JP2006283164A - Method for desulfurize-treating chromium-contained molten iron - Google Patents

Method for desulfurize-treating chromium-contained molten iron Download PDF

Info

Publication number
JP2006283164A
JP2006283164A JP2005107289A JP2005107289A JP2006283164A JP 2006283164 A JP2006283164 A JP 2006283164A JP 2005107289 A JP2005107289 A JP 2005107289A JP 2005107289 A JP2005107289 A JP 2005107289A JP 2006283164 A JP2006283164 A JP 2006283164A
Authority
JP
Japan
Prior art keywords
chromium
hot metal
molten iron
desulfurization
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005107289A
Other languages
Japanese (ja)
Other versions
JP4765374B2 (en
Inventor
Yuta Hino
雄太 日野
Yasuo Kishimoto
康夫 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005107289A priority Critical patent/JP4765374B2/en
Publication of JP2006283164A publication Critical patent/JP2006283164A/en
Application granted granted Critical
Publication of JP4765374B2 publication Critical patent/JP4765374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desulfurize-treating method with which molten iron containing ≥5 mass% chromium can be desulfurized at high efficiency and at low cost, when a high chromium steel having a little sulfur content is produced by using the molten iron containing ≥5 mass% chromium obtained with a fusing-reduction smelting etc. <P>SOLUTION: The chromium-contained molten iron is desulfurized by injecting a desulfurizing agent mainly containing metallic Mg powder and lime powder into the chromium-contained molten iron containing ≥5 mass% chromium held in a refining vessel. At that time, the temperature of the chromium-contained molten iron is made to ≥1,300°C and carbon content in the chromium-contained molten iron is made to ≥3.0 mass% and further, it is desirable that the chromium-contained molten iron is the one obtained by the fusing-reduction smelting or melting and the one tapped from a holding furnace after once holding the molten iron in the holding furnace having a heating function for molten iron. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、5質量%以上のクロムを含有する溶銑を高効率で且つ安価に脱硫することのできる脱硫処理方法に関するものである。   The present invention relates to a desulfurization treatment method capable of desulfurizing hot metal containing 5 mass% or more of chromium with high efficiency and at low cost.

ステンレス鋼に代表される高クロム鋼中の硫黄は、一部の鋼種においてはMnやMoなどの元素と化合物を形成し、切削性や皮膜性が増すという特性がある反面、熱間加工性を劣化させるという問題があるため、一般的にはその濃度を低下する必要がある。   Sulfur in high chromium steel, represented by stainless steel, forms a compound with elements such as Mn and Mo in some steel types, and has the property of increasing machinability and film property, but it has hot workability. Since there is a problem of deterioration, it is generally necessary to reduce the concentration.

現在の高クロム鋼の主たる溶製方法としては、溶銑予備処理を実施し、燐を低減した溶銑を転炉に装入し、更にフェロクロム合金を添加して合金の溶解と脱炭精錬とを行う方法、或いは、転炉などでクロム鉱石を溶融還元製錬して含クロム粗溶湯(以下、「含クロム溶銑」と呼ぶ)を得て、この含クロム溶銑を脱炭精錬する方法などが挙げられる。このうち、含クロム溶銑を用いる場合には、クロム濃度を調整するために含クロム溶銑と普通溶銑とを合わせ湯して脱炭精錬を行う場合や、また、溶湯の加熱機能を有する保持炉内で一旦保持した後に出湯した含クロム溶銑を用いて脱炭精錬を行う場合もある。フェロクロム合金は高価であることから、含クロム溶銑を用いる方法が主流になりつつある。   The current high-chromium steel melting method includes hot metal pretreatment, charging phosphorus with reduced phosphorus into the converter, and adding ferrochrome alloy to melt and decarburize the alloy. Or a method in which chromium ore is melt-reduced and smelted in a converter to obtain a chromium-containing crude molten metal (hereinafter referred to as “chromium-containing hot metal”), and this chromium-containing hot metal is decarburized and refined. . Among these, when using chrome-containing hot metal, in order to adjust the chromium concentration, chrome-containing hot metal and ordinary hot metal are combined to perform decarburization refining, or in a holding furnace having a hot metal heating function. In some cases, decarburization and refining may be performed using the chromium-containing hot metal that has been once held and then discharged. Since ferrochrome alloys are expensive, methods using chromium-containing hot metal are becoming mainstream.

クロム鉱石を溶融還元製錬して含クロム溶銑を得る工程は、1)昇熱工程、2)溶融還元工程、3)仕上げ還元工程の3つに大別される。溶銑中に含有される硫黄は還元反応により、溶融還元工程においてその大部分がスラグに移行する。しかしながら、この製錬により得られる含クロム溶銑中の硫黄濃度はせいぜい0.005質量%程度であり、極低硫鋼を溶製する場合には更に硫黄濃度を下げなければならない。また、含クロム溶銑と普通溶銑とを合わせ湯して使用することもあり、この場合には普通溶銑中に含有されていた硫黄により含クロム溶銑中の硫黄濃度が増加する。   The process of obtaining chromium-containing molten iron by smelting and reducing chrome ore is roughly divided into three processes: 1) a heat-up process, 2) a smelting reduction process, and 3) a finishing reduction process. Most of the sulfur contained in the hot metal is transferred to slag by the reduction reaction in the smelting reduction process. However, the sulfur concentration in the chromium-containing hot metal obtained by this smelting is at most about 0.005% by mass, and the sulfur concentration must be further lowered when melting extremely low sulfur steel. Further, the chrome-containing hot metal and the normal hot metal may be used in combination with each other. In this case, the sulfur concentration in the chrome-containing hot metal is increased by the sulfur contained in the normal hot metal.

