが好ましい。
In this case, it is preferable to use ferrosilicon or silicon as the reducing agent.

[作用コ この発明においては、予備処理溶銑を転炉に装入し、こ
の溶銑中にマンガン鉱石又は酸化マンガンと還元剤とを
添加して吹錬することにより、酸化物の状態でスラグ中
に移行したマンガンを還元剤により還元することができ
、有効に溶鋼中の成分とするこができる。また、溶銑の
燐濃度が低いので復燐する虞が少ない。この場合に、合
金鉄を使用せずにマンガンを溶鋼に添加することができ
るので、取鍋精錬及びRH脱ガス処理が不要となる。こ
のため、高マンガン鋼を製造する際の工程を簡略化する
ことができ、処理コストを低下させることができる。
[Operation] In this invention, pretreated hot metal is charged into a converter, and manganese ore or manganese oxide and a reducing agent are added to the hot metal and then blown into the slag in an oxide state. The transferred manganese can be reduced by a reducing agent and can be effectively used as a component in molten steel. In addition, since the phosphorus concentration of the hot metal is low, there is little risk of rephosphorization. In this case, since manganese can be added to the molten steel without using ferroalloy, ladle refining and RH degassing are not necessary. Therefore, the process for manufacturing high manganese steel can be simplified, and processing costs can be reduced.

[実施例] 以下、この発明の実施例について具体的に説明する。[Example] Examples of the present invention will be specifically described below.

第1図は転炉吹錬設備を示す模式図である。図中参照符
号1は転炉本体であり、この転炉本体1内には、予備処
理して燐濃度が約0.01%に低減された予備処理溶銑
が装入される。この予備処理溶銑は、Cab、CaF2
等の脱燐剤と酸素とを溶銑中に供給し、溶銑中の燐を燐
酸カルシウムの状態でスラグ中に移行させ、このスラグ
を除去することにより得ることができる。このような予
備処理溶銑を使用することにより、転炉内には脱燐剤が
不要となる。
FIG. 1 is a schematic diagram showing a converter blowing equipment. Reference numeral 1 in the figure is a converter main body, into which pretreated hot metal whose phosphorus concentration has been reduced to about 0.01% is charged. This pre-treated hot metal contains Cab, CaF2
It can be obtained by supplying a dephosphorizing agent such as the above and oxygen into hot metal, causing the phosphorus in the hot metal to migrate into slag in the form of calcium phosphate, and removing this slag. By using such pretreated hot metal, there is no need for a dephosphorizing agent in the converter.

この転炉本体1内に装入された予備処理溶銑に、マンガ
ン源としてのマンガン鉱石又は酸化マンガン、及び、フ
ェロシリコン、金属シリコン又はアルミニウム等の還元
剤を添加する。そして、転炉本体1の炉口2からランス
3を挿入し、このランス3の先端から酸素ガスを吹込ん
で、酸素吹錬する。転炉本体1の底部には、ガス吹込み
口4が設けられており、吹錬中にこのガス吹込み口4か
ら転炉本体1内にアルゴンガスを吹込んで、転炉本体1
内の溶w45を撹拌する。
Manganese ore or manganese oxide as a manganese source, and a reducing agent such as ferrosilicon, metallic silicon, or aluminum are added to the pretreated hot metal charged into the converter body 1. Then, a lance 3 is inserted through the furnace port 2 of the converter main body 1, and oxygen gas is blown into the converter from the tip of the lance 3 to perform oxygen blowing. A gas inlet 4 is provided at the bottom of the converter main body 1, and argon gas is blown into the converter main body 1 from this gas inlet 4 during blowing.
Stir the molten w45 inside.

この場合に、脱燐剤が不要であるから、転炉本体1内に
はスラグ6が極めて少なく、スラグ中に移行するマンガ
ンは比較的少ない。しかし、スラグ中には高い濃度でM
 n Oが含まれ、また、P2O5濃度は通常の吹錬に
比較して大幅に少ない。従って、還元剤によりスラグ中
にM n Oとして存在するマンガン分を還元して溶鋼
中の成分とすることができる。しかも、還元時の復燐量
も低いレベルに抑制することができる。
In this case, since a dephosphorizing agent is not required, there is very little slag 6 in the converter main body 1, and relatively little manganese migrates into the slag. However, there is a high concentration of M in the slag.
n O is included, and the P2O5 concentration is significantly lower than in normal blowing. Therefore, the manganese present in the form of M n O in the slag can be reduced by the reducing agent to become a component in the molten steel. Moreover, the amount of rephosphorus during reduction can also be suppressed to a low level.

第2図は、横軸に処理時間をとり、縦軸にマンガン還元
率をとって、これらの間の関係を示すグラフ図である。
FIG. 2 is a graph showing the relationship between the processing time on the horizontal axis and the manganese reduction rate on the vertical axis.

