JP2017145435A - Method for desiliconizing molten iron - Google Patents

Method for desiliconizing molten iron Download PDF

Info

Publication number
JP2017145435A
JP2017145435A JP2016026236A JP2016026236A JP2017145435A JP 2017145435 A JP2017145435 A JP 2017145435A JP 2016026236 A JP2016026236 A JP 2016026236A JP 2016026236 A JP2016026236 A JP 2016026236A JP 2017145435 A JP2017145435 A JP 2017145435A
Authority
JP
Japan
Prior art keywords
slag
desiliconization
hot metal
basicity
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016026236A
Other languages
Japanese (ja)
Other versions
JP6658049B2 (en
Inventor
泰明 草田
Yasuaki Kusada
泰明 草田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016026236A priority Critical patent/JP6658049B2/en
Publication of JP2017145435A publication Critical patent/JP2017145435A/en
Application granted granted Critical
Publication of JP6658049B2 publication Critical patent/JP6658049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for desiliconizing molten iron in which the occurrence of slag foaming is prevented.SOLUTION: The method for desiliconizing molten iron includes blowing oxidizing agent into molten iron in a reaction container such as a torpedo car, and inputting CaO-containing material as auxiliary material. An oxygen feeding rate of the oxidizing agent and a basicity of slag after desiliconizing satisfy the following (1) formula: 1.0>basicity (C/S)≥1.2×oxygen feeding rate (Nm/t/min)+0.55.SELECTED DRAWING: Figure 1

Description

本発明は、溶銑の脱珪処理方法に関する。   The present invention relates to a hot metal desiliconization method.

鉄鋼の精錬工程では品質要求の高度化やトータルコストの削減を目的に、転炉での精錬負荷軽減のため、その前工程で溶銑予備処理を行っている。この溶銑予備処理は各種反応容器(トーピードカー、溶銑鍋等)内で行い、このうち脱珪処理は酸化剤(酸素ガス、固体酸化物等)や精錬剤(石灰、スラグ等)を投入し、精錬している。投入した酸化剤の一部は溶銑中のCと反応してCOガスが発生し、COガス気泡によってスラグがフォーミングして反応容器から流出する場合がある。スラグ流出により周辺設備の溶損などの操業トラブルや スラグに含まれる鉄分ロスによる歩留悪化などが発生する。 そこで脱珪処理時のスラグフォーミングを抑制する次のような技術が提案されている。   In the steel refining process, hot metal pretreatment is performed in the previous process to reduce the refining load in the converter for the purpose of increasing quality requirements and reducing the total cost. This hot metal pretreatment is carried out in various reaction vessels (torpedo car, hot metal pan, etc.). Of these, desiliconization treatment is performed by introducing an oxidizing agent (oxygen gas, solid oxide, etc.) and a refining agent (lime, slag, etc.). doing. Some of the added oxidizer reacts with C in the hot metal to generate CO gas, and the slag may form due to CO gas bubbles and flow out of the reaction vessel. Slag spills will cause operational troubles such as melting of peripheral equipment and yield deterioration due to iron loss in the slag. Therefore, the following techniques for suppressing slag forming during desiliconization have been proposed.

