JP3301683B2 - Desulfurization method of chromium-containing molten steel in decarburization refining - Google Patents

Desulfurization method of chromium-containing molten steel in decarburization refining

Info

Publication number
JP3301683B2
JP3301683B2 JP25301795A JP25301795A JP3301683B2 JP 3301683 B2 JP3301683 B2 JP 3301683B2 JP 25301795 A JP25301795 A JP 25301795A JP 25301795 A JP25301795 A JP 25301795A JP 3301683 B2 JP3301683 B2 JP 3301683B2
Authority
JP
Japan
Prior art keywords
chromium
molten steel
refining
steel
decarburization refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25301795A
Other languages
Japanese (ja)
Other versions
JPH0987721A (en
Inventor
直樹 菊池
康夫 岸本
秀次 竹内
永康 別所
廣 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP25301795A priority Critical patent/JP3301683B2/en
Publication of JPH0987721A publication Critical patent/JPH0987721A/en
Application granted granted Critical
Publication of JP3301683B2 publication Critical patent/JP3301683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、脱炭精錬におけ
る含クロム溶鋼の脱硫方法に関し、含クロム溶鋼を脱炭
精錬する際に、効率の良い脱硫も併せて実施しようとす
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for desulfurizing chromium-containing molten steel in decarburization and refining, and to perform efficient desulfurization when decarburizing and refining chromium-containing molten steel.

【0002】[0002]

【従来の技術】含クロム溶鋼の脱硫方法としては、主
に、以下に述べる2つがある。1つは、含クロム粗溶鋼
(または溶銑)の製造過程である溶融還元プロセスにお
いて、クロム酸化物の還元と同時に還元脱硫を強化する
ものである(例えば特開平2−232312号公報等)。いま
1つは、含クロム溶鋼の脱炭精錬において、脱炭終了後
にスラグ中の酸化クロムをFeSiやAlなどの還元剤を用い
て還元回収する工程において、同時に還元脱硫を行うも
のである(例えば特開昭63−140044号公報等)。また、
同様に、中炭素の含クロム溶湯に、CaO/SiO2を一定にす
るためにフラックスを添加した上で、CaC2などの脱硫剤
を添加する方法もある。
2. Description of the Related Art There are mainly two methods for desulfurizing molten chromium-containing steel as described below. One is to enhance reductive desulfurization simultaneously with the reduction of chromium oxide in the smelting reduction process, which is a process of producing chromium-containing crude molten steel (or hot metal) (for example, JP-A-2-232312). The other one is to simultaneously perform reductive desulfurization in the process of reducing and recovering chromium oxide in slag using a reducing agent such as FeSi or Al in the decarburization refining of chromium-containing molten steel after decarburization (for example, JP-A-63-140044, etc.). Also,
Similarly, there is a method of adding a flux to a medium carbon chromium-containing molten metal to keep CaO / SiO 2 constant, and then adding a desulfurizing agent such as CaC 2 .

【0003】[0003]

【発明が解決しようとする課題】上述したとおり、含ク
ロム溶鋼の脱硫方法としては、クロム酸化物の還元に伴
う脱硫が主流であったが、このような方法では、溶融還
元により含クロム粗溶鋼を溶製するプロセスをとらず、
FeCrのみを加えて脱炭精錬を行う場合(FeCr法)や、脱
炭精錬後にFeSiなどの還元剤を使用しない未還元出鋼法
など、還元工程のない溶製方法においては、脱硫が十分
でないという問題があった。
As described above, the most common method of desulfurizing chromium-containing molten steel is desulfurization accompanying the reduction of chromium oxide, but in such a method, chromium-containing crude steel is melt-reduced. Without the process of melting
Desulfurization is not sufficient in the smelting method without a reduction step, such as in the case of decarburizing and refining by adding only FeCr (FeCr method), or in the unreduced tapping method that does not use a reducing agent such as FeSi after decarburizing and refining. There was a problem.

