JP2012207248A - Method for dephosphorizing molten iron - Google Patents

Method for dephosphorizing molten iron Download PDF

Info

Publication number
JP2012207248A
JP2012207248A JP2011072065A JP2011072065A JP2012207248A JP 2012207248 A JP2012207248 A JP 2012207248A JP 2011072065 A JP2011072065 A JP 2011072065A JP 2011072065 A JP2011072065 A JP 2011072065A JP 2012207248 A JP2012207248 A JP 2012207248A
Authority
JP
Japan
Prior art keywords
molten iron
slag
blowing
hot metal
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011072065A
Other languages
Japanese (ja)
Other versions
JP5353935B2 (en
Inventor
Masaki Miyata
政樹 宮田
Teppei Tamura
鉄平 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2011072065A priority Critical patent/JP5353935B2/en
Publication of JP2012207248A publication Critical patent/JP2012207248A/en
Application granted granted Critical
Publication of JP5353935B2 publication Critical patent/JP5353935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for dephosphorizing molten iron that can stably prevent slopping during blowing.SOLUTION: In the method for dephosphorizing molten iron, when a top-blowing oxygen flowing amount is 1.5-4.0 Nm/min/molten iron t and a bottom-blowing Nflowing amount is 0.1-0.6 Nm/min/molten iron t using a top and bottom blown converter-type container, addition of quicklime and iron oxide is performed, slag basicity after treatment is 1.5-2.5, and coke powders are blown from a sublance to the slag during blowing. In the method, the blowing rate of the coke powders is set in a predetermined range specified by the top-blowing oxygen flowing amount and the sum of Si concentration and Ti concentration in the molten iron before treatment, and the blowing amount of the coke powders is set in a predetermined range which is set based on the blowing rate of the coke powders specified by the top-blowing oxygen flowing amount and the sum of the concentrations above.

Description

本発明は、転炉型の精錬容器を用いて気体酸素や酸化鉄を使用した溶銑脱りん処理におけるスロッピングを防止する方法に関する。   The present invention relates to a method for preventing slopping in hot metal dephosphorization processing using gaseous oxygen or iron oxide using a converter-type refining vessel.

近年、溶銑脱りんを行って低りん鋼を溶製する方法が主流となっている。上底吹きが可能な転炉型の容器を用い、気体酸素を溶銑へ高速で吹き付けることにより短時間で脱りんする方法が多く採用されている。最近は、気体酸素上吹き流量の増加による処理時間の更なる短縮が求められている。   In recent years, a method of melting low phosphorus steel by hot metal dephosphorization has become the mainstream. A method of dephosphorizing in a short time by using a converter-type container capable of top-bottom blowing and blowing gaseous oxygen onto the molten iron at high speed is often employed. Recently, there has been a demand for further shortening of the processing time by increasing the flow rate of gaseous oxygen.

上吹き酸素流量が多くなると、上吹きされた酸素ガスと溶銑中の[C]が反応して生成するCOガス量が増加し、このCOガスがスラグ中に捕捉されてスラグが泡立つ、すなわちスラグがフォーミングしやすくなる。さらに上吹き酸素流量が増加してCOガスの発生速度が増加すると、このスラグのフォーミングが過度に激しくなって炉口からスラグが横溢してしまう。この横溢現象はスロッピングと称され、脱りん作業性の低下をもたらすことから、その発生は回避されるべきものとされている。   When the upper blown oxygen flow rate is increased, the amount of CO gas produced by the reaction between the oxygen gas blown up and [C] in the hot metal increases, and this CO gas is trapped in the slag and the slag is foamed. Becomes easier to form. Further, when the flow rate of the top blowing oxygen is increased and the generation rate of the CO gas is increased, the slag forming becomes excessively intense and the slag overflows from the furnace port. This overflow phenomenon is referred to as slopping and causes a decrease in dephosphorization workability, and its occurrence should be avoided.

ここで、COガス発生速度が同一である場合には、スラグからCOガスが抜け難いほどスラグがフォーミングし易くなる。したがって、溶銑脱りん処理時に生成するスラグの組成も、スラグのフォーミングに重要な影響を与える。   Here, when the CO gas generation speed is the same, the slag is more easily formed as the CO gas is more difficult to escape from the slag. Therefore, the composition of the slag produced during the hot metal dephosphorization treatment also has an important influence on the slag forming.

この点に関し、処理前溶銑中の[Si]は脱りん処理中に酸化され、SiOとしてスラグ中に取り込まれるところ、スラグ中のSiO濃度が増えるとスロッピングが発生し易くなる。すなわち、処理前溶銑中の[Si]が増えるとスロッピングが発生し易くなる。 In this regard, the process [Si] in the pre-hot metal is oxidized during dephosphorization process, where incorporated into the slag as SiO 2, slopping is likely to occur when increasing the SiO 2 concentration in the slag. That is, as the amount of [Si] in the hot metal before processing increases, slopping is likely to occur.

また、脱りん率を高値に維持するためにスラグの塩基度すなわちCaO/SiO比を高める場合、処理前溶銑中の[Si]が増えると投入する生石灰量も増えるため、生成するスラグ量も増える。すると、スラグ単位体積中に含まれるCOガスの量が同じだった場合、スラグ量が多いほどフォーミングしたスラグの体積が増えるため、スラグが炉口からスロッピングし易くなる。 In addition, when increasing the basicity of slag, that is, the CaO / SiO 2 ratio, in order to maintain the dephosphorization rate at a high value, the amount of quick lime to be added increases as the amount of [Si] in the hot metal before treatment increases, so the amount of slag to be generated also increases. Increase. Then, when the amount of CO gas contained in the slag unit volume is the same, the larger the slag amount, the larger the volume of the formed slag, so that the slag is easily slopped from the furnace port.

かかるスロッピングの発生を抑制するために、特許文献1には、サブランスを用いて炭材をスラグに吹き込むことにより脱りん吹錬終了後のスラグのフォーミングを沈静する方法が開示されている。   In order to suppress the occurrence of such slopping, Patent Document 1 discloses a method of calming slag forming after dephosphorization blowing by blowing carbonaceous material into the slag using a sub lance.