溶融還元製錬工程において更に硫黄濃度を下げるためには、仕上げ還元工程において脱硫剤である生石灰の使用量を増大させる必要があり、これに応じて生石灰の滓化を促進させるためのホタル石の使用量も増大せざるを得ず、副原料のコストアップのみならず、溶融還元炉への負荷の増大や仕上げ還元工程の時間延長による生産量の低下が懸念される。   In order to further reduce the sulfur concentration in the smelting reduction smelting process, it is necessary to increase the amount of quick lime, which is a desulfurizing agent, in the final reduction process. The amount of use must be increased, and there is a concern that not only the cost of the auxiliary raw material will be increased, but also that the load on the smelting reduction furnace will increase and the production amount will decrease due to the extended time of the finishing reduction process.

一方、溶融還元工程では特に対策を採らず、含クロム溶銑を用いた脱炭精錬終了後の溶融高クロム鋼に、Fe−Si合金、生石灰、或いは特殊フラックスなどを添加して還元精錬を実施することにより、脱硫処理を施すこともできる。しかし、極低硫鋼を溶製する場合には、還元処理のためのFe−Si合金の添加量が増大し、それによりスラグの塩基度(CaO/SiO2 )が低下し、脱硫能が低下してしまう。従って、これを防止するために、生石灰の使用量も増大せざるを得ず、これに応じて生石灰の滓化を促進するためのホタル石の添加量も増大してしまい、結果的に精錬コストが増大してしまうという問題が生じる。また、取鍋精錬炉やVOD炉を用いた2次精錬における脱硫においても同様であり、処理による負荷も増大してしまう。 On the other hand, no special measures are taken in the smelting reduction process, and reduction smelting is performed by adding Fe-Si alloy, quick lime, special flux, etc. to the molten high chromium steel after completion of decarburization refining using chromium-containing hot metal. Thus, desulfurization treatment can also be performed. However, when melting ultra-low sulfur steel, the amount of Fe-Si alloy added for reduction treatment increases, thereby reducing the basicity of slag (CaO / SiO 2 ) and reducing the desulfurization ability. Resulting in. Therefore, in order to prevent this, the amount of quicklime used must be increased, and the amount of fluorite added to promote hatching of quicklime will increase accordingly, resulting in a refining cost. This causes a problem of increasing. The same applies to the desulfurization in the secondary refining using a ladle refining furnace or a VOD furnace, and the load due to the processing also increases.

このようなことから、クロムを含有する溶銑及びクロムを含有する溶鋼において効率的に且つ安価に脱硫する方法が提案されている。   For this reason, a method for efficiently and inexpensively desulfurizing a hot metal containing chromium and a molten steel containing chromium has been proposed.

例えば、特許文献1には、クロムを含有する溶融鉄合金中に、アルカリ土類金属の酸化物及びアルカリ土類金属のハロゲン化物からなる精錬剤を添加して、脱燐及び脱硫を同時に行う方法が開示されている。しかし、この方法では熱力学的に不利な条件で脱燐も同時に実施させるため、スラグ発生量が増大してしまう。更に、発生したスラグにクロム及び燐が混入するために、その処理方法が困難であるということも問題である。   For example, Patent Document 1 discloses a method of performing dephosphorization and desulfurization simultaneously by adding a refining agent comprising an alkaline earth metal oxide and an alkaline earth metal halide to a molten iron alloy containing chromium. Is disclosed. However, in this method, since dephosphorization is simultaneously performed under a thermodynamically disadvantageous condition, the amount of slag generated increases. Furthermore, since chromium and phosphorus are mixed in the generated slag, the treatment method is difficult.

また、特許文献2には、珪素と硫黄を含有する含クロム溶銑に対し、粉状脱硫剤を気体酸素とともにインジェクションすることにより同時脱珪・脱硫を行う方法が開示されている。しかしながら、この方法では気体酸素を溶銑中に吹き込んでいるため、メタル中の酸素ポテンシャルが増大し、脱硫には不利な条件となる。更に、脱珪反応によりスラグの塩基度も低下してしまう。そのため、脱硫反応を進行させるにはスラグ量が増大し、それに伴い、処理コストが増大するという問題がある。
特開昭59−47350号公報 特開平4−99112号公報
Patent Document 2 discloses a method of simultaneously desiliconizing and desulfurizing a chromium-containing hot metal containing silicon and sulfur by injecting a powdered desulfurizing agent together with gaseous oxygen. However, in this method, since gaseous oxygen is blown into the hot metal, the oxygen potential in the metal increases, which is a disadvantageous condition for desulfurization. In addition, the basicity of the slag also decreases due to the desiliconization reaction. Therefore, there is a problem in that the amount of slag increases in order to advance the desulfurization reaction, and the processing cost increases accordingly.
JP 59-47350 A JP-A-4-99112

本発明は上記事情に鑑みてなされたもので、その目的とするところは、溶融還元製錬などによって得た5質量%以上のクロムを含有する溶銑を用いて硫黄含有量の少ない高クロム鋼を溶製するに当たり、5質量%以上のクロムを含有する溶銑を高効率で且つ安価に脱硫することのできる脱硫処理方法を提供することである。   The present invention has been made in view of the above circumstances. The object of the present invention is to provide a high chromium steel with a low sulfur content using a hot metal containing 5% by mass or more of chromium obtained by smelting reduction smelting or the like. An object of the present invention is to provide a desulfurization treatment method capable of desulfurizing hot metal containing 5% by mass or more of chromium at high efficiency and at low cost.