特許文献1には、トーピードカー等の容器内で溶銑脱珪処理を行う際、CaOを30〜40%、CaF2 を3〜10%、ミルスケール等の酸化剤を50〜65%に配合し処理中のスラグ組成をCaO/SiO2 >1、(T・Fe%)<10%とし、さらに酸素供給速度を低下させ、COガス発生速度を最低にさせる操業条件とすることにより処理中の温度低下と共に脱燐反応を同時に進行させてスロッピングの抑制を可能とすることを特徴とする溶銑の予備処理方法の記載がある。
特許文献2には、溶銑を固体脱珪剤のみで脱珪処理する方法であって、酸化鉄含有物質と溶銑予備処理で発生する集塵ダストを混合した脱珪剤を溶銑に投入し、脱珪スラグの塩基度[CaO/SiO]が0.6〜1.2になるように処理することを特徴とする溶銑の処理方法の記載がある。
In Patent Document 1, when hot metal desiliconization treatment is performed in a container such as a torpedo car, the treatment is performed by blending 30 to 40% CaO, 3 to 10% CaF 2 and 50 to 65% oxidizer such as mill scale. The slag composition is CaO / SiO 2 > 1, (T · Fe%) <10%, and the oxygen supply rate is lowered and the operating conditions are set to minimize the CO gas generation rate. In addition, there is a description of a hot metal pretreatment method characterized in that slopping can be suppressed by simultaneously proceeding with a dephosphorization reaction.
Patent Document 2 discloses a method of desiliconizing hot metal only with a solid desiliconizing agent, and adding a desiliconizing agent mixed with an iron oxide-containing substance and dust collection dust generated during hot metal pretreatment to the hot metal, There is a description of a hot metal processing method characterized in that the basicity [CaO / SiO 2 ] of silica slag is 0.6 to 1.2.

特開平5−5115号公報JP-A-5-5115 特開2004−218026号公報Japanese Patent Laid-Open No. 2004-218026

ISIJ Internationai Vol 40(2000), No4, P348-355ISIJ Internationai Vol 40 (2000), No4, P348-355

近年、混銑車で脱珪処理した溶銑を転炉に入れて脱燐、脱硫の予備処理を行う際に、スクラップを装入する場合がある。その際にはスクラップ溶解に必要な熱源を確保すべく、気体酸素と固体酸化物をともに用いて、脱珪処理での溶銑温度の降下を抑制することが多い。したがって、脱珪剤としては、特定の固体酸素に限定することなく、気体酸素も望ましい。
また、余分なスラグの発生量を抑えるため、副原料としてのCaOの投入量もできるだけ少ないことが求められる。
そして、脱珪処理時のスラグフォーミングは、スラグの特性の他に、脱珪剤による送酸速度が関係すると考えられ、これらの要素を総合的に検討しなければならない。
In recent years, scrap is sometimes charged when pretreatment of dephosphorization and desulfurization is performed by putting hot metal desiliconized with a kneading wheel into a converter. In that case, in order to secure a heat source necessary for scrap melting, gaseous oxygen and solid oxide are used together to suppress a decrease in hot metal temperature in the desiliconization process. Accordingly, the silicon removal agent is not limited to specific solid oxygen, and gaseous oxygen is also desirable.
Moreover, in order to suppress the generation amount of excess slag, it is required that the input amount of CaO as an auxiliary material is as small as possible.
The slag forming during the desiliconization treatment is considered to be related to the acid feed rate by the desiliconizing agent in addition to the characteristics of the slag, and these factors must be comprehensively studied.

特許文献1に記載の発明は、高塩基度とするために脱珪剤中のCaO量が多くなり、スラグ発生量が多くなるという問題がある。
特許文献2に記載の発明は、脱珪剤が、酸化鉄含有物質と溶銑予備処理で発生する集塵ダストを混合した物に限定し、脱珪スラグの塩基度[CaO/SiO]が0.6〜1.2になるように処理することを規定したものである。そして、フォーミングに及ぼす送酸速度の関係については、何ら検討されていない。
The invention described in Patent Document 1 has a problem that the amount of CaO in the desiliconization agent is increased to increase the basicity, and the amount of slag generation is increased.
In the invention described in Patent Document 2, the desiliconization agent is limited to a mixture of an iron oxide-containing substance and dust collection dust generated by hot metal pretreatment, and the basicity [CaO / SiO 2 ] of desiliconization slag is 0. .6 to 1.2 is defined as processing. And the relationship between the acid delivery rate on forming is not studied at all.

送酸速度に応じて脱C反応によるガス発生量が変化するため、それに対応して副原料の投入量を調整して所定のスラグ塩基度とすることで、副原料の投入量を必要最小限として、スラグフォーミングを発生させることなく溶銑の脱珪処理を行うことができると考えられる。   Since the amount of gas generated by the de-C reaction changes according to the acid feed rate, the input amount of the auxiliary material is minimized by adjusting the input amount of the auxiliary material to a predetermined slag basicity accordingly. It is considered that the hot metal desiliconization can be performed without causing slag forming.