特許第3533955号公報Japanese Patent No. 3533955

この特許文献1に開示される方法は、脱りん吹錬終了後のスラグのフォーミングを沈静する方法であって、上吹き酸素流量を増やして高速脱りん処理した場合や処理前溶銑組成、特に[Si]濃度が高い場合に問題となる、吹錬中のスロッピングの解決方法については、何ら開示されていない。   The method disclosed in Patent Document 1 is a method of calming slag forming after the completion of dephosphorization blowing, and the case where high-flow dephosphorization treatment is performed by increasing the top blowing oxygen flow rate or the hot metal composition before treatment, There is no disclosure of a solution for slopping during blowing, which is a problem when the Si] concentration is high.

本発明の目的は、上底吹き転炉を用いた溶銑脱りんにおいて、スラグ組成がある程度の範囲に制御された条件下で、処理前溶銑組成の内[Si]濃度と[Ti]濃度の和が高い場合や上吹き酸素流量を増加して高速脱りん処理する場合に、吹錬中のスロッピングを回避できる方法を提示することである。   The object of the present invention is to add the sum of [Si] concentration and [Ti] concentration of hot metal composition before treatment under the condition that the slag composition is controlled within a certain range in hot metal dephosphorization using a top-bottom blow converter. It is to present a method capable of avoiding slopping during blowing when the flow rate is high or when the upper blown oxygen flow rate is increased to perform high-speed dephosphorization treatment.

本発明者らは上記課題を解決すべく鋭意検討した。
溶銑脱りん吹錬中のスラグフォーミングを沈静させる方法として、吹錬中にサブランスからコークス粉をスラグへ吹き付ける方法が有効である。このスラグフォーミングの沈静化の程度はコークス粉の吹き付け速度や吹き付け量のみに依存するのではなく、スラグのフォーミングし易さによっても異なるはずである。そこで、本発明者らは、スラグのフォーミングし易さに影響を及ぼす主な因子として、上吹き酸素ガス流量とスラグ組成に着目した。
The present inventors diligently studied to solve the above problems.
As a method of calming the slag forming during hot metal dephosphorization, a method of spraying coke powder from the sub lance to the slag during blowing is effective. The degree of calming of the slag forming does not depend only on the spraying speed and amount of the coke powder, but should also vary depending on the ease of forming the slag. Therefore, the present inventors paid attention to the top blowing oxygen gas flow rate and the slag composition as main factors affecting the ease of forming slag.

但し、スラグ組成の内、塩基度(CaO/SiO)は、脱りん率と非常に密接な関係があり、低コストで高い脱りん率を得るには1.5〜2.5の範囲に制御しなければならない。塩基度を2.5超にするためには生石灰投入量が多くなり、処理コストが高くなってしまう。一方、塩基度が1.5未満になるとスラグの脱りん能力が低下するため、脱りん不良を生じてしまう。なお、脱りん処理コストに大きく影響する因子として、溶銑中[Si]濃度が挙げられる。溶銑中[Si]濃度が高くなると溶銑脱りん処理中に生成するSiO量が増加するため、溶銑中[Si]濃度が高いほど必要な生石灰量が増えて処理コストが高くなる。 However, basicity (CaO / SiO 2 ) in the slag composition has a very close relationship with the dephosphorization rate, and in the range of 1.5 to 2.5 in order to obtain a high dephosphorization rate at low cost. Must be controlled. In order to increase the basicity to more than 2.5, the amount of quick lime input increases, and the processing cost increases. On the other hand, when the basicity is less than 1.5, the dephosphorization ability of the slag is lowered, resulting in poor dephosphorization. In addition, [Si] density | concentration in hot metal is mentioned as a factor which has large influence on the dephosphorization process cost. When the [Si] concentration in hot metal increases, the amount of SiO 2 produced during hot metal dephosphorization increases, so the higher the [Si] concentration in hot metal, the higher the required amount of quicklime and the higher the processing cost.

上記の検討に基づき、塩基度を1.5〜2.5の範囲に設定して溶銑の脱りん実験を行ったところ、上吹き酸素ガス流量が同一であってもスロッピングが発生する場合としない場合とがあるという結果が得られた。そこでスロッピング発生原因を詳細に検討した結果、溶銑中の[Si]濃度のみならず、[Ti]濃度がスロッピングの発生に大きく影響しているとの知見を得た。   Based on the above examination, when the basicity was set in the range of 1.5 to 2.5 and the hot metal dephosphorization experiment was carried out, even when the top blowing oxygen gas flow rate was the same, slapping occurred. The result that there was a case not to have been obtained. Thus, as a result of detailed investigation of the cause of slopping, it was found that not only the [Si] concentration in the molten iron but also the [Ti] concentration greatly affects the occurrence of slopping.

上述したごとく、溶銑中[Si]濃度が増加するとスラグ中(SiO)濃度が増加してスラグがフォーミングし易くなる。また、スラグ塩基度を同一にするなら、溶銑中[Si]濃度が高いほどスラグ量が増えてスロッピングし易くなる。さらに、スラグ中(TiO)濃度(本発明において、溶銑中[Ti]が酸化されて生成した酸化物を「TiO」と表記する。)が高いほどスロッピングし易いことが分かった。 As described above, when the [Si] concentration in the hot metal increases, the concentration in the slag (SiO 2 ) increases and the slag is easily formed. Further, if the slag basicity is the same, the amount of slag increases as the [Si] concentration in the hot metal increases, and slopping becomes easier. Furthermore, it has been found that the higher the concentration in the slag (TiO 2 ) (in the present invention, the oxide produced by oxidizing [Ti] in the hot metal is referred to as “TiO 2 ”), the easier the slopping.

そこで、スロッピングに関係がある溶銑成分として[Si]の他に[Ti]も考慮して、次に説明する実験的な検討をさらに行った。
上底吹き転炉に溶銑270tを装入し、上吹き酸素流量1.3〜4.2Nm/min/溶銑t、底吹きN流量0.1〜0.6Nm/min/溶銑tとして、生石灰および酸化鉄を添加して溶銑脱りん処理を行った。ここで、処理後のスラグ塩基度は1.5〜2.5とし、処理後の鍋中溶銑温度を1290〜1350℃とした。
Therefore, an experimental study described below was further performed in consideration of [Ti] in addition to [Si] as a hot metal component related to slopping.
Hot metal 270t was charged into the top bottom blowing converter, and the top blown oxygen flow rate was 1.3 to 4.2 Nm 3 / min / molten iron t, and the bottom blown N 2 flow rate was 0.1 to 0.6 Nm 3 / min / molten iron t. Then, hot lime and iron oxide were added to perform hot metal dephosphorization. Here, the slag basicity after the treatment was 1.5 to 2.5, and the hot metal temperature in the pan after the treatment was 1290 to 1350 ° C.