【0004】また、還元脱硫を行う場合でも、副原料と
して安価な高S含有原料であるNiS(Niマット)などを
使用する場合には、スラグ−メタル反応による脱硫では
満足のいくレベルまで低S化することはできなかった。
さらに、脱炭精錬中、高炭素濃度期に脱S用フラックス
を添加して脱硫を行う方法は、その時点では、スラグ−
メタル反応によりスラグ中へSが移行するものの、脱炭
が進行した低炭期に至っては、鋼中酸素濃度の増加によ
って、スラグからメタルへの復Sが生じるという問題が
あった。
[0004] Even in the case of performing reductive desulfurization, when NiS (Ni mat), which is an inexpensive high S-containing material, is used as an auxiliary material, the sulfur content is reduced to a satisfactory level by desulfurization by a slag-metal reaction. Could not be converted.
Further, during the decarburization refining, the method of adding desulfurization flux during the high carbon concentration period to perform desulfurization is based on the slag
Although S migrates into the slag due to the metal reaction, there is a problem that, up to the low-carbon period in which decarburization has progressed, return S from the slag to the metal occurs due to an increase in the oxygen concentration in the steel.

【0005】この発明は、上記の問題を有利に解決する
もので、還元工程のない未還元法による含クロム溶鋼の
脱炭精錬においては勿論、高S濃度の副原料を使用した
場合であっても、強力に脱硫を押し進めて、十分に満足
のいく低S濃度の含クロム溶鋼を得ることができる、脱
炭精錬における含クロム溶鋼の脱硫方法を提案すること
を目的とする。
[0005] The present invention advantageously solves the above-mentioned problems, not only in the decarburization and refining of chromium-containing molten steel by an unreduced method without a reduction step, but also when a secondary material having a high S concentration is used. Another object of the present invention is to propose a method of desulfurizing chromium-containing molten steel in decarburization refining, which can strongly push desulfurization to obtain a sufficiently satisfactory low-S concentration chromium-containing molten steel.

【0006】[0006]

【課題を解決するための手段】さて、発明者らは、上記
の問題を解決すべく鋭意検討を重ねた結果、脱炭精錬初
期の炭素濃度が高い時期すなわち高脱炭期に、脱Sフラ
ックスを添加して溶鋼中からスラグ中へSを移行させた
のち、上吹きランスから酸素ガスを浴面上に吹き付ける
ことにより、気化脱硫が促進されることの知見を得た。
また、かかる気化脱硫の効果は、上吹き酸素ガス流量や
脱Sフラックス添加量の増加によって向上するので、高
S濃度の副原料を使用した場合であっても、十分に満足
のいく低S鋼が得られることも併せて見出した。この発
明は、上記の知見に立脚するものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to solve the above-mentioned problems. Was added to transfer S from the molten steel into the slag, and then it was found that vaporization and desulfurization was promoted by blowing oxygen gas onto the bath surface from the top blowing lance.
Further, since the effect of the vaporization and desulfurization is improved by increasing the flow rate of the top-blown oxygen gas and the addition amount of the de-S-flux, even when a secondary material having a high S concentration is used, a sufficiently satisfactory low-S steel is used. Was also found. The present invention is based on the above findings.

【0007】すなわち、この発明の要旨構成は次のとお
りである。 1.精錬ガスの上底吹き機能をそなえる容器内に装入し
た含クロム溶銑中に、炭素源および副原料を添加すると
共に酸素吹錬を行うことからなる含クロム溶鋼の脱炭精
錬において、精錬初期の高炭素濃度期に、高塩基性の脱
Sフラックスを添加して鋼中Sをスラグ中に移行させつ
つ、上吹きランスから酸素ガスを吹き付けて気化脱硫す
る、ことを特徴とする脱炭精錬における含クロム溶鋼の
脱硫方法。 2.上記1において、炭素源の添加が、脱炭精錬開始か
ら溶鋼温度が1500℃に至るまでの間、溶鋼中の炭素が飽
和濃度を維持するように添加することを特徴とする脱炭
精錬における含クロム溶鋼の脱硫方法。 3.上記1または2において、高塩基性の脱Sフラック
スが、アルカリ金属またはアルカリ土類金属の酸化物、
炭酸化物あるいは塩化物のうちから選んだ少なくとも一
種である脱炭精錬における含クロム溶鋼の脱硫方法。 4.上記1,2または3において、副原料が、高S濃度
のCr, Ni原料である脱炭精錬における含クロム溶鋼の脱
硫方法。 5.上記1,2,3または4において、脱炭精錬初期
に、鋼中C濃度が1wt%以上、浴温が1650℃以上となる
量の炭素源を添加することからなる脱炭精錬における含
クロム溶鋼の脱硫方法。
That is, the gist of the present invention is as follows. 1. In the decarburization refining of chromium-containing molten steel, which involves adding a carbon source and auxiliary raw materials and performing oxygen blowing into the chromium-containing hot metal charged in a vessel having a top and bottom blowing function for refining gas, In the decarburization refining, wherein high-carbon concentration period, high-base de-S flux is added to transfer S in the steel into the slag, and oxygen gas is blown from the top blowing lance to vaporize and desulfurize. Chromium-containing molten steel desulfurization method. 2. In the above (1), the carbon source is added so that the carbon in the molten steel is maintained at a saturated concentration from the start of the decarburization refining until the temperature of the molten steel reaches 1500 ° C. Chromium molten steel desulfurization method. 3. In the above 1 or 2, the highly basic de-S-flux is an alkali metal or alkaline earth metal oxide,
A method for desulfurizing molten chromium-containing steel in decarburization refining, which is at least one selected from carbonates and chlorides. 4. In the above 1, 2, or 3, a method for desulfurizing chromium-containing molten steel in decarburization refining in which the auxiliary material is a Cr or Ni material having a high S concentration. 5. In the above 1, 2, 3 or 4, the chromium-containing molten steel in the decarburization refining comprises adding a carbon source in an amount such that the C concentration in the steel is 1 wt% or more and the bath temperature is 1650 ° C or more at the beginning of the decarburization refining. Desulfurization method.