本発明の目的は、スラグフォーミングの発生が少ない溶銑の脱珪処理方法の提供である。   An object of the present invention is to provide a hot metal desiliconizing method with less slag forming.

本発明の要旨は以下の通りである。
<1> 混銑車等の反応容器内の溶銑に、酸化剤を吹き込み、副原料としてCaO含有物を投入する脱珪処理方法において、
酸化剤の送酸速度と脱珪処理後のスラグの塩基度が下記式(1)を満たすことを特徴とする溶銑の脱珪処理方法。
1.0>塩基度(C/S)≧1.2×送酸速度(Nm/t/min)+0.55
・・・・・・・(1)
<2> 前記酸化剤が、気体酸素又は固体酸化物の少なくともいずれかであることを特徴とする<1>に記載の溶銑の脱珪処理方法。
<3> 前記脱珪処理後の溶銑温度が、1350℃以上であることを特徴とする<1> 又は<2>に記載の溶銑の脱珪処理方法。
<4> 前記酸化剤の送酸速度が、0.10Nm/t/min以上0.35Nm/t/min以下であることを特徴とする<1>乃至<3>のいずれか一つに記載の溶銑の脱珪処理方法。
The gist of the present invention is as follows.
<1> In a desiliconization method in which an oxidizing agent is blown into hot metal in a reaction vessel such as a kneading vehicle and a CaO-containing material is added as an auxiliary material.
A method for desiliconization of hot metal, characterized in that the acid feed rate of the oxidizing agent and the basicity of the slag after desiliconization satisfy the following formula (1).
1.0> basicity (C / S) ≧ 1.2 × acid feed rate (Nm 3 /t/min)+0.55
・ ・ ・ ・ ・ ・ ・ (1)
<2> The hot metal desiliconization method according to <1>, wherein the oxidizing agent is at least one of gaseous oxygen and a solid oxide.
<3> The hot metal desiliconization method according to <1> or <2>, wherein the hot metal temperature after the desiliconization treatment is 1350 ° C. or higher.
<4> In any one of <1> to <3>, the acid supply rate of the oxidizing agent is 0.10 Nm 3 / t / min or more and 0.35 Nm 3 / t / min or less. The method for desiliconizing hot metal as described.

本発明によれば、脱珪量と処理時間から決まる送酸速度に応じて副原料の投入量を調整することで、スラグフォーミングの発生が少ない溶銑の脱珪処理を実施することができる。   According to the present invention, it is possible to carry out hot metal desiliconization treatment with less slag forming by adjusting the input amount of the auxiliary raw material according to the acid feed rate determined from the desiliconization amount and the processing time.

スラグ塩基度が1.0以下で、スラグフォーミングが発生する領域を示す図。The figure which shows the area | region where slag basicity generate | occur | produces when slag basicity is 1.0 or less.

(スラグフォーミングが発生する要因)
スラグフォーミングが発生する要因について、下記の式(2)、式(3)が報告されている(非特許文献1)。
(Factors that cause slag forming)
The following formulas (2) and (3) have been reported for the factors that cause slag forming (Non-Patent Document 1).

[数式1]

Figure 2017145435
[Formula 1]
Figure 2017145435

[数式2]

Figure 2017145435
Hf:フォーミング高さ(m),Qg:ガス発生速度(ms),A:転炉断面積(m2),
μ:粘度(Pa・s),σ:表面張力(N/m),ρ:密度(kg/m),
Db:気泡径(m),Σ:泡寿命,foaming index(s) [Formula 2]
Figure 2017145435
Hf: Forming height (m), Qg: Gas generation rate (m 3 s), A: Converter cross section (m 2 ),
μ: Viscosity (Pa · s), σ: Surface tension (N / m), ρ: Density (kg / m 3 ),
Db: Bubble diameter (m), Σ: Bubble life, foaming index (s)