その結果、溶銑中[Si]濃度と[Ti]濃度の和R(=[%Si]+[%Ti])が0.2以上であった場合に、上吹き酸素流量が1.5Nm/min/溶銑tを超えると、溶銑脱りん吹錬中にスロッピングが発生するとの結果が得られた。但し、[Si]は0.15質量%以上、[Ti]は0.04質量%以上であった。 As a result, when the sum R (= [% Si] + [% Ti]) of the [Si] concentration and [Ti] concentration in the hot metal was 0.2 or more, the top blowing oxygen flow rate was 1.5 Nm 3 / When min / molten iron t was exceeded, the result that slopping occurred during hot metal dephosphorization blowing was obtained. However, [Si] was 0.15 mass% or more, and [Ti] was 0.04 mass% or more.

そこで、溶銑脱りん吹錬中に炉内へ挿入したサブランスから、コークス粉(粒径0.3mm以下)をフォーミングスラグへ吹き付けたところ、スロッピングを抑制できた。
なお、上吹き酸素流量が大きくなると脱炭反応で生成するCOガス量が増えるため、スラグフォーミングが助長されてスロッピングし易くなる。その結果、上吹き酸素流量が多いほど、スロッピングを抑制するために必要なコークス粉の上吹き速度および上吹き量も増加した。ここで、コークス粉上吹き速度とは、コークス粉を上吹きした量を上吹きしていた時間で除した値、すなわち平均の上吹き速度を意味する。
Therefore, when coke powder (particle size of 0.3 mm or less) was sprayed onto the forming slag from the sublance inserted into the furnace during hot metal dephosphorization, slopping could be suppressed.
In addition, since the amount of CO gas produced | generated by a decarburization reaction will increase when a top blowing oxygen flow rate becomes large, slag forming is promoted and it becomes easy to perform a slopping. As a result, the higher the top blow oxygen flow rate, the higher the top blow speed and the top blow amount of coke powder required to suppress slopping. Here, the coke powder top blowing speed means a value obtained by dividing the amount of coke powder top blown by the time over which the coke powder was blown, that is, an average top blowing speed.

こうしてコークス粉上吹きによるスロッピング抑制の確認実験を溶銑組成に着目しつつ行ったところ、コークス粉の吹き込み速度および吹き込み量の適正値は、上吹き酸素流量の他に、溶銑中[Si]濃度と[Ti]濃度にも強く依存しているとの知見が得られた。   In this way, when the confirmation experiment of the suppression of the slopping by the coke powder top blowing was conducted paying attention to the hot metal composition, the appropriate value of the coke powder blowing speed and the blowing amount is not only the top blowing oxygen flow rate but also the [Si] concentration in the hot metal. And [Ti] concentration were also found to be strongly dependent.

溶銑中の[Si]や[Ti]は上吹き酸素によって酸化されて、それぞれSiO、TiOとなってスラグ中へ取り込まれる。すると、スラグ中のSiOやTiOの濃度が増えて、スラグのフォーミングが助長されて、スロッピングが発生し易くなったのである。その結果、溶銑中の[Si]と[Ti]の濃度の和R(=[%Si]+[%Ti])が多いほど、スロッピングを抑制するために必要なコークス粉の上吹き速度および上吹き量も増加した。 [Si] and [Ti] in the hot metal are oxidized by the top blown oxygen to become SiO 2 and TiO 2 , respectively, and are taken into the slag. As a result, the concentration of SiO 2 and TiO 2 in the slag increased, and slag forming was promoted, and slopping was likely to occur. As a result, the higher the sum R of the concentrations of [Si] and [Ti] in the hot metal (= [% Si] + [% Ti]), The amount of top blowing also increased.

さらに実験的検討を重ねた結果、上底吹き転炉で溶銑脱りんする場合に、サブランスからスロッピングを抑制するためのコークス粉の吹き付け速度Vと吹き付け量Wの適正値を、上吹き酸素流量Qと処理前溶銑中の[Si]濃度と[Ti]濃度の和R(=[%Si]+[%Ti])の関数(下記式(1)〜(5))として定量的に把握できるとの知見が得られた。   Furthermore, as a result of repeated experimental investigations, when hot metal dephosphorization was performed in the top-bottom blowing converter, the appropriate values for the coke powder spraying speed V and spraying amount W for suppressing slopping from the sublance were determined. It can be quantitatively grasped as a function of the sum R (= [% Si] + [% Ti]) of Q and [Si] concentration and [Ti] concentration in the pre-treatment hot metal (the following formulas (1) to (5)). And the knowledge was obtained.

なお、適正なVは下記式(1)〜(4)を同時に満足する範囲である。
Wは、上記したVの適正な範囲の下限値Vminと上限値Vmaxの4倍の範囲内が適正値である。
In addition, appropriate V is the range which satisfy | fills following formula (1)-(4) simultaneously.
W is an appropriate value within the range of four times the lower limit value V min and the upper limit value V max of the appropriate range of V described above.

−0.14+0.16×Q≦V≦0.27+0.82×Q (1)
−0.25+1.75×R≦V≦−0.26+3.81×R (2)
1.5≦Q≦4.0 (3)
0.2≦R≦1.0 (4)
min≦W≦4×Vmax (5)
ここで、Q:上吹き酸素流量(Nm/min/溶銑t)、
R:処理前溶銑中[Si]濃度と[Ti]濃度の和(質量%)、
V:コークス粉上吹き速度(kg/min/溶銑t)、
W:コークス粉上吹き量(kg/溶銑t)、
min:上記式(1)〜(4)を同時に満足するVの最低値、および
max:上記式(1)〜(4)を同時に満足するVの最大値
である。
−0.14 + 0.16 × Q ≦ V ≦ 0.27 + 0.82 × Q (1)
−0.25 + 1.75 × R ≦ V ≦ −0.26 + 3.81 × R (2)
1.5 ≦ Q ≦ 4.0 (3)
0.2 ≦ R ≦ 1.0 (4)
V min ≦ W ≦ 4 × V max (5)
Here, Q: top blowing oxygen flow rate (Nm 3 / min / molten iron t),
R: Sum (mass%) of [Si] concentration and [Ti] concentration in hot metal before treatment,
V: Coke powder top blowing speed (kg / min / molten iron t),
W: Coke powder top spray amount (kg / molten iron t),
V min : the minimum value of V that simultaneously satisfies the above formulas (1) to (4), and
V max : The maximum value of V that satisfies the above expressions (1) to (4) at the same time.