【0008】[0008]

【発明の実施の形態】スラグ−メタル反応による脱硫反
応は、次式 〔S〕+ O2-=(S2-)+ 1/2O2 で表され、低酸素ポテンシャルほど有利である。従っ
て、従来の還元脱硫は、炭素飽和またはFeSi等の還元剤
による脱酸作用によって鋼中の酸素を低下させた状態で
行われている。脱炭精錬中においては、炭素源を投入し
た直後の高炭素濃度期つまり脱炭精錬初期に脱硫が進行
し易い。従って、かかる高炭素濃度期において脱硫用フ
ラックスを添加することが有効と考えられるが、高炭域
において脱硫されたスラグ中のSは、脱炭末期になって
酸素ポテンシャルが高くなると復Sしてしまう。そこ
で、この発明法では、高炭素濃度期に脱Sフラックスに
よりスラグ中に移行させたSを、酸素ガスの吹き付けに
より気相中へ気化させることにしたのである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The desulfurization reaction by the slag-metal reaction is represented by the following formula [S] + O 2- = (S 2- ) + 1 / 2O 2 , and the lower the oxygen potential, the more advantageous. Therefore, the conventional reductive desulfurization is performed in a state where oxygen in steel is reduced by carbon saturation or deoxidation by a reducing agent such as FeSi. During the decarburization refining, desulfurization easily progresses during the high carbon concentration period immediately after the introduction of the carbon source, that is, at the early stage of the decarburization refining. Therefore, it is considered effective to add a desulfurization flux in such a high carbon concentration period. However, S in the slag desulfurized in the high carbon region is restored when the oxygen potential increases at the end of decarburization. I will. Therefore, in the method of the present invention, S transferred into the slag by the S-free flux during the high carbon concentration period is vaporized into the gas phase by blowing oxygen gas.

【0009】さて、気化脱硫は、次の2つの式 (S2-)+ 1/2O2 = 1/2S2 + O2- (CaS)+ 3/2O2 = SO2 +(CaO) で表される。熱力学的に気化脱反応は、反応系の酸素
分圧P(O2)が10-4atm 以上で生じる。しかし、脱炭精錬
初期においてはP(O2)<10-10 であるため、気化脱
生じることはない。しかし、脱炭精錬中に浴面上に酸素
を吹き付けると、スラグ中の酸素が吹き付けられた部分
が局所的に高酸素ポテンシャルとなるため、気化脱硫が
進行する。このためには、スラグ中のS濃度が高く、浴
温度が高いほど有利である。
The vaporization desulfurization is expressed by the following two equations (S 2− ) + 1 / 2O 2 = 1 / 2S 2 + O 2− (CaS) + 3 / 2O 2 = SO 2 + (CaO) Is done. Thermodynamically vaporized desulfurization reaction, the reaction system of the oxygen partial pressure P (O 2) occurs at 10 -4 atm or more. However, in the decarburization refining initial is P (O 2) <10 -10 , never vaporized desulfurization occurs. However, when oxygen is blown onto the bath surface during the decarburization refining, the portion of the slag to which oxygen has been blown has a locally high oxygen potential, so that vaporization desulfurization proceeds. For this purpose, the higher the S concentration in the slag and the higher the bath temperature, the more advantageous.