式(2)は、スラグフォーミング高さ(Hf)をあらわす式である。式(3)のΣは、スラグ中にCOガスなどの気泡が留まる時間すなわち泡寿命(foaming index(s))を示している。
この泡寿命Σは、スラグ粘度と相関があり(式(3))、スラグ粘度が小さくなれば、淡寿命は短くなりフォーミングしにくくなる。スラグ粘度は塩基度などのスラグ組成に依存しており、塩基度が高くなるほどスラグ粘度は小さくなる。そして、式(2)よりスラグフォーミングはCOガス発生速度と相関があり、これは供給される気体酸素および固体酸化物からなる総送酸速度に依存している。
以上より、スラグフォーミング(Hf)は、送酸速度(Nm/t/min)と脱珪後のスラグ塩基度(CaO/SiO)に依存する。
Expression (2) is an expression representing the slag forming height (Hf). In the equation (3), Σ represents the time during which bubbles such as CO gas remain in the slag, that is, the foaming life (foaming index (s)).
This bubble life Σ has a correlation with the slag viscosity (Equation (3)), and if the slag viscosity is reduced, the light life is shortened and it is difficult to form. The slag viscosity depends on the slag composition such as basicity. The higher the basicity, the smaller the slag viscosity. From the equation (2), the slag foaming has a correlation with the CO gas generation rate, and this depends on the total acid feed rate composed of the supplied gaseous oxygen and solid oxide.
From the above, slag forming (Hf) depends on the acid feed rate (Nm 3 / t / min) and the slag basicity (CaO / SiO 2 ) after desiliconization.

(脱珪後のスラグ塩基度(CaO/SiO)の上限について)
式(1)、式(2)より、脱珪後のスラグ塩基度(CaO/SiO)が高ければ、Hf:フォーミング高さ(m)は小さくなり、フォーミングを抑制することができる。しかし、脱珪後のスラグ塩基度(CaO/SiO)が1.0以上になれば、脱珪剤中のCaO量が多くなりなり、スラグ発生量が多くなる。また、スラグ塩基度(CaO/SiO)が大きいと、スラグ粘性が大きく、脱珪後のスラグ排滓が困難となる。
そこで、本発明は、脱珪後のスラグ塩基度(CaO/SiO)は1.0未満とした。
(About the upper limit of slag basicity (CaO / SiO 2 ) after desiliconization)
From the formulas (1) and (2), if the slag basicity (CaO / SiO 2 ) after desiliconization is high, the Hf: forming height (m) becomes small and the forming can be suppressed. However, if the slag basicity (CaO / SiO 2 ) after desiliconization becomes 1.0 or more, the amount of CaO in the desiliconization agent increases and the amount of slag generation increases. Further, when the slag basicity (CaO / SiO 2) is large, the slag viscosity increases, slag Haikasu de珪後becomes difficult.
Therefore, in the present invention, the slag basicity (CaO / SiO 2 ) after desiliconization is less than 1.0.

(送酸速度について)
本発明者は、脱珪により生成されるスラグと送酸速度(Nm/t/min)を変更して、スラグフォーミングの発生を調査した。
図1は、スラグ塩基度が1.0以下で、スラグフォーミングが発生する領域を示す図である。
送酸速度(Nm/t/min)とは、気体酸素および固体酸素の少なくともいずれかを溶銑に吹き込んだ場合の、単位時間当たりに吹き込む気体酸素と固体酸化物の酸素分の和として算出したものである。気体酸素とは酸素ガスであり、固体酸素とは、固体酸化物に含まれている酸素である。固体酸化物としては鉄鉱石の微粉、焼結ダストや転炉ダスト等が挙げられる。
(About acid delivery rate)
The inventor investigated the occurrence of slag forming by changing the slag generated by desiliconization and the acid feed rate (Nm 3 / t / min).
FIG. 1 is a diagram showing a region where slag basicity is 1.0 or less and slag forming occurs.
The acid delivery rate (Nm 3 / t / min) was calculated as the sum of the oxygen content of the gaseous oxygen and solid oxide blown per unit time when at least one of gaseous oxygen and solid oxygen was blown into the hot metal. Is. Gaseous oxygen is oxygen gas, and solid oxygen is oxygen contained in a solid oxide. Examples of the solid oxide include fine iron ore powder, sintered dust, converter dust, and the like.