以上の知見に基づき完成された本発明は、上底吹き転炉型容器を用い、上吹き酸素流量1.5〜4.0Nm/min/溶銑t、底吹きN流量0.1〜0.6Nm/min/溶銑tとして、生石灰および酸化鉄を添加し、処理後のスラグ塩基度は1.5〜2.5で、吹錬中にサブランスからスラグへコークス粉を吹き付ける溶銑脱りん方法において、コークス粉吹き付け速度Vおよびコークス粉吹き付け量Wを上記式(1)〜(5)で規定する範囲内とすることを特徴とする溶銑脱りん方法である。 The present invention, which has been completed based on the above knowledge, uses an upper bottom blown converter type vessel, an upper blown oxygen flow rate of 1.5 to 4.0 Nm 3 / min / molten iron, and a bottom blown N 2 flow rate of 0.1 to 0. Hot metal dephosphorization method in which quick lime and iron oxide are added as 6 Nm 3 / min / molten iron t, slag basicity after treatment is 1.5 to 2.5, and coke powder is blown from sub lance to slag during blowing In the hot metal dephosphorization method, the coke powder spraying speed V and the coke powder spraying amount W are within the ranges defined by the above formulas (1) to (5).

本発明によれば、処理前溶銑組成の内[Si]濃度と[Ti]濃度との和が高い場合や上吹き酸素流量を増加して高速脱りん処理する場合であっても、吹錬中のスロッピングを安定的に回避することができる。   According to the present invention, even when the sum of the [Si] concentration and the [Ti] concentration in the hot metal composition before processing is high or when the top blown oxygen flow rate is increased to perform high-speed dephosphorization processing, Can be stably avoided.

以下、本発明に係る脱りん方法を、実施例を用いて詳しく説明する。
本発明に係る脱りん方法は、上吹き酸素流量が1.5Nm/min/溶銑t以上の高流量であって処理前溶銑中の[Si]濃度と[Ti]濃度との和がある程度高い、スロッピングが特に発生しやすい条件においてもその発生を効果的に抑制する方法である。したがって、処理対象となる溶銑は次の組成上の条件を満たすものが用いられる。
Hereinafter, the dephosphorization method according to the present invention will be described in detail with reference to examples.
In the dephosphorization method according to the present invention, the top blowing oxygen flow rate is a high flow rate of 1.5 Nm 3 / min / molten iron t or more, and the sum of [Si] concentration and [Ti] concentration in the molten iron before treatment is somewhat high. This is a method of effectively suppressing the occurrence of slopping even under conditions where it is particularly likely to occur. Therefore, the hot metal to be treated is one that satisfies the following compositional conditions.

0.2≦[%Si]+[%Ti]≦1.0
溶銑における他の成分の濃度は特に限定されない。
本発明に係る脱りん方法を実施するにあたり、1.5Nm/min/溶銑t以上の流量で酸素を上吹きできること、底吹きN流量として0.1〜0.6Nm/min/溶銑tを確保できること、およびサブランスからスラグにコークス粉を吹きつけることができることが満たされれば、設備構成は特に限定されない。酸素とともに粉体状の生石灰をメインランスから供給できることが好ましい。
0.2 ≦ [% Si] + [% Ti] ≦ 1.0
The concentration of other components in the hot metal is not particularly limited.
Carrying out the dephosphorization method according to the present invention, 1.5 Nm 3 / min / hot metal t can be blown over the oxygen in the above flow rate, bottom blowing N 2 flow rate of 0.1~0.6Nm 3 / min / hot metal t The equipment configuration is not particularly limited as long as it can be ensured that the coke powder can be sprayed from the sub lance to the slag. It is preferable that powdery quicklime can be supplied from the main lance together with oxygen.

上底吹き転炉に溶銑270tを装入し、上吹き酸素流量1.3〜4.2Nm/min/溶銑t、底吹きN流量0.1〜0.6Nm/min/溶銑tとして、生石灰および酸化鉄(スケール)(約15kg/溶銑t)を添加して溶銑脱りん処理を行った。 Hot metal 270t was charged into the top bottom blowing converter, and the top blown oxygen flow rate was 1.3 to 4.2 Nm 3 / min / molten iron t, and the bottom blown N 2 flow rate was 0.1 to 0.6 Nm 3 / min / molten iron t. Then, hot lime and iron oxide (scale) (about 15 kg / molten iron t) were added to perform molten iron dephosphorization treatment.

なお、一部の実験では生石灰の多くを粉体とし、この粉体をNまたはOを80質量%以上含有する酸素ガスをキャリアーガスとして上吹きランスから溶銑浴面へ吹き付けて添加した。 In some experiments, most of the quicklime was used as powder, and this powder was added by blowing oxygen gas containing 80% by mass or more of N 2 or O 2 from the top blowing lance onto the hot metal bath surface.

処理後のスラグ塩基度は1.5〜2.5とした。また、処理前溶銑中の[Si]濃度は0.15質量%以上、[Ti]濃度は0.01質量%以上、および[P]濃度は約0.1質量%であった。   The slag basicity after the treatment was 1.5 to 2.5. Further, the [Si] concentration in the hot metal before the treatment was 0.15% by mass or more, the [Ti] concentration was 0.01% by mass or more, and the [P] concentration was about 0.1% by mass.

溶銑脱りん吹錬中にサブランスからフォーミングスラグへ、コークス粉(粒径0.3mm以下)を、速度0.1〜3.7kg/min/溶銑tで、0.06〜14.8kg/溶銑t吹き付けた。コークス粉のキャリアーガスはNとし、0.05〜0.4Nm/min/溶銑tとした。また、コークス粉吹き付け速度V(kg/min/溶銑t)/キャリアーN流量(kg/min/溶銑t)を0〜15とした。なお、上記のVが0の場合とは、コークス粉を吹き付けずNガスのみを吹き付けた場合(比較例1)に相当する。この場合におけるN流量は0.2Nm/min/溶銑tであった。 During hot metal dephosphorization blowing, coke powder (particle size 0.3 mm or less) from sub lance to forming slag at a rate of 0.1 to 3.7 kg / min / molten iron, 0.06 to 14.8 kg / molten metal t Sprayed. Carrier gas of coke powder and N 2, was 0.05~0.4Nm 3 / min / hot metal t. The coke powder spraying speed V (kg / min / molten metal t) / carrier N 2 flow rate (kg / min / molten metal t) was set to 0 to 15. The case where V is 0 corresponds to the case where only N 2 gas is sprayed without the coke powder being sprayed (Comparative Example 1). In this case, the N 2 flow rate was 0.2 Nm 3 / min / molten iron t.