上記課題を解決するための第1の発明に係る含クロム溶銑の脱硫処理方法は、精錬容器に収容された、クロムを5.0質量%以上含有する含クロム溶銑に、金属Mg粉及び石灰粉を主体とする脱硫剤を吹き込んで含クロム溶銑を脱硫することを特徴とする。   The chromium-containing hot metal desulfurization processing method according to the first invention for solving the above-mentioned problem is that a chromium-containing hot metal containing 5.0% by mass or more of chromium contained in a refining vessel is coated with metallic Mg powder and lime powder. It is characterized in that the chromium-containing hot metal is desulfurized by blowing a desulfurizing agent mainly composed of.

第2の発明に係る含クロム溶銑の脱硫処理方法は、第1の発明において、前記含クロム溶銑の脱硫処理前の温度が1300℃以上であり、且つ含クロム溶銑の脱硫処理前の炭素含有量が3.0質量%以上であることを特徴とする。   The chromium-containing hot metal desulfurization treatment method according to the second invention is the method according to the first invention, wherein the temperature of the chromium-containing hot metal before the desulfurization treatment is 1300 ° C. or more, and the carbon content before the desulfurization treatment of the chromium-containing hot metal Is 3.0 mass% or more.

第3の発明に係る含クロム溶銑の脱硫処理方法は、第1または第2の発明において、前記含クロム溶銑は、溶融還元製錬または溶解によって得たものであって、且つ溶湯の加熱機能を有する保持炉内で一旦保持された後に該保持炉から出湯されたものであることを特徴とする。   The chromium-containing hot metal desulfurization method according to the third invention is the first or second invention, wherein the chromium-containing hot metal is obtained by smelting or refining or melting, and has a heating function of the molten metal. It is characterized in that it is once held in a holding furnace and then discharged from the holding furnace.

本発明によれば、金属Mg粉及び石灰粉を主体とする脱硫剤を吹き込んで5質量%以上のクロムを含有する含クロム溶銑を脱硫処理するので、少ないスラグ発生量で高速且つ高効率で脱硫することが可能となり、その結果、高クロム含有合金製造において、製造コストの低減及び高生産性の実現が達成され、工業上有益な効果がもたらされる。   According to the present invention, a desulfurizing agent mainly composed of metallic Mg powder and lime powder is blown to desulfurize chromium-containing hot metal containing 5% by mass or more of chromium, so that desulfurization is performed at high speed and high efficiency with a small amount of slag generation. As a result, in the production of a high chromium content alloy, a reduction in manufacturing cost and realization of high productivity can be achieved, and an industrially beneficial effect is brought about.

以下、本発明を具体的に説明する。本発明では、精錬容器に収容された、クロムを5.0質量%以上含有する含クロム溶銑に、金属Mg粉及び石灰粉を主体とする脱硫剤を吹き込んで含クロム溶銑を脱硫する。   The present invention will be specifically described below. In the present invention, a chromium-containing hot metal containing 5.0% by mass or more of chromium contained in a refining vessel is blown with a desulfurizing agent mainly composed of metallic Mg powder and lime powder to desulfurize the chromium-containing hot metal.

この含クロム溶銑を含め、溶銑の脱硫反応は、一般的に下記の(1)式に示すイオン式で表される。   The desulfurization reaction of hot metal including this chromium-containing hot metal is generally represented by the ionic formula shown in the following formula (1).

Figure 2006283164
Figure 2006283164

(1)式の平衡定数Ksは下記の(2)式で表される。(2)式におけるaM (M=O,S,O2-,S2-)は、それぞれの成分の活量である。(2)式からも明らかなように、脱硫反応を促進させるためには、熱力学的には溶銑中の硫黄の活量(aS)を増大させるか、または、溶銑中の酸素の活量(aO )を低下させればよい。 The equilibrium constant Ks in the equation (1) is expressed by the following equation (2). In the formula (2), a M (M = O, S, O 2− , S 2− ) is the activity of each component. As is clear from the equation (2), in order to promote the desulfurization reaction, the sulfur activity (a S ) in the hot metal is increased thermodynamically or the oxygen activity in the hot metal is increased. What is necessary is just to reduce ( aO ).

Figure 2006283164
Figure 2006283164

ところで、金属Mgが優れた脱硫能を有することは古くから知られており、脱硫剤として利用されている。金属Mgによる溶鉄の脱硫反応は、溶銑に添加したMgが融解した後、溶銑中に溶解し、溶解したMgと溶銑中の硫黄とが反応すると考えられている。この脱硫反応は下記の(3)式で示される。   By the way, it has been known for a long time that metallic Mg has an excellent desulfurization ability, and is used as a desulfurization agent. It is believed that the molten iron desulfurization reaction with metallic Mg melts in the hot metal after Mg added to the hot metal melts, and the dissolved Mg reacts with sulfur in the hot metal. This desulfurization reaction is represented by the following formula (3).

Figure 2006283164
Figure 2006283164

このとき、生成したMgSが大気中の酸素または溶鉄中の酸素と反応して、MgSがMgOになると硫黄が溶銑中に戻る現象、所謂「復硫」が生じてしまう。そのため、金属Mgによって脱硫する際には、CaO粉を金属Mg粉と同時に添加し、下記の(4)式の反応を生成させて、復硫を抑制している。   At this time, the produced MgS reacts with oxygen in the atmosphere or oxygen in the molten iron, and when MgS becomes MgO, a phenomenon in which sulfur returns to the hot metal, so-called “resulfurization” occurs. Therefore, when desulfurizing with metal Mg, CaO powder is added simultaneously with the metal Mg powder, and the reaction of the following formula (4) is generated to suppress resulfurization.