【0010】スラグ中のS濃度増加によって気化脱硫を
促進するためには、高炭素濃度期に高脱硫能のフラック
スを添加してスラグ中にSを移行させてS濃度を高め、
この状態で浴面上に酸素ガスを吹き付ければ良い。かよ
うな気化脱硫では、Sを系外に排出できるため、従来の
ように脱炭末期の高酸素ポテンシャル状態になっても復
Sが生じることはない。
[0010] In order to promote the vaporization desulfurization by increasing the S concentration in the slag, a flux having a high desulfurization ability is added during the high carbon concentration period to transfer S into the slag to increase the S concentration.
In this state, oxygen gas may be sprayed onto the bath surface. In such a vaporization desulfurization, S can be discharged out of the system, so that there is no occurrence of re-sulfuration even when a high oxygen potential state is reached at the end of decarburization as in the conventional case.

【0011】この発明にいて、炭素源の添加に当たっ
ては、少なくとも脱炭精錬開始から溶鋼温度が1500℃に
至るまでの間については、溶鋼中の炭素が飽和濃度を維
持するように添加することが好ましい。というのは、溶
鋼温度が1500℃以下の低温領域ではCr酸化を生じ易いた
め、Crの酸化ロスが懸念されるが、この点、溶鋼中に炭
素が過剰に存在するとこの過剰炭素によって酸化ロスし
たCrを還元することができ、また炭素酸化反応によって
溶鋼温度を効果的に上昇させ得るからである。
[0011] In There apply in this invention, when the addition of the carbon source, for the period from at least decarburization refining begin until the molten steel temperature is 1500 ° C., the carbon in the molten steel is added to maintain the saturation concentration Is preferred. This is because Cr oxidation is likely to occur in the low-temperature region where the molten steel temperature is 1500 ° C or less, and there is concern about the oxidation loss of Cr.In this regard, if there is excessive carbon in the molten steel, the excess carbon causes the oxidation loss. This is because Cr can be reduced and the temperature of molten steel can be effectively increased by a carbon oxidation reaction.

【0012】また、脱硫能の高いフラックスとしては、
アルカリ金属またはアルカリ土類金属の酸化物、炭酸化
物あるいは塩化物のうちから選んだ少なくとも一種から
なる高塩基性の脱Sフラックスが好適であり、中でも炭
酸ナトリウム、炭酸バリウム、塩化ナトリウム、ソーダ
灰等がとりわけ有利に適合する。これらはいずれも、光
学的塩基度が 0.8以上の高脱S(脱P)フラックスであ
る。なお、かかる脱Sフラックスの添加量については、
溶鋼1トン当たり10〜15kg程度とするのが好適である。
また、高S濃度の副原料とは、主にFeCrやMet-Ni等のC
r, Ni源であり、さらに炭素源とは、コークス、黒鉛、
石炭などである。
[0012] As a flux having a high desulfurization ability,
A highly basic de-S-flux consisting of at least one selected from the group consisting of oxides, carbonates and chlorides of alkali metals or alkaline earth metals is preferred. Among them, sodium carbonate, barium carbonate, sodium chloride, soda ash, etc. Are particularly advantageously adapted. All of these are high de-S (de-P) fluxes having an optical basicity of 0.8 or more. In addition, about the addition amount of such de-S flux,
It is preferable that the weight is about 10 to 15 kg per ton of molten steel.
In addition, auxiliary materials having a high S concentration are mainly composed of C such as FeCr and Met-Ni.
r and Ni sources, and carbon sources include coke, graphite,
Such as coal.

【0013】上述したとおり、スラグ中にSを移行させ
るには炭素濃度が高いほど有利であり、また気
とっては浴温度が高いほど有利であるから、脱Sフラッ
クスの添加に際しては、それに先立ち、所定量の炭素源
を添加して、鋼中C濃度:1wt%以上、浴温:1650℃以
上としておくのが好ましい。なお、脱Sフラックスの反
応性は、上吹き酸素ガス流量によって変化するので、良
好な気脱硫を達成するためには、上吹き酸素ガス流量
が 1.8〜2.5 Nm3/min/t 程度で、次式 L/L0 ≧ 0.08 ここでL:鋼浴の凹み深さ(瀬川らの式による) L0 :鋼浴深さ を満足する条件下で吹き付けを行うことが好ましい。
[0013] As described above, in shifting the S in the slag is advantageously higher the carbon concentration, and because the taking <br/> the vaporization desulfurization advantageous the higher the bath temperature, de S Prior to the addition of the flux, it is preferable to add a predetermined amount of a carbon source prior to the addition so that the C concentration in the steel is 1 wt% or more and the bath temperature is 1650 ° C or more. Incidentally, the reaction of the de-S flux, so changed by top-blown oxygen gas flow rate, in order to achieve good air hydrodesulfurization is top-blown oxygen gas flow rate of about 1.8~2.5 Nm 3 / min / t, L / L 0 ≧ 0.08 where L: Depth of steel bath (according to Segawa et al.) L 0 : Depth of steel bath It is preferable to perform the spraying under the condition.