評価は、処理後鍋中溶銑中の[P]濃度が0.02質量%未満且つ吹錬中にスロッピングが発生しなかった場合を良好と判定(表中「○」)し、処理後溶銑中[P]が0.02質量%以上となるか吹錬中にスロッピングが発生した場合を不適と判定(表中「×」)した。   In the evaluation, when the [P] concentration in the hot metal in the hot pot after treatment was less than 0.02% by mass and slopping did not occur during blowing, the hot metal after treatment was judged as good. The case where the amount of medium [P] was 0.02% by mass or more or slopping occurred during blowing was judged as inappropriate (“×” in the table).

結果を表1および2に示す。   The results are shown in Tables 1 and 2.

Figure 2012207248
Figure 2012207248

Figure 2012207248
Figure 2012207248

以下、実施例について詳しく説明する。
(比較例1)
上吹き酸素流量Qが所望の下限値1.5Nm/min/溶銑tであり、溶銑中[Si]濃度と[Ti]濃度の和Rが0.2と低くとも、脱りん吹錬中にスロッピングが発生してしまった。このことから、Qが1.5Nm/min/溶銑t以上且つRが0.2以上の条件下では、コークス粉を上吹きしなければ吹錬中にスロッピングが発生してしまうことがわかった。
Hereinafter, examples will be described in detail.
(Comparative Example 1)
Even if the top blown oxygen flow rate Q is the desired lower limit of 1.5 Nm 3 / min / molten iron t and the sum R of [Si] concentration and [Ti] concentration in the molten iron is as low as 0.2, during dephosphorization blowing Slapping has occurred. From this, it can be seen that, under the condition that Q is 1.5 Nm 3 / min / molten metal t or more and R is 0.2 or more, slopping will occur during blowing unless coke powder is blown up. It was.

(本発明例1〜4および比較例2)
Qを1.5から4.0Nm/min/溶銑tまで増加しても、サブランスからコークス粉を上記式(1)〜(4)で規定した範囲内の速度Vで、上記式(5)で規定した範囲内の量Wをフォーミングスラグへ吹き付けることで、吹錬中のスロッピングを回避でき、処理後の[P]濃度も0.02質量%未満にできた。
(Invention Examples 1 to 4 and Comparative Example 2)
Even if Q is increased from 1.5 to 4.0 Nm 3 / min / molten iron t, coke powder is fed from the sub lance at a speed V within the range defined by the above formulas (1) to (4), and the above formula (5) By blowing the amount W within the range specified in the above to the forming slag, slopping during blowing can be avoided, and the [P] concentration after the treatment can also be made less than 0.02% by mass.

一方、Qを4.2Nm/min/溶銑tに高めると、サブランスからコークス粉を適正範囲内の上限に近い速度1.6kg/min/溶銑tで、適正範囲の上限に近い量6.5kg/溶銑tをフォーミングスラグへ吹き付けたが、吹錬中にスロッピングが発生してしまった。 On the other hand, when Q is increased to 4.2 Nm 3 / min / molten iron t, the amount of coke powder from the sub lance is 1.6 kg / min / molten iron t close to the upper limit within the proper range, and the amount close to the upper limit of the proper range 6.5 kg. / Although hot metal t was sprayed onto the forming slag, slapping occurred during blowing.

以上のように、サブランスからコークス粉を上吹きして吹錬中のスロッピングを抑制するためのQの上限は4.0Nm/min/溶銑tであった。
(本発明例5〜9および比較例3)
溶銑中[Si]濃度と[Ti]濃度の和Rが1.0以下の場合、サブランスからコークス粉を適正な範囲内の速度で適正な範囲内の量をフォーミングスラグ中へ吹き付けることで、吹錬中のスロッピングを回避でき、処理後[P]濃度も0.02質量%未満にできた。
As described above, the upper limit of Q for blowing up the coke powder from the sub lance to suppress the slopping during blowing was 4.0 Nm 3 / min / molten iron t.
(Invention Examples 5 to 9 and Comparative Example 3)
When the sum R of the [Si] concentration and [Ti] concentration in the hot metal is 1.0 or less, the coke powder is blown from the sub lance into the forming slag at a speed within the proper range. Slopping during smelting could be avoided, and the [P] concentration after treatment could be less than 0.02% by mass.

一方、Rが1.1と高い場合は、サブランスからコークス粉を適正範囲内の上限に近い速度2.3kg/min/溶銑tで、適正範囲の上限に近い量9.0kg/溶銑tをフォーミングスラグへ吹き付けたが、吹錬中にスロッピングが発生してしまった。   On the other hand, when R is as high as 1.1, the coke powder is formed from the sub lance at a rate of 2.3 kg / min / molten iron t close to the upper limit within the proper range and an amount of 9.0 kg / molten iron t close to the upper limit of the proper range I sprayed it on the slag, but slapping occurred during blowing.

以上のように、サブランスからコークス粉を上吹きして吹錬中のスロッピングを抑制するためのRの上限は1.0であった。
(本発明例10および11ならびに比較例4および5)
所望の操業条件の中では最もスロッピングし難い条件である、Q=1.5Nm/min/溶銑t、R=0.2において、適正な範囲内の下限値に近い速度0.1kg/min/溶銑tで、適正範囲の下限値に近い量0.11kg/溶銑tをフォーミングスラグへ吹き付けたところ(本発明例10)、吹錬中のスロッピングを回避でき、処理後[P]濃度も0.02質量%未満にできた。
As described above, the upper limit of R for suppressing the slopping during blowing by blowing the coke powder from the sub lance was 1.0.
(Invention Examples 10 and 11 and Comparative Examples 4 and 5)
In the desired operating conditions, the speed is close to the lower limit value in the proper range at Q = 1.5 Nm 3 / min / molten iron t, R = 0.2, which is the most difficult condition for slopping. When hot metal t was sprayed to the forming slag with an amount of 0.11 kg / hot metal t close to the lower limit of the appropriate range (Invention Example 10), slopping during blowing could be avoided, and the [P] concentration after treatment was also It was made less than 0.02% by mass.