Figure 2006283164
Figure 2006283164

以上の反応を利用することにより、Mg系脱硫剤は、通常、極低硫の普通鋼向けの溶銑脱硫処理における脱硫剤として利用されている。   By utilizing the above reaction, the Mg-based desulfurization agent is usually used as a desulfurization agent in hot metal desulfurization treatment for ultra-low sulfur ordinary steel.

ところで、Mgによる脱硫反応を考えた場合、前述した(3)式の平衡定数Ksは下記の(5)式で表される。(5)式におけるaM (M=MgS,S,Mg)は、それぞれの成分の活量である。 By the way, when considering the desulfurization reaction by Mg, the equilibrium constant Ks of the above-mentioned formula (3) is expressed by the following formula (5). In the equation (5), a M (M = MgS, S, Mg) is the activity of each component.

Figure 2006283164
Figure 2006283164

従って、(5)式からも明らかなように、Mgによる脱硫反応を促進するには、先述のように溶銑中の硫黄の活量を増加させる他に、Mgの活量を増大させることも考えられる。溶銑中のMgの活量は、濃度(質量%)と活量係数fMgとの積として表され、活量係数fMgは相互作用助係数eによって表されることから、溶銑中のMgの活量(aMg)は、下記の(6)式によって表される。(6)式において、Xは溶銑に含有される炭素、珪素などの元素である。 Therefore, as is clear from the formula (5), in order to promote the desulfurization reaction with Mg, it is also possible to increase the activity of Mg in addition to increasing the activity of sulfur in the hot metal as described above. It is done. The activity of Mg in the hot metal is expressed as the product of the concentration (mass%) and the activity coefficient f Mg, and the activity coefficient f Mg is expressed by the interaction aid coefficient e. The activity (a Mg ) is represented by the following formula (6). In the formula (6), X is an element such as carbon or silicon contained in the hot metal.

Figure 2006283164
Figure 2006283164

従って、(6)式から判断すれば、溶銑中のMgの活量を増大させるには、相互作用助係数eの値が正であり且つ相互作用助係数eの値が大きい元素を溶銑に添加する、または、相互作用助係数eの値が正であり且つ当該溶銑から溶製される鋼材の成分規格中で高濃度の成分元素を溶銑に添加する、ことによってMgの活量は増大することになる。   Therefore, judging from the equation (6), in order to increase the activity of Mg in the hot metal, an element having a positive value of the interaction assistant coefficient e and a large value of the interaction assistant coefficient e is added to the hot metal. Or the activity of Mg is increased by adding a high-concentration component element to the hot metal in the component specifications of the steel material that is positive in the interaction aid coefficient e and made from the hot metal. become.

ステンレス鋼や高合金鋼に代表される特殊鋼は一般に添加元素の濃度が高い。そこで、添加量の多い各種元素の溶鉄中Mgに及ぼす影響、つまり相互作用助係数eの文献値を調べたところ、クロムのMgに及ぼす相互作用助係数eの値が下記の(7)式に示すように正でしかも0.01と比較的大きな値であった。   Special steel typified by stainless steel and high alloy steel generally has a high concentration of additive elements. Therefore, when the influence of various elements added in large amounts on Mg in molten iron, that is, the literature value of interaction aid coefficient e, was examined, the value of interaction aid coefficient e on chromium Mg was expressed by the following equation (7). As shown, it was positive and a relatively large value of 0.01.

Figure 2006283164
Figure 2006283164

従って、溶銑中のクロム濃度が高くなるほど、Mgの活量が増加し、(3)式で示される反応が促進すると考えられる。つまり、このことから、ステンレス鋼のような高クロム鋼の脱硫処理には、金属Mg系脱硫剤を使用することが有効であることが分かった。ここで、具体的に高クロム鋼とは、クロム含有量が5.0質量%以上のものを指す。   Therefore, it is considered that the activity of Mg increases as the chromium concentration in the hot metal increases, and the reaction represented by the formula (3) is promoted. That is, from this, it was found that it is effective to use a metal Mg-based desulfurizing agent for desulfurization treatment of high chromium steel such as stainless steel. Here, specifically, the high chromium steel refers to one having a chromium content of 5.0% by mass or more.

更に、(3)式の反応を促進させるには、硫黄の活量(aS )を高めることが必要である。従来から、溶銑中の硫黄の活量係数に及ぼす炭素の影響が大きいこと、即ち、溶銑中の硫黄と炭素との相互作用助係数の値が0.034と正に大きいことが知られている。このことから、高クロム鋼の脱硫処理の場合、脱炭精錬後のような低炭素濃度域で行うよりも、炭素濃度が高い、含クロム溶銑の段階で行うことが最適である。含クロム溶銑中の炭素含有量は3.0質量%以上であればよい。 Furthermore, in order to promote the reaction of the formula (3), it is necessary to increase the activity (a S ) of sulfur. Conventionally, it is known that the influence of carbon on the activity coefficient of sulfur in hot metal is large, that is, the value of the coefficient of interaction coefficient between sulfur and carbon in hot metal is as large as 0.034. . For this reason, in the case of desulfurization treatment of high chromium steel, it is optimal to carry out at the stage of chromium-containing hot metal having a high carbon concentration, rather than in a low carbon concentration region as after decarburization refining. The carbon content in the chromium-containing hot metal may be 3.0% by mass or more.