図1において、生成スラグの塩基度が低いと、スラグフォーミングが発生する。しかし、生成スラグの塩基度(CaO/SiO)が1.0未満でも図1の直線よりも大きい場合には、スラグフォーミングが発生しない。図1の直線は、塩基度(C/S)=1.2×送酸速度(Nm/t/min)+0.55で表わされる。
以上より、生成スラグの塩基度と送酸速度(Nm/t/min)が下記の式(1)を満たす場合に、スラグフォーミングが発生しない。
1.0>塩基度(C/S)≧1.2×送酸速度(Nm/t/min)+0.55
・・・・・・・(1)
In FIG. 1, when the basicity of the generated slag is low, slag forming occurs. However, even if the basicity (CaO / SiO 2 ) of the generated slag is less than 1.0 and is larger than the straight line in FIG. 1, no slag forming occurs. The straight line in FIG. 1 is represented by basicity (C / S) = 1.2 × acid feed rate (Nm 3 /t/min)+0.55.
As described above, slag forming does not occur when the basicity of the generated slag and the acid feed rate (Nm 3 / t / min) satisfy the following formula (1).
1.0> basicity (C / S) ≧ 1.2 × acid feed rate (Nm 3 /t/min)+0.55
・ ・ ・ ・ ・ ・ ・ (1)

送酸速度は、脱珪量と処理時間から決めることができるが、0.10〜0.35Nm/t/minであることが好ましい。
0.10Nm/t/min未満では脱珪処理時間が長くなり過ぎるためであり、0.35Nm/t/min超になると、フォーミング抑制に必要なスラグ塩基度が高くなり過ぎるためである。
The acid delivery rate can be determined from the amount of silicon removal and the treatment time, but is preferably 0.10 to 0.35 Nm 3 / t / min.
It is less than 0.10Nm 3 / t / min is because the desiliconization treatment time is too long, at the 0.35Nm 3 / t / min greater, because the excessively high slag basicity necessary forming suppressed.

(気体酸素の割合)
脱珪剤として、気体酸素は、10質量%以上30質量%以下が好ましい。固体酸化物の割合が増えると、溶銑温度低下やそれに伴うグラファイト析出による環境問題が懸念され、気体酸素は、10質量%以上が好ましい。一方、気体酸素が多すぎると、燃焼反応増加による設備への熱負荷や脱珪酸素効率の低下が懸念されるため、30質量%以下が好ましい。
(Percentage of gaseous oxygen)
As a desiliconizing agent, gaseous oxygen is preferably 10% by mass or more and 30% by mass or less. When the proportion of the solid oxide increases, there is a concern about a decrease in the hot metal temperature and environmental problems due to graphite precipitation accompanying therewith, and the gaseous oxygen is preferably 10% by mass or more. On the other hand, when there is too much gaseous oxygen, there is a concern about heat load on the equipment due to increased combustion reaction and a decrease in desiliconization oxygen efficiency, so 30 mass% or less is preferable.

(副原料)
酸化剤とともに副原料としてCaO含有物を投入する。CaO含有物質としては、脱炭滓や生石灰等が挙げられる。CaO含有物の投入量は、送酸速度から決まる塩基度を満足するように調整する。
CaO含有物の投入は、固体酸化物と混合して一緒に吹き込んでもよいし、単独で投入してもよい。
(Sub-material)
A CaO-containing material is added as an auxiliary material together with the oxidizing agent. Examples of the CaO-containing material include decarburized soot and quicklime. The input amount of the CaO-containing material is adjusted so as to satisfy the basicity determined from the acid feed rate.
The CaO-containing material may be mixed with a solid oxide and blown together, or may be charged alone.