これに対し、所望の操業条件の中では最もスロッピングし難い条件である、Q=1.5Nm/min/溶銑t、R=0.2において、適正な範囲内の下限値未満の速度0.05kg/min/溶銑tで、適正範囲内の量0.20kg/溶銑tをフォーミングスラグへ吹き付けたところ(比較例4)、吹錬中にスロッピングが発生した。 On the other hand, in the desired operating conditions, the speed is less than the lower limit value within the proper range at Q = 1.5 Nm 3 / min / molten iron t, R = 0.2, which is the most difficult condition to be slopped. When 0.05 kg / min / molten iron t was sprayed onto the forming slag at an amount in the appropriate range of 0.20 kg / molten iron (Comparative Example 4), slapping occurred during blowing.

このことから、スラグをフォーミングさせるCOガス生成速度に対して、適正な速度でコークス粉を吹き付けなければ、スロッピングを回避できないことがわかった。コークス粉吹き付け速度の適正値は、スラグ中に取り込まれるCOガス気泡の増加速度と、サブランスから吹き付けたコークス粉でスラグ中に取り込まれたCOガス気泡を破壊してスラグ外へ放出させる速度との兼ね合いで決まるのである。   From this, it was found that slopping cannot be avoided unless coke powder is sprayed at an appropriate rate with respect to the CO gas generation rate for forming slag. The appropriate value of the coke powder spraying speed is the increase speed of the CO gas bubbles taken into the slag and the speed at which the CO gas bubbles taken into the slag with the coke powder blown from the sub lance are broken and released to the outside of the slag. It is determined by a balance.

一方、所望の操業条件の中では最もスロッピングし易い条件である、Q=4.0Nm/min/溶銑t、R=1.0において、適正な範囲内の上限値に近い速度3.5kg/min/溶銑tで、適正範囲の上限値に近い量14.0kg/溶銑tをフォーミングスラグへ吹き付けたところ(本発明例11)、吹錬中のスロッピングを回避でき、処理後[P]濃度も0.02質量%未満にできた。 On the other hand, in the desired operating conditions, the speed is close to the upper limit value in the proper range at Q = 4.0 Nm 3 / min / molten iron t, R = 1.0, which is the most easily slopping condition. When the amount of 14.0 kg / molten iron t, which is close to the upper limit of the appropriate range, was sprayed on the forming slag at / min / molten iron t (Invention Example 11), slopping during blowing can be avoided, and after treatment [P] The concentration could be less than 0.02% by mass.

これに対し、所望の操業条件の中では最もスロッピングし易い条件である、Q=4.0Nm/min/溶銑t、R=1.0において、適正な範囲内の上限超の速度3.7kg/min/溶銑tで、適正範囲内の量7.4kg/溶銑tをフォーミングスラグへ吹き付けたところ(比較例5)、吹錬中にスロッピングが発生した。 On the other hand, the speed exceeding the upper limit within an appropriate range at Q = 4.0 Nm 3 / min / molten iron t, R = 1.0, which is the most easily slopping condition among the desired operating conditions. When 7 kg / min / molten iron t was sprayed onto the forming slag with an amount in the proper range of 7.4 kg / molten iron (Comparative Example 5), slapping occurred during blowing.

この理由は定かでないが、コークス粉吹き付け速度が大き過ぎると、コークス粉がフォーミングスラグ中へ効率よく分散せずに溶銑浴面や炉壁へ衝突してしまい、スロッピング抑制効果を発揮できなくなったことが一因と考えられる。   The reason for this is not clear, but if the coke powder spraying speed is too high, the coke powder will not efficiently disperse into the forming slag and will collide with the hot metal bath surface and furnace wall, making it impossible to exert the effect of suppressing slopping. This is considered to be a cause.

(本発明例12および13ならびに比較例6および7)
所望の操業条件の中では最もスロッピングし難い条件である、Q=1.5Nm/min/溶銑t、R=0.2において、適正な範囲内の下限値に近い速度0.11kg/min/溶銑tで、適正範囲の下限値に近い量0.11kg/溶銑tをフォーミングスラグへ吹き付けたところ(本発明例12)、吹錬中のスロッピングを回避でき、処理後[P]濃度も0.02質量%未満にできた。
(Invention Examples 12 and 13 and Comparative Examples 6 and 7)
In the desired operating conditions, the most difficult to slip, Q = 1.5 Nm 3 / min / molten iron t, R = 0.2, the speed close to the lower limit within the proper range 0.11 kg / min When hot metal t is sprayed to the forming slag with an amount of 0.11 kg / hot metal t close to the lower limit of the appropriate range (Invention Example 12), slopping during blowing can be avoided, and the [P] concentration after treatment is also It was made less than 0.02% by mass.

これに対し、所望の操業条件の中では最もスロッピングし難い条件である、Q=1.5Nm/min/溶銑t、R=0.2において、適正な範囲内の速度0.10kg/min/溶銑tで、適正範囲の下限値未満の量0.06kg/溶銑tをフォーミングスラグへ吹き付けたところ(比較例6)、吹錬中にスロッピングが発生した。 On the other hand, in the desired operating conditions, the speed is within the proper range at 0.10 kg / min at Q = 1.5 Nm 3 / min / molten iron t, R = 0.2, which is the most difficult condition to slopp. When 0.06 kg / molten iron t, which is less than the lower limit value of the appropriate range, was sprayed on the forming slag with / molten metal t (Comparative Example 6), slapping occurred during blowing.

このことから、スラグをフォーミングさせるCOガス生成速度に対して、適正な速度でコークス粉を吹き付けても、コークス粉を適正量吹き付けなければ、スロッピングを回避できないことがわかった。スラグ中のCO気泡をコークス粉で破壊してスロッピングを抑制するためには、スラグ中にコークス粉が分散されて且つある程度の時間スラグ中に滞留していなくてはならない。   From this, it was found that even if the coke powder was sprayed at an appropriate rate with respect to the CO gas generation rate for forming the slag, slopping could not be avoided unless the coke powder was sprayed in an appropriate amount. In order to destroy the CO bubbles in the slag with the coke powder and suppress the slopping, the coke powder must be dispersed in the slag and stay in the slag for a certain period of time.