また、脱硫反応は還元反応であるので、脱硫反応時の含クロム溶銑の温度は、高ければ高いほど脱硫反応が促進されるために好ましい。同時に、処理容器(例えば溶銑鍋など)への地金付着量も高温になるほど低減されるために好ましい。これらから、脱硫処理前の含クロム溶銑の温度は1300℃以上を確保することが好ましい。この含クロム溶銑は主に、クロム鉱石の溶融還元製錬、或いは、普通溶銑にフェロクロム合金を添加して溶解するなどの手法により得られるものである。また、溶融還元炉内に予め、或いは事後に高炉溶銑及びフェロクロムを装入し、溶融還元によって生成する含クロム溶銑とこれらとを混合してクロム含有量及び炭素含有量を調整した含クロム溶銑でもよい。更には、溶融還元製錬によって溶製した含クロム溶銑に、出湯後、高炉などによって溶製した普通溶銑を合わせ湯して、クロム含有量及び炭素含有量を調整した含クロム溶銑でも構わない。   Further, since the desulfurization reaction is a reduction reaction, the higher the temperature of the chromium-containing hot metal during the desulfurization reaction, the more preferable the desulfurization reaction is promoted. At the same time, it is preferable because the adhesion amount of the metal to the processing container (for example, hot metal ladle) is reduced as the temperature increases. From these, it is preferable that the temperature of the chromium-containing hot metal before the desulfurization treatment is 1300 ° C. or more. This chromium-containing hot metal is obtained mainly by the smelting reduction smelting of chromium ore or by adding a ferrochrome alloy to ordinary hot metal and melting it. In addition, the blast furnace hot metal and ferrochrome are charged in the smelting reduction furnace in advance or afterwards, and the chrome containing hot metal produced by the smelting reduction is mixed with these to adjust the chromium content and carbon content. Good. Further, a chromium-containing hot metal in which the chromium content and the carbon content are adjusted may be prepared by combining the hot metal melted by smelting reduction smelting with the normal hot metal melted in a blast furnace after hot water.

更に、これらの含クロム溶銑を溶湯の加熱機能を有する保持炉内で一旦保持した後、保持炉から出湯した溶銑を用いた場合には、含クロム溶銑の温度及び成分を調整することが可能であり、脱硫処理に最適な溶銑条件を設定することができる。そのため、このような保持炉から出湯した含クロム溶銑を脱硫処理用溶銑とするとより一層効果的である。このとき、上記保持炉において、高クロム鋼スクラップを追加的に溶解しても構わない。   Furthermore, after holding these chromium-containing hot metal in a holding furnace having a function of heating the molten metal, when using the hot metal discharged from the holding furnace, it is possible to adjust the temperature and components of the chromium-containing hot metal. Yes, it is possible to set the hot metal conditions optimal for the desulfurization treatment. Therefore, it is more effective to use the chromium-containing hot metal discharged from such a holding furnace as a hot metal for desulfurization treatment. At this time, the high chromium steel scrap may be additionally melted in the holding furnace.

溶銑の脱硫処理方法としては、通常、溶銑内に浸漬させたインジェクションランス或いは精錬容器に設置した吹き込み羽口などを介して粉体状脱硫剤をインジェクションする方法、精錬容器内に収容した溶銑上に脱硫剤を上添加して攪拌する方法、また、インペラーなどの攪拌子により溶銑と脱硫剤とを機械的に攪拌する方法などが挙げられるが、インジェクション方式が設備的にも簡素であり好ましい。   As a hot metal desulfurization treatment method, a powder desulfurization agent is usually injected through an injection lance immersed in the hot metal or a blowing tuyere installed in the refining vessel, or on the hot metal contained in the refining vessel. There are a method of adding a desulfurizing agent and stirring, and a method of mechanically stirring the hot metal and the desulfurizing agent with a stirring bar such as an impeller, etc., but the injection method is simple and preferable in terms of equipment.

また、含クロム溶銑内にインジェクションする脱硫剤は、先述の検討から金属Mg粉と石灰粉との混合粉であり、その組成は、金属Mgを10〜50質量%、石灰粉を50〜90質量%の割合で混合した脱硫剤を用いることが好ましい。石灰粉としては、生石灰粉、石灰石粉などCaOを含有する或いは生成する物質を用いることができるが、生石灰粉が好適である。   Moreover, the desulfurization agent injected into the chromium-containing hot metal is a mixed powder of metal Mg powder and lime powder from the above-mentioned examination, and the composition thereof is 10-50 mass% of metal Mg and 50-90 mass of lime powder. It is preferable to use a desulfurizing agent mixed at a ratio of%. As the lime powder, a substance containing or generating CaO such as quick lime powder and limestone powder can be used, and quick lime powder is preferable.

また、脱硫剤を吹き込む搬送用ガスは、特に規定はしないが、非酸化性ガスである窒素ガスを用いるのが一般的である。しかし、極低窒素ステンレス鋼についてはArガスを用いた方が、以後の脱炭精錬及び2次精錬時の負荷を軽減させるため、効率的である。   Further, the carrier gas for blowing the desulfurizing agent is not particularly specified, but nitrogen gas which is a non-oxidizing gas is generally used. However, for extremely low nitrogen stainless steel, using Ar gas is more efficient because it reduces the load during subsequent decarburization refining and secondary refining.