【0014】図1(a), (b), (c) にそれぞれ、通常の条
件で脱炭精錬を行った場合、精錬初期に炭素源を添加し
た場合、この発明に従い、精錬初期に炭素源と共に高脱
Sフラックス(ソーダ灰)を添加したのち、気脱硫を
実施した場合における、鋼中C、鋼中Sおよび浴温の経
時変化についての調査結果を、整理して示す。なお、上
吹きおよび底吹きガス流量は、図2(a), (b)に示すとお
りである。図1(a) に示したとおり、通常の条件で脱炭
精錬を行った場合には、脱炭精錬後、鋼中S:0.014 wt
%程度までしか脱Sすることができなかった。この点、
精錬初期に炭素源を添加した場合には、高炭素濃度期が
延長された分だけ脱S能も向上したが、それでも鋼中S
濃度は 0.008wt%程度にすぎなかった(同図(b) )。こ
れに対し、炭素源添加後、さらにソーダ灰を添加して気
脱硫を促進した場合には、最終的に 0.003wt%という
極低Sの含クロム溶鋼を得ることができた(同図(c)
)。
FIGS. 1 (a), 1 (b) and 1 (c) show that when decarburization and refining are performed under normal conditions, and when a carbon source is added at the beginning of refining, the carbon source is added at the beginning of refining according to the present invention. together after addition of high-de S flux (soda ash), when carrying out the vaporization desulfurization, in steel C, and findings on temporal changes in S and bath temperature steels are shown organized. The flow rates of the top and bottom blown gases are as shown in FIGS. 2 (a) and 2 (b). As shown in FIG. 1 (a), when decarburization and refining were performed under normal conditions, after decarburization and refining, S in steel: 0.014 wt
% Could only be removed. In this regard,
When a carbon source was added at the beginning of refining, the de-S ability was improved by the extension of the high carbon concentration period.
The concentration was only about 0.008 wt% (Fig. (B)). On the other hand, after adding the carbon source, soda ash was
In the case of accelerated desulfurization, a chromium-containing molten steel with an extremely low S of 0.003 wt% was finally obtained (Fig. 3 (c)).
).

【0015】[0015]

【実施例】【Example】

実施例1 上底吹き転炉を用いて、表1に示す条件で脱炭精錬を行
った。実験に際しては、まず含クロム粗溶鋼に炭素源と
してコークスを 10 kg/t添加して脱炭を開始し、浴温
度:1600℃を目安にソーダ灰を 10 kg/t添加した。つい
で、〔C〕=1wt%を目安に吹錬を中断し、倒炉してス
ラグ、メタルサンプリングを行い、その後〔C〕=0.1
wt%を目標に吹止めた。表2に、実験前後における鋼浴
温度、鋼中C量、鋼中S量およびスラグ中S量、副原料
等からの混入S量ならびに脱S量等について調べた結果
をまとめて示す。なお、気化脱硫量は、図3に示すよう
な実験中のSバランスにより求めた。
Example 1 Decarburization refining was carried out under the conditions shown in Table 1 using an upper-bottom blow converter. In the experiment, first, 10 kg / t of coke was added as a carbon source to the chromium-containing crude molten steel to start decarburization, and 10 kg / t of soda ash was added at a bath temperature of 1600 ° C as a guide. Next, blowing was interrupted with [C] = 1wt% as a guide, slag and metal sampling were performed by falling down the furnace, and then [C] = 0.1
The target was wt%. Table 2 summarizes the results of a study on the steel bath temperature, the amount of C in steel, the amount of S in steel and the amount of S in slag, the amount of S mixed in from auxiliary materials and the like, and the amount of S removed before and after the experiment. The amount of vaporization and desulfurization was determined from the S balance during the experiment as shown in FIG.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】表2より明らかなように、この発明に従
い、鋼炭素濃度期にソーダ灰を添加し、気化脱硫を促進
した場合には、0.005 wt%という極低S域までS濃度を
低減することができた。
As is clear from Table 2, according to the present invention, when soda ash is added during the steel carbon concentration period to promote vaporization desulfurization, the S concentration is reduced to an extremely low S region of 0.005 wt%. Was completed.