上述したごとく、コークス粉はスラグ中(FeO)と反応して消費されてしまう。したがって、フォーミング沈静効果をある程度維持するには、コークス粉を適正量スラグ中へ投入する必要があるのである。   As described above, coke powder reacts with slag (FeO) and is consumed. Therefore, in order to maintain the forming calming effect to some extent, it is necessary to put coke powder into the slag in an appropriate amount.

一方、所望の操業条件の中では最もスロッピングし易い条件である、Q=4.0Nm/min/溶銑t、R=1.0において、適正な範囲内の上限値に近い速度3.5kg/min/溶銑tで、適正範囲の上限値に近い量14.0kg/溶銑tをフォーミングスラグへ吹き付けたところ(本発明例13)、吹錬中のスロッピングを回避でき、処理後[P]濃度も0.02質量%未満にできた。 On the other hand, in the desired operating conditions, the speed is close to the upper limit value in the proper range at Q = 4.0 Nm 3 / min / molten iron t, R = 1.0, which is the most easily slopping condition. When the amount of 14.0 kg / molten iron t, which is close to the upper limit of the appropriate range, was sprayed on the forming slag at / min / molten iron t (Invention Example 13), slopping during blowing can be avoided, and after treatment [P] The concentration could be less than 0.02% by mass.

これに対し、所望の操業条件の中では最もスロッピングし易い条件である、Q=4.0Nm/min/溶銑t、R=1.0において、適正な範囲内の速度3.5kg/min/溶銑tで、適正範囲上限超の量14.8kg/溶銑tをフォーミングスラグへ吹き付けたところ(比較例7)、吹錬中のスロッピングは回避できたが、処理後[P]濃度が0.023質量%に上昇し、脱りん不良となってしまった。 On the other hand, the speed is 3.5 kg / min within an appropriate range at Q = 4.0 Nm 3 / min / molten iron t, R = 1.0, which is the most easily slopping condition among the desired operating conditions. When 14.8 kg / molt iron of 14.8 kg / molten iron t was sprayed onto the forming slag with / molten iron t (Comparative Example 7), slopping during blowing could be avoided, but the [P] concentration after treatment was 0 It rose to 0.023 mass% and it became poor dephosphorization.

コークス粉を適正量以上添加すると、スラグ中(FeO)濃度を必要以上にコークス粉で還元してしまうため、脱りん不良を生じてしまったのである。
(本発明例14〜16および比較例8)
処理後のスラグ塩基度を1.5〜2.5とすることで、サブランスからコークス粉を適正条件内で上吹きしても処理後[P]を0.02質量%未満にできた。
If the coke powder is added in an appropriate amount or more, the concentration in the slag (FeO) is reduced more than necessary with the coke powder, resulting in poor dephosphorization.
(Invention Examples 14 to 16 and Comparative Example 8)
By setting the slag basicity after treatment to 1.5 to 2.5, [P] after treatment was less than 0.02% by mass even when coke powder was blown from the sub lance within appropriate conditions.

これに対し、処理後のスラグ塩基度を1.4に下げると、サブランスからコークス粉を適正条件内で上吹きしても、処理後[P]が0.022質量%まで上昇し、脱りん不良となってしまった。サブランスから吹き付けたコークス粉はスラグ中のCO気泡を破壊してスロッピングを抑制できるが、その際にスラグ中の(FeO)とコークス中のCが反応して、スラグ中の(FeO)濃度が低下してしまう。   On the other hand, when the slag basicity after the treatment is lowered to 1.4, even if the coke powder is blown up from the sub lance within an appropriate condition, the [P] after the treatment rises to 0.022% by mass and dephosphorization occurs. It became defective. The coke powder blown from the sub lance can suppress the slopping by destroying the CO bubbles in the slag. At that time, (FeO) in the slag reacts with C in the coke, and the (FeO) concentration in the slag is reduced. It will decline.

高い脱りん率を得るには、スラグの塩基度を高めて、且つスラグ中(FeO)濃度も高めなければならない。そして、スラグの塩基度が低い場合は、特にスラグ中(FeO)濃度を高める必要がある。したがって、スラグ塩基度が低い場合にサブランスからコークス粉を吹き付けてスラグ中(FeO)濃度を下げてしまう場合は、脱りん不良となってしまうのである。   In order to obtain a high dephosphorization rate, the basicity of the slag must be increased and the concentration of (FeO) in the slag must also be increased. And when the basicity of slag is low, it is necessary to raise especially the (FeO) density | concentration in slag. Therefore, when the coke powder is sprayed from the sub lance when the slag basicity is low and the (FeO) concentration in the slag is lowered, dephosphorization is poor.

(本発明例17および18)
溶銑脱りん吹錬に用いる生石灰の40質量%または100質量%を粉体(粒径0.2mm以下)とし、Oを80質量%以上含有する酸素ガスをキャリアーガスとして、この粉体を吹錬中に上吹きランスから溶銑浴面へ吹き付けて添加した。サブランスからは適正範囲内の条件でコークス粉を吹き付けた。
(Invention Examples 17 and 18)
40% by mass or 100% by mass of quick lime used for hot metal dephosphorization blowing is powder (particle size 0.2 mm or less), oxygen gas containing 80% by mass or more of O 2 is used as carrier gas, and this powder is blown. During the smelting, it was added by spraying from the top blowing lance to the hot metal bath surface. Coke powder was sprayed from the sub lance under conditions within the proper range.

その結果、吹錬中のスロッピングを回避でき、しかも処理後[P]を0.01質量%以下にまで低減できた。これは、上吹きした生石灰粉がスラグ中へ速やかに溶解して、脱りん反応に充分寄与したためである。   As a result, it was possible to avoid slopping during blowing and to reduce [P] to 0.01% by mass or less after the treatment. This is because the quick-blown quicklime powder quickly dissolved into the slag and contributed sufficiently to the dephosphorization reaction.