以上説明したように、本発明によれば、金属Mg粉及び石灰粉を主体とする脱硫剤を吹き込んで5質量%以上のクロムを含有する含クロム溶銑を脱硫処理するので、少ないスラグ発生量で高速且つ高効率に脱硫処理することが可能となる。   As described above, according to the present invention, a desulfurization agent mainly containing metallic Mg powder and lime powder is blown to desulfurize chromium-containing hot metal containing 5% by mass or more of chromium, so that a small amount of slag is generated. The desulfurization process can be performed at high speed and high efficiency.

以下、本発明を、図1に示す脱硫処理設備における実施例により更に詳細に説明する。図1に示すように、脱硫処理設備1には、溶銑鍋3の内部を昇降可能とするインジェクションランス4が、旋回キャリッジ5に保持されて設置されており、インジェクションランス4は、インジェクションタンク9に収容された脱硫剤を溶銑鍋3に収容された含クロム溶銑2にインジェクションするように構成されている。溶銑鍋3の上方には、集塵フード6及び集塵ダクト7が設置されている。また、脱硫処理設備1には、脱硫剤を受け入れるためのホッパー8が設置され、ホッパー8からインジェクションタンク9に適宜脱硫剤が供給されるようになっている。   Hereinafter, the present invention will be described in more detail with reference to the embodiment in the desulfurization treatment facility shown in FIG. As shown in FIG. 1, in the desulfurization treatment facility 1, an injection lance 4 that can move up and down in the hot metal ladle 3 is held by a swivel carriage 5, and the injection lance 4 is attached to an injection tank 9. The stored desulfurizing agent is configured to be injected into the chrome-containing hot metal 2 stored in the hot metal ladle 3. A dust collection hood 6 and a dust collection duct 7 are installed above the hot metal ladle 3. The desulfurization treatment facility 1 is provided with a hopper 8 for receiving the desulfurizing agent, and the desulfurizing agent is appropriately supplied from the hopper 8 to the injection tank 9.

このように構成される脱硫処理設備1において、溶銑鍋3に収容した185トンの含クロム溶銑2に対し、インジェクションランス4を介して脱硫剤をインジェクションして、脱硫処理を実施した。   In the desulfurization treatment facility 1 configured as described above, a desulfurization treatment was performed by injecting a desulfurization agent into the 185-ton chromium-containing hot metal 2 accommodated in the hot metal ladle 3 via the injection lance 4.

ここで、含クロム溶銑としては、(1)上底吹き転炉型溶融還元炉を用いてクロム鉱石の溶融還元製錬を実施した後に出湯した溶銑に、高炉溶銑、並びに縦型溶融還元炉によりクロム含有スラジを溶融還元して得られた高クロム含有溶銑を合わせ湯した含クロム溶銑(以下、「含クロム溶銑A」と呼ぶ)と、(2)前記上底吹き転炉型溶融還元炉を用いてクロム鉱石の溶融還元製錬を実施した後に出湯した溶銑を、加熱機能を備えた保持炉に一旦保持し、高炉溶銑、並びに竪型溶融還元炉によりクロム含有スラジを溶融還元して得られた高クロム含有溶銑を保持炉で合わせ湯し、更に保持炉で含クロム鋼のスクラップを適宜溶解して、その後出湯した含クロム溶銑(以下、「含クロム溶銑B」と呼ぶ)と、の2種類を用いた。   Here, as the chrome-containing hot metal, (1) the hot metal discharged after performing the smelting reduction smelting of chromium ore using the top bottom blowing converter type smelting reduction furnace, the blast furnace hot metal and the vertical smelting reduction furnace A chromium-containing hot metal (hereinafter referred to as “chromium-containing hot metal A”) obtained by combining high-chromium hot metal obtained by melting and reducing a chromium-containing sludge; The hot metal discharged after smelting and reducing smelting of chromium ore is once held in a holding furnace equipped with a heating function, and obtained by smelting and reducing chrome-containing sludge in a blast furnace hot metal and vertical smelting reduction furnace. The chrome-containing hot metal (hereinafter referred to as “chromium-containing hot metal B”) was prepared by combining the hot chrome-containing hot metal in a holding furnace, further melting the chrome-containing steel scrap appropriately in the holding furnace, and then tapping the hot water. The type was used.

溶融還元製錬実施後の含クロム溶銑の組成、高炉溶銑の組成、及び、竪型溶融還元炉によりクロム含有スラジを溶融還元して得られた高クロム含有溶銑の組成を表1に示す。   Table 1 shows the composition of the chromium-containing hot metal after the smelting reduction smelting, the composition of the blast furnace hot metal, and the composition of the high chromium-containing hot metal obtained by smelting and reducing the chromium-containing sludge in the vertical smelting reduction furnace.

Figure 2006283164
Figure 2006283164

また、本実施例で用いた前記2種類の含クロム溶銑Aの組成及び含クロム溶銑Bの組成をそれぞれ表2に示す。   Table 2 shows the composition of the two types of chromium-containing hot metal A and the composition of chromium-containing hot metal B used in this example.

Figure 2006283164
Figure 2006283164

本発明例及び比較例の処理条件の一覧を表3に示す。用いた溶銑は表2に示す含クロム溶銑A及び含クロム溶銑Bであり、Mg系脱硫剤をインジェクションして脱硫処理した。これに対して、比較例は、用いた溶銑は同じであるが、脱硫剤としてCaO−CaF2 系脱硫剤を使用し、このCaO−CaF2 系脱硫剤をインジェクションして脱硫処理した。 Table 3 shows a list of processing conditions of the inventive examples and the comparative examples. The hot metal used was chromium-containing hot metal A and chromium-containing hot metal B shown in Table 2, and was desulfurized by injecting an Mg-based desulfurizing agent. In contrast, in the comparative example, the hot metal used was the same, but a CaO—CaF 2 -based desulfurizing agent was used as a desulfurizing agent, and this CaO—CaF 2 -based desulfurizing agent was injected for desulfurization treatment.