(溶銑温度)
溶銑温度は、脱珪処理後1350℃以上となるようにするのが望ましい。これは、次工程でスクラップを溶解するのに必要な熱量を担保するためである。
処理後の溶銑温度は、処理前の溶銑温度に応じて、酸化剤中の固体酸化物の割合を調整することで制御できる。即ち、処理前の溶銑温度が高ければ固体酸化物の割合を多くすることができ、低い場合には少なくする。
(Hot metal temperature)
It is desirable that the hot metal temperature be 1350 ° C. or higher after the silicon removal treatment. This is to secure the amount of heat necessary to melt the scrap in the next process.
The hot metal temperature after the treatment can be controlled by adjusting the ratio of the solid oxide in the oxidizing agent according to the hot metal temperature before the treatment. That is, if the hot metal temperature before processing is high, the proportion of solid oxide can be increased, and if it is low, it is decreased.

混銑車に装入された溶銑を表1に示す条件で脱珪処理を行った。具体的な処理方法は、以下によった。
混銑車中の溶銑400t〜500tに、内管から気体酸素、外管からNをキャリアガスとして固体酸素及びCaO含有物をインジェクションした。CaO含有物は、脱珪処理中、常に投入し、フォーミングが発生したときは、フォーミングが治まるまで粉コークスを投入した。溶銑中Siが、設定値に到達したときに、脱珪処理を終了した。
表1に、脱珪処理後のスラグ塩基度、脱珪処理前後の溶銑温度と溶銑Si濃度、スラグフォーミングの発生有無は示す。
No.1〜No.5は発明例であり、処理後の溶銑温度が1350℃以上で、スラグフォーミングは発生しなかった。
No.6〜No.8は処理後のスラグ塩基度が条件を満足しない比較例であり、スラグフォーミングが発生したため、処理を継続するためにフォーミング抑制剤として粉コークスを投入する必要があった。
No.9固体酸化物のみによる処理であり、送酸速度と、塩基度が要件を満たせば、スラグフォーミングは、なかった。
The hot metal charged in the kneading vehicle was desiliconized under the conditions shown in Table 1. The specific processing method was as follows.
Solid oxygen and CaO-containing material were injected into hot metal 400 to 500 t in a kneading vehicle using gaseous oxygen from the inner tube and N 2 as a carrier gas from the outer tube. The CaO-containing material was always added during the desiliconization process, and when forming occurred, powdered coke was added until the forming subsided. When Si in the hot metal reached the set value, the desiliconization process was completed.
Table 1 shows the slag basicity after the desiliconization process, the hot metal temperature and the hot metal Si concentration before and after the desiliconization process, and the presence or absence of slag forming.
No. 1-No. No. 5 is an invention example, and the hot metal temperature after the treatment was 1350 ° C. or higher, and no slag forming occurred.
No. 6-No. No. 8 is a comparative example in which the slag basicity after the treatment does not satisfy the condition, and slag foaming occurred, so that it was necessary to add powdered coke as a forming inhibitor to continue the treatment.
No. The treatment with only 9 solid oxides, there was no slag forming if the acid delivery rate and basicity met the requirements.


Figure 2017145435
Figure 2017145435

スラグフォーミングの発生が少ない溶銑の脱珪処理に利用することができる。
It can be used for desiliconization of hot metal with less slag forming.

Claims (4)