Claims (1)

上底吹き転炉型容器を用い、上吹き酸素流量1.5〜4.0Nm/min/溶銑t、底吹きN流量0.1〜0.6Nm/min/溶銑tとして、生石灰および酸化鉄を添加し、処理後のスラグ塩基度は1.5〜2.5で、吹錬中にサブランスからスラグへコークス粉を吹き付ける溶銑脱りん方法において、コークス粉吹き付け速度Vおよびコークス粉吹き付け量Wを下記式(1)〜(5)で規定する範囲内とすることを特徴とする溶銑脱りん方法。
−0.14+0.16×Q≦V≦0.27+0.82×Q (1)
−0.25+1.75×R≦V≦−0.26+3.81×R (2)
1.5≦Q≦4.0 (3)
0.2≦R≦1.0 (4)
min≦W≦4×Vmax (5)
ここで、Q:上吹き酸素流量(Nm/min/溶銑t)、
R:処理前溶銑中[Si]濃度と[Ti]濃度の和(質量%)、
V:コークス粉上吹き速度(kg/min/溶銑t)、
W:コークス粉上吹き量(kg/溶銑t)、
min:上記式(1)〜(4)を同時に満足するVの最低値、および
max:上記式(1)〜(4)を同時に満足するVの最大値
である。
Using an upper bottom blown converter type vessel, the top blown oxygen flow rate was 1.5 to 4.0 Nm 3 / min / molten iron t, the bottom blown N 2 flow rate was 0.1 to 0.6 Nm 3 / min / molten iron t, In the hot metal dephosphorization method in which iron oxide is added and the slag basicity after treatment is 1.5 to 2.5 and the coke powder is sprayed from the sub lance to the slag during blowing, the coke powder spraying speed V and the coke powder spraying amount A hot metal dephosphorization method characterized in that W is within a range defined by the following formulas (1) to (5).
−0.14 + 0.16 × Q ≦ V ≦ 0.27 + 0.82 × Q (1)
−0.25 + 1.75 × R ≦ V ≦ −0.26 + 3.81 × R (2)
1.5 ≦ Q ≦ 4.0 (3)
0.2 ≦ R ≦ 1.0 (4)
V min ≦ W ≦ 4 × V max (5)
Here, Q: top blowing oxygen flow rate (Nm 3 / min / molten iron t),
R: Sum (mass%) of [Si] concentration and [Ti] concentration in hot metal before treatment,
V: Coke powder top blowing speed (kg / min / molten iron t),
W: Coke powder top spray amount (kg / molten iron t),
V min : the minimum value of V that simultaneously satisfies the above formulas (1) to (4), and
V max : The maximum value of V that satisfies the above expressions (1) to (4) at the same time.
JP2011072065A 2011-03-29 2011-03-29 Hot metal dephosphorization method Active JP5353935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011072065A JP5353935B2 (en) 2011-03-29 2011-03-29 Hot metal dephosphorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011072065A JP5353935B2 (en) 2011-03-29 2011-03-29 Hot metal dephosphorization method

Publications (2)

Publication Number Publication Date
JP2012207248A true JP2012207248A (en) 2012-10-25
JP5353935B2 JP5353935B2 (en) 2013-11-27

Family

ID=47187245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011072065A Active JP5353935B2 (en) 2011-03-29 2011-03-29 Hot metal dephosphorization method

Country Status (1)

Country Link
JP (1) JP5353935B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140102132A (en) * 2013-02-13 2014-08-21 린텍 가부시키가이샤 adhesion composition, an adhesive and adhesion sheet
JP2015108180A (en) * 2013-12-05 2015-06-11 新日鐵住金株式会社 Foaming sedation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256020A (en) * 1996-03-19 1997-09-30 Nkk Corp Method for dehosphorize-refining of molten iron in converter type refining vessel.
JPH1150122A (en) * 1997-07-30 1999-02-23 Nkk Corp Dephosphorize-refining of molten iron in converter type refining vessel
JP2000096115A (en) * 1998-09-21 2000-04-04 Sumitomo Metal Ind Ltd Method for killing slag foaming
JP2004250745A (en) * 2003-02-19 2004-09-09 Sumitomo Metal Ind Ltd Method for preventing slopping

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256020A (en) * 1996-03-19 1997-09-30 Nkk Corp Method for dehosphorize-refining of molten iron in converter type refining vessel.
JPH1150122A (en) * 1997-07-30 1999-02-23 Nkk Corp Dephosphorize-refining of molten iron in converter type refining vessel
JP2000096115A (en) * 1998-09-21 2000-04-04 Sumitomo Metal Ind Ltd Method for killing slag foaming
JP2004250745A (en) * 2003-02-19 2004-09-09 Sumitomo Metal Ind Ltd Method for preventing slopping

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140102132A (en) * 2013-02-13 2014-08-21 린텍 가부시키가이샤 adhesion composition, an adhesive and adhesion sheet
KR102246034B1 (en) * 2013-02-13 2021-04-28 린텍 가부시키가이샤 adhesion composition, an adhesive and adhesion sheet
JP2015108180A (en) * 2013-12-05 2015-06-11 新日鐵住金株式会社 Foaming sedation method

Also Published As

Publication number Publication date
JP5353935B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JPH05507764A (en) Compositions and methods for synthesizing Tribe slag, compositions and methods for treating Tribe slag, and compositions and methods for refractory lining coatings.
JP5251360B2 (en) Manufacturing method of clean steel by ladle refining method
JP6816777B2 (en) Slag forming suppression method and converter refining method
JP5353935B2 (en) Hot metal dephosphorization method
JP2010095786A (en) Method for dephosphorizing molten iron
JP2013064188A (en) Method for recycling steelmaking slag as resource
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JPH10212514A (en) Production of high clean extra-low sulfur steel excellent in hydrogen induced cracking resistance
JP5333542B2 (en) Desulfurization method for molten steel and molten iron alloy
JP2008063646A (en) Dephosphorizing method of molten iron
JP2018178235A (en) Preliminary treatment method for molten iron
JP2013127087A (en) Method for producing high purity steel
JP5286892B2 (en) Dephosphorization method of hot metal
JP5157228B2 (en) Desulfurization method for molten steel
JP6658049B2 (en) Hot metal desiliconization method
JP6443192B2 (en) Slag reforming method using FeSi alloy grains
JP5522202B2 (en) How to remove hot metal
JP5333423B2 (en) Hot metal dephosphorization method
JP4305127B2 (en) Hot metal dephosphorization method
JP3660040B2 (en) Method of desulfurization of molten steel using RH vacuum degassing device
JP2009084672A (en) Method of heating molten steel, and method for production of rolled steel material
JP6375822B2 (en) Hot metal desiliconization method
JP2016141871A (en) Desulfurizing agent for molten steel and desulfurizing method
JP3671769B2 (en) Control method of slag forming during refining
JP2014031562A (en) Dephosphorization processing method of hot pig iron

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R151 Written notification of patent or utility model registration

Ref document number: 5353935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350