Figure 2006283164
Figure 2006283164

ここで、Mg系脱硫剤としては、金属Mg粉を30質量%、CaO粉を70質量%の比率で混合したものを使用した。また、比較例で用いた石灰系脱硫剤には、CaOを90質量%、ホタル石(CaF2 )を10質量%の比率で配合したものを使用した。本発明例及び比較例ともに脱硫剤の吹込み速度は50kg/分とした。脱硫処理中、適時、含クロム溶銑のサンプリングを実施しながら、含クロム溶銑中の硫黄濃度が0.005質量%以下になるまで脱硫処理を実施し、処理時間、脱硫剤の使用原単位、処理中の溶銑の温度降下、スラグ発生量を比較した。 Here, as Mg type desulfurization agent, what mixed metal Mg powder in the ratio of 30 mass% and CaO powder in 70 mass% was used. Further, the lime-based desulfurizing agent used in Comparative Example, the CaO 90 wt%, fluorite and (CaF 2) was used after blending in a ratio of 10 mass%. In both the inventive examples and the comparative examples, the blowing rate of the desulfurizing agent was 50 kg / min. During the desulfurization process, while performing sampling of the chromium-containing hot metal at an appropriate time, the desulfurization process was carried out until the sulfur concentration in the chromium-containing hot metal became 0.005% by mass or less. The temperature drop and slag generation amount of the hot metal inside were compared.

図2に、本発明例及び比較例における含クロム溶銑中の硫黄濃度の推移を示す。図2に示すように、本発明例の方がはるかに脱硫速度の速いことが分かる。また、表4に脱硫処理の結果を示す。   In FIG. 2, transition of the sulfur concentration in the chromium-containing hot metal in the present invention example and the comparative example is shown. As shown in FIG. 2, it can be seen that the inventive example has a much faster desulfurization rate. Table 4 shows the results of the desulfurization treatment.

Figure 2006283164
Figure 2006283164

本発明例1は比較例1,2に対して、脱硫剤の使用原単位が低く、スラグ発生量もわずかであった。また、処理時間も11分と短く、脱炭精錬、連続鋳造などの後工程に支障をもたらすことなく効果的に脱硫処理を行うことができた。また、保持炉内に一旦保持した含クロム溶銑Bを用いた本発明例2では、保持炉内での加熱によって脱硫処理前の溶銑温度を制御することができる効果も加わり、更に脱硫速度を高めることができ、スラグ発生量もより一層低減した。   Inventive Example 1 was lower in the basic unit of desulfurization agent used than Comparative Examples 1 and 2, and the amount of slag generated was small. Further, the treatment time was as short as 11 minutes, and the desulfurization treatment could be carried out effectively without causing any trouble in subsequent processes such as decarburization refining and continuous casting. Further, in Example 2 of the present invention using the chromium-containing hot metal B once held in the holding furnace, an effect that the hot metal temperature before the desulfurization treatment can be controlled by heating in the holding furnace is added, and the desulfurization rate is further increased. The amount of slag generated can be further reduced.

これに対して石灰系脱硫剤を使用した比較例1,2では、処理時間が長くなり、脱硫剤の使用原単位、スラグ発生量が増加した。また、処理時間の増加に伴い、溶銑の温度降下量も増大する結果となった。以上の結果から、本発明方法の優位性を確認することができた。   On the other hand, in Comparative Examples 1 and 2 using a lime-based desulfurizing agent, the treatment time became longer, and the basic unit of use of the desulfurizing agent and the amount of slag generated increased. In addition, as the treatment time increased, the temperature drop of the hot metal also increased. From the above results, the superiority of the method of the present invention could be confirmed.

実施例で使用した脱硫処理設備の概略図である。It is the schematic of the desulfurization processing equipment used in the Example. 脱硫処理中の含クロム溶銑の硫黄濃度の推移を本発明例と比較例とで比較して示す図である。It is a figure which shows transition of the sulfur concentration of the chromium containing hot metal during a desulfurization process by comparing the example of the present invention and the comparative example.

符号の説明Explanation of symbols

1 脱硫処理設備
2 含クロム溶銑
3 溶銑鍋
4 インジェクションランス
5 旋回キャリッジ
6 集塵フード
7 集塵ダクト
8 ホッパー
9 インジェクションタンク
DESCRIPTION OF SYMBOLS 1 Desulfurization processing equipment 2 Chromium-containing hot metal 3 Hot metal ladle 4 Injection lance 5 Revolving carriage 6 Dust collection hood 7 Dust collection duct 8 Hopper 9 Injection tank

Claims (3)