混銑車等の反応容器内の溶銑に、酸化剤を吹き込み、副原料としてCaO含有物を投入する脱珪処理方法において、
酸化剤の送酸速度と脱珪処理後のスラグの塩基度が下記(1)の式を満たすことを特徴とする溶銑の脱珪処理方法。
1.0>塩基度(C/S)≧1.2×送酸速度(Nm/t/min)+0.55
・・・・・・・(1)
In the desiliconization processing method in which an oxidizing agent is blown into hot metal in a reaction vessel such as a kneading car and a CaO-containing material is added as an auxiliary material.
A method for desiliconization of hot metal, characterized in that the acid feed rate of the oxidizing agent and the basicity of the slag after desiliconization satisfy the formula (1) below.
1.0> basicity (C / S) ≧ 1.2 × acid feed rate (Nm 3 /t/min)+0.55
・ ・ ・ ・ ・ ・ ・ (1)
前記酸化剤が、気体酸素又は固体酸化物の少なくともいずれかであることを特徴とする請求項1に記載の溶銑の脱珪処理方法。   The hot metal desiliconization method according to claim 1, wherein the oxidizing agent is at least one of gaseous oxygen and a solid oxide. 前記脱珪処理後の溶銑温度が、1350℃以上であることを特徴とする請求項1又は請求項2に記載の溶銑の脱珪処理方法。   The hot metal desiliconization method according to claim 1 or 2, wherein the hot metal temperature after the desiliconization treatment is 1350 ° C or higher. 前記酸化剤の送酸速度が、0.10Nm/t/min以上0.35Nm/t/min以下であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の溶銑の脱珪処理方法。






























The hot metal according to any one of claims 1 to 3, wherein an acid supply rate of the oxidizing agent is 0.10 Nm 3 / t / min or more and 0.35 Nm 3 / t / min or less. Desiliconization method.






























JP2016026236A 2016-02-15 2016-02-15 Hot metal desiliconization method Active JP6658049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016026236A JP6658049B2 (en) 2016-02-15 2016-02-15 Hot metal desiliconization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016026236A JP6658049B2 (en) 2016-02-15 2016-02-15 Hot metal desiliconization method

Publications (2)

Publication Number Publication Date
JP2017145435A true JP2017145435A (en) 2017-08-24
JP6658049B2 JP6658049B2 (en) 2020-03-04

Family

ID=59680708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016026236A Active JP6658049B2 (en) 2016-02-15 2016-02-15 Hot metal desiliconization method

Country Status (1)

Country Link
JP (1) JP6658049B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074478A (en) * 2022-06-29 2022-09-20 中冶华天工程技术有限公司 Efficient desiliconization agent and desiliconization method for molten iron pretreatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074478A (en) * 2022-06-29 2022-09-20 中冶华天工程技术有限公司 Efficient desiliconization agent and desiliconization method for molten iron pretreatment

Also Published As

Publication number Publication date
JP6658049B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP6743915B2 (en) Method for desulfurizing molten steel and desulfurizing agent
WO2013108810A1 (en) Method for preliminary treatment of molten iron
JP6222490B2 (en) Hot phosphorus dephosphorization method
JP5408379B2 (en) Hot metal pretreatment method
JP6773135B2 (en) How to dephosphorize hot metal
JP5233378B2 (en) Hot phosphorus dephosphorization method
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
TWI667350B (en) Pretreatment method of lyophilization and manufacturing method of extremely low phosphorus steel
JP6658049B2 (en) Hot metal desiliconization method
JP5888194B2 (en) Desulfurization method for molten steel
JP2005232536A (en) Method for smelting high cleanliness steel
JP2008063646A (en) Dephosphorizing method of molten iron
JP2018178235A (en) Preliminary treatment method for molten iron
JP2013127089A (en) Method for pretreating molten iron
JP2009114494A (en) Method for producing slag for use in dephosphorizing molten pig iron
JP4779464B2 (en) Method for producing low phosphorus hot metal
JP2016079462A (en) Method for refining hot pig iron
JP2001107124A (en) Method for dephosphorizing molten iron
JP5447554B2 (en) Dephosphorization method for hot metal
JP7238570B2 (en) Hot metal dephosphorization method
JP7255639B2 (en) Molten steel desulfurization method and desulfurization flux
JP7107292B2 (en) Hot metal dephosphorization treatment method
JP7348519B2 (en) Method of dephosphorizing hot metal
JP2011058046A (en) Method for dephosphorizing molten iron
JP2012207248A (en) Method for dephosphorizing molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R151 Written notification of patent or utility model registration

Ref document number: 6658049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151