図中、白丸は還元剤としてフェロシリコンを使用した場
合を示し、黒丸はアルミニウムを使用した場合を示す。
In the figure, white circles indicate the case where ferrosilicon is used as the reducing agent, and black circles indicate the case where aluminum is used as the reducing agent.

なお、この際に底吹きアルゴンガスの供給量を溶鋼1ト
ン当り0.17Nm37分に設定した。このグラフに示
すとおり、いずれの還元剤を使用した場合にも、約3分
間で80乃至90%という高還元率を達成できることが
確認された。
At this time, the supply amount of bottom-blown argon gas was set to 0.17 Nm/37 minutes per ton of molten steel. As shown in this graph, it was confirmed that a high reduction rate of 80 to 90% could be achieved in about 3 minutes no matter which reducing agent was used.

フェロシリコン又は金属シリコンを還元剤として使用す
る場合には、鋼中の酸素濃度を1乃至100 ppm程
度にすることができる。一方、アルミニウムを還元剤と
して使用する場合には、鋼中酸素濃度が実質的に0とな
るが、そうすると溶鋼の撹拌ガスとして使用するアルゴ
ンガスに含まれている窒素が溶鋼中にピックアップされ
やすくなる。これに対し、前述のフェロシリコン又は金
属シリコンの場合には、溶鋼をある程度酸素を含有し、
た状態に維持することができるので、窒素ピックアップ
を抑制することができる。従って、窒素ピックアップが
品質に悪影響を及ぼす鋼種の場合には、還元剤としてフ
ェロシリコン又は金属シリコンを使用することが好まし
い。
When ferrosilicon or metallic silicon is used as a reducing agent, the oxygen concentration in the steel can be about 1 to 100 ppm. On the other hand, when aluminum is used as a reducing agent, the oxygen concentration in the steel becomes essentially 0, but this makes it easier for nitrogen contained in the argon gas used as a stirring gas for the molten steel to be picked up in the molten steel. . On the other hand, in the case of the above-mentioned ferrosilicon or metal silicon, molten steel contains a certain amount of oxygen,
Since the nitrogen gas can be maintained in a stable state, nitrogen pickup can be suppressed. Therefore, in the case of steel types where nitrogen pickup has a negative effect on quality, it is preferable to use ferrosilicon or metallic silicon as the reducing agent.

第3図は、横軸に処理時間をとり、縦軸に溶鋼の窒素ピ
ックアツプ量をとって、これらの間の関係を示すグラフ
図である。図中、白丸は還元剤としてフェロシリコンを
使用した場合を示し、黒丸はアルミニウムを使用した場
合を示す。これに示すように、アルミニウムを使用した
場合には40 ppmまで窒素ピックアップしているが
、フェロシリコンの場合には約15ppm程度であるこ
とが確認された。
FIG. 3 is a graph showing the relationship between the processing time on the horizontal axis and the nitrogen pick-up amount of molten steel on the vertical axis. In the figure, white circles indicate the case where ferrosilicon is used as the reducing agent, and black circles indicate the case where aluminum is used as the reducing agent. As shown, up to 40 ppm of nitrogen was picked up when aluminum was used, but it was confirmed that it was about 15 ppm when ferrosilicon was used.

このようにして転炉吹錬した後、溶鋼を取鍋に出鋼し、
この溶鋼を造塊又は連続鋳造により所望の形状の製品と
する。
After blowing in the converter in this way, the molten steel is poured into a ladle,
This molten steel is made into a product of a desired shape by ingot formation or continuous casting.

この場合に、鉱石又は酸化物の状態で有効に転炉内の溶
鋼にマンガンを添加することができるので、高価なフェ
ロマンガンを削減することができる。また、フェロマン
ガンを使用しないので、溶鋼中に水素が混入する虞が実
質的にな(なり、RHのような真空脱ガス設備が不要と
なる。更に、溶鋼を出鋼した後に、溶鋼にマンガンを添
加する必要がないので、取鍋精錬設備が不要となる。
In this case, since manganese can be effectively added to the molten steel in the converter in the form of ore or oxide, expensive ferromanganese can be reduced. In addition, since ferromanganese is not used, there is virtually no risk of hydrogen being mixed into the molten steel (therefore, there is no need for vacuum degassing equipment such as RH). Since there is no need to add , ladle refining equipment is not required.