精錬容器に収容された、クロムを5.0質量%以上含有する含クロム溶銑に、金属Mg粉及び石灰粉を主体とする脱硫剤を吹き込んで含クロム溶銑を脱硫することを特徴とする、含クロム溶銑の脱硫処理方法。   A chromium-containing hot metal containing 5.0% by mass or more of chromium contained in a refining vessel is blown with a desulfurizing agent mainly composed of metal Mg powder and lime powder to desulfurize the chromium-containing hot metal. Desulfurization method for chromium hot metal. 前記含クロム溶銑の脱硫処理前の温度が1300℃以上であり、且つ含クロム溶銑の脱硫処理前の炭素含有量が3.0質量%以上であることを特徴とする、請求項1に記載の含クロム溶銑の脱硫処理方法。   The temperature before desulfurization treatment of the chromium-containing hot metal is 1300 ° C or more, and the carbon content before desulfurization treatment of the chromium-containing hot metal is 3.0 mass% or more. Desulfurization method for chromium-containing hot metal. 前記含クロム溶銑は、溶融還元製錬または溶解によって得たものであって、且つ溶湯の加熱機能を有する保持炉内で一旦保持された後に該保持炉から出湯されたものであることを特徴とする、請求項1または請求項2に記載の含クロム溶銑の脱硫処理方法。   The chromium-containing hot metal is obtained by smelting or refining or melting, and is once held in a holding furnace having a heating function of the molten metal and then discharged from the holding furnace. The method for desulfurizing chromium-containing hot metal according to claim 1 or 2.
JP2005107289A 2005-04-04 2005-04-04 Desulfurization treatment method for chromium-containing hot metal Active JP4765374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005107289A JP4765374B2 (en) 2005-04-04 2005-04-04 Desulfurization treatment method for chromium-containing hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005107289A JP4765374B2 (en) 2005-04-04 2005-04-04 Desulfurization treatment method for chromium-containing hot metal

Publications (2)

Publication Number Publication Date
JP2006283164A true JP2006283164A (en) 2006-10-19
JP4765374B2 JP4765374B2 (en) 2011-09-07

Family

ID=37405372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005107289A Active JP4765374B2 (en) 2005-04-04 2005-04-04 Desulfurization treatment method for chromium-containing hot metal

Country Status (1)

Country Link
JP (1) JP4765374B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302961A (en) * 2006-05-12 2007-11-22 Nisshin Steel Co Ltd Desulfurizing refining agent for molten iron containing chromium and desulfurizing method
JP2008214711A (en) * 2007-03-06 2008-09-18 Nippon Steel Corp Method for desulfurizing chromium-containing molten iron
WO2010119987A1 (en) * 2009-04-17 2010-10-21 新日本製鐵株式会社 Powder transport method
JP2011214125A (en) * 2010-04-02 2011-10-27 Nippon Steel Corp Method for decarburizing chromium-containing steel by blowing oxygen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610024A (en) * 1992-06-26 1994-01-18 Kawasaki Steel Corp Method for refining ultralow carbon and ultralow sulfur chromium-containing molten steel
JP2001020006A (en) * 1999-07-05 2001-01-23 Kawasaki Steel Corp Method for desulfurizing molten ferro-alloy
JP2002241824A (en) * 2001-02-16 2002-08-28 Kawasaki Steel Corp Method for treating residue after extracting phthalic anhydride
JP2006233264A (en) * 2005-02-24 2006-09-07 Jfe Steel Kk Method for smelting high-chromium molten steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610024A (en) * 1992-06-26 1994-01-18 Kawasaki Steel Corp Method for refining ultralow carbon and ultralow sulfur chromium-containing molten steel
JP2001020006A (en) * 1999-07-05 2001-01-23 Kawasaki Steel Corp Method for desulfurizing molten ferro-alloy
JP2002241824A (en) * 2001-02-16 2002-08-28 Kawasaki Steel Corp Method for treating residue after extracting phthalic anhydride
JP2006233264A (en) * 2005-02-24 2006-09-07 Jfe Steel Kk Method for smelting high-chromium molten steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302961A (en) * 2006-05-12 2007-11-22 Nisshin Steel Co Ltd Desulfurizing refining agent for molten iron containing chromium and desulfurizing method
JP2008214711A (en) * 2007-03-06 2008-09-18 Nippon Steel Corp Method for desulfurizing chromium-containing molten iron
WO2010119987A1 (en) * 2009-04-17 2010-10-21 新日本製鐵株式会社 Powder transport method
JP2011214125A (en) * 2010-04-02 2011-10-27 Nippon Steel Corp Method for decarburizing chromium-containing steel by blowing oxygen

Also Published As

Publication number Publication date
JP4765374B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP5910579B2 (en) Melting method of ultra-low nitrogen pure iron
JP4736466B2 (en) Method for producing high chromium molten steel
JP4742740B2 (en) Method for melting low-sulfur steel
AU2012206947B2 (en) Method of desulfurizing steel
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP6693536B2 (en) Converter steelmaking method
JP3672832B2 (en) Ductile cast iron pipe and manufacturing method thereof
JP2013227664A (en) Molten iron preliminary treatment method
JP6311466B2 (en) Method of dephosphorizing molten steel using vacuum degassing equipment
JP5888194B2 (en) Desulfurization method for molten steel
CN112226566B (en) Production method for smelting low-phosphorus steel by vanadium-containing molten iron
JP2002020816A (en) Method for producing low nitrogen-containing chromium steel
JP3525766B2 (en) Hot metal dephosphorization method
JP2912963B2 (en) Slag reforming method as desulfurization pretreatment
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JP2007119837A (en) Method for producing molten steel containing chromium and extremely little sulfur
JP7255639B2 (en) Molten steel desulfurization method and desulfurization flux
JP7167704B2 (en) Hot metal desulfurization method
JPH07109507A (en) Method for pretreating molten iron
JP2005200762A (en) Method for desulfurizing molten pig iron
JP2017145435A (en) Method for desiliconizing molten iron
JPH111714A (en) Steelmaking method
JPH11100608A (en) Method for desiliconizing and desulfurizing molten iron
JP3772725B2 (en) Steel melting method
JP2855333B2 (en) Modification method of molten steel slag

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R150 Certificate of patent or registration of utility model

Ref document number: 4765374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250