[発明の効果] この発明によれば、転炉吹錬中にマンガンを有効に溶鋼
中の成分とすることができるので、取鍋精錬を省略する
ことができる。また、フェロマンガンを使用せずにマン
ガンを添加することができるので、溶鋼から水素を除去
する必要がなくなり、RH等の真空脱ガスを省略するこ
とができる。このように、取鍋精錬及び真空脱ガスを省
略することができるので、工程を簡略化することができ
、゛溶鋼の処理コストを著しく低減することができる。
[Effects of the Invention] According to the present invention, manganese can be effectively made into a component in molten steel during converter blowing, so ladle refining can be omitted. Furthermore, since manganese can be added without using ferromanganese, there is no need to remove hydrogen from molten steel, and vacuum degassing such as RH can be omitted. In this way, since ladle refining and vacuum degassing can be omitted, the process can be simplified and the processing cost of molten steel can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施するための転炉を示す模式図、
第2図はマンガン還元率を示すグラフ図、第3図は窒素
ピックアツプ量を示すグラフ図である。 1−転炉本体、2.炉口、3:ランス、4;ガス吹込み
口 出願人代理人  弁理士 鈴江武彦
FIG. 1 is a schematic diagram showing a converter for carrying out this invention;
FIG. 2 is a graph showing the manganese reduction rate, and FIG. 3 is a graph showing the nitrogen pick-up amount. 1-Converter body, 2. Furnace mouth, 3: Lance, 4: Gas inlet Patent attorney Takehiko Suzue

Claims (2)

【特許請求の範囲】[Claims] (1)予備処理して燐濃度を低下させた溶銑を転炉に装
入し、この溶銑にマンガン鉱石又は酸化マンガン及び還
元剤を添加し、転炉内スラグ中に移行して酸化物状態で
存在するマンガンを還元剤で還元しつつ転炉吹錬するこ
とを特徴とする高マンガン鋼の製造方法。
(1) Hot metal that has been pretreated to reduce the phosphorus concentration is charged into a converter, and manganese ore or manganese oxide and a reducing agent are added to the hot metal, which migrates into the slag in the converter and becomes an oxide. A method for producing high manganese steel, which comprises performing converter blowing while reducing existing manganese with a reducing agent.
(2)前記還元剤は、フェロシリコン又は金属シリコン
であることを特徴とする特許請求の範囲第1項に記載の
高マンガン鋼の製造方法。
(2) The method for manufacturing high manganese steel according to claim 1, wherein the reducing agent is ferrosilicon or metal silicon.
JP5018488A 1988-03-03 1988-03-03 Production of high manganese steel Pending JPH01225715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5018488A JPH01225715A (en) 1988-03-03 1988-03-03 Production of high manganese steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5018488A JPH01225715A (en) 1988-03-03 1988-03-03 Production of high manganese steel

Publications (1)

Publication Number Publication Date
JPH01225715A true JPH01225715A (en) 1989-09-08

Family

ID=12852102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5018488A Pending JPH01225715A (en) 1988-03-03 1988-03-03 Production of high manganese steel

Country Status (1)

Country Link
JP (1) JPH01225715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216660A1 (en) * 2017-05-25 2018-11-29 Jfeスチール株式会社 Method for manufacturing high manganese steel ingot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216660A1 (en) * 2017-05-25 2018-11-29 Jfeスチール株式会社 Method for manufacturing high manganese steel ingot

Similar Documents

Publication Publication Date Title
JPH0230711A (en) Manufacture of extremely low carbon steel having superior cleanness
US4214898A (en) Process for preventing the rephosphorization of electric steel
JPH01225715A (en) Production of high manganese steel
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JPH10140227A (en) Production of high alloy steel by joining two molten steels
JP2006183103A (en) Method for melting low carbon aluminum-killed steel
JP7480751B2 (en) METHOD FOR DENITRATION OF MOLTEN STEEL AND METHOD FOR PRODUCING STEEL
JP4882171B2 (en) Hot phosphorus dephosphorization method
JPH05156338A (en) Method for reusing low phosphorus converter slag
JP2004010935A (en) Method for manufacturing molten steel
JPH11140530A (en) Production of ultra-low nitrogen stainless steel
JP3899555B2 (en) Manufacturing method of high purity steel
JPS63310913A (en) Production of cast iron
SU916552A1 (en) Method for melting steel
JPH049420A (en) Method for denitrifying molten steel
JP3327062B2 (en) Melting method of ultra-low carbon / ultra low sulfur steel
SU1068494A1 (en) Method for smelting stainless steel
SU1092189A1 (en) Method for making stainless steel
JPH01283314A (en) Ladle refining method
JP3571871B2 (en) Manufacturing method of low carbon steel
SU1036758A1 (en) Method for smelting steel
KR20050037076A (en) Method for manufacturing steel with low sulfur
SU1188209A1 (en) Method of refining low-manganese cast iron
JPH11193411A (en) Refining method of molten low carbon iron
JP2001040409A (en) Method for dephosphorizing molten iron