【0019】実施例2 副原料として高S含有のNiマット(Ni−40%S)を10kg
/t−Ni分使用した。実験条件は、実施例1と同様であ
り、〔%C〕>1,1650℃以上まで初期に昇温を行うよ
うにコークスを添加したのち、ソーダ灰:10kg/tを添加
した。精錬中における〔%C〕,〔%S〕,(%S)の
経時変化について調べた結果を、図4に示す。同図より
明らかなように、この発明に従い脱炭精錬を行った場合
には、高S含有の副原料を使用したにもかかわらず、最
終的に 0.006wt%までS濃度を低減することができた。
なお、従来の還元法に従い、酸化クロムの還元と同時に
脱硫を行った場合の脱硫効果についても調査したが、高
S含有の副原料を使用した場合には、0.018 wt%までし
か低減することができなかった。
Example 2 10 kg of a high sulfur content Ni mat (Ni-40% S) as an auxiliary material
/ t-Ni content was used. The experimental conditions were the same as in Example 1. Coke was added so that the temperature was initially raised to [% C]> 1,1650 ° C. or higher, and then 10 kg / t of soda ash was added. FIG. 4 shows the results of examining the changes over time of [% C], [% S], and (% S) during refining. As is clear from the figure, when the decarburization refining is performed according to the present invention, the S concentration can be finally reduced to 0.006 wt% despite the use of the secondary material having a high S content. Was.
According to the conventional reduction method, the desulfurization effect in the case of performing desulfurization simultaneously with the reduction of chromium oxide was also investigated. However, when the secondary material containing high S is used, the reduction can be reduced to only 0.018 wt%. could not.

【0020】[0020]

【発明の効果】かくして、この発明によれば、含クロム
溶鋼の脱炭精錬中に精錬時間を延長することなしに、従
来に比べて格段に低いレベルまで脱硫をすることができ
る。その結果、未還元法においても低S濃度の含クロム
溶鋼を得ることができるようになった。また、これまで
使用できなかったような高S濃度の副原料の使用も可能
になり、製造コストの低減にも有効に寄与する。さら
に、脱硫のために脱炭初期に昇温することにより、熱力
学的に有利にクロム酸化を低減させつつ、高い効率で脱
炭を進行させることができる。加えて、脱硫と同時に脱
りんも生じるので、予備処理負担を軽減できるだけでな
く、高価な低P原料を使用する必要がないという効果も
加わる。
As described above, according to the present invention, desulfurization can be performed to a much lower level than in the prior art without extending the refining time during the decarburization refining of the chromium-containing molten steel. As a result, a chromium-containing molten steel having a low S concentration can be obtained even in the unreduced method. In addition, it becomes possible to use an auxiliary material having a high S concentration, which has not been able to be used heretofore, thereby effectively contributing to a reduction in manufacturing cost. Furthermore, by raising the temperature at the early stage of decarburization for desulfurization, chromium oxidation can be advantageously reduced thermodynamically and decarburization can proceed with high efficiency. In addition, since dephosphorization occurs at the same time as desulfurization, not only can the burden of pretreatment be reduced, but also the effect that there is no need to use expensive low-P raw materials is added.

【図面の簡単な説明】[Brief description of the drawings]

【図1】脱炭精錬中における、鋼中C、鋼中Sおよび浴
温の経時変化を示したグラフである。
FIG. 1 is a graph showing changes over time in C in steel, S in steel, and bath temperature during decarburization refining.

【図2】脱炭精錬中における、上吹きおよび底吹きガス
流量を示したグラフである。
FIG. 2 is a graph showing the flow rates of top blown gas and bottom blown gas during decarburization refining.

【図3】実験中のSバランスの一例を示した図である。FIG. 3 is a diagram showing an example of an S balance during an experiment.

【図4】脱炭精錬中における、〔%C〕,〔%S〕,
(%S)の経時変化を示したグラフである。
[Fig. 4] [% C], [% S],
It is a graph which showed a time-dependent change of (% S).

フロントページの続き (72)発明者 別所 永康 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究所内 (72)発明者 西川 廣 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 千葉製鉄所内 (56)参考文献 特開 平2−232312(JP,A) 特開 平1−165709(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21C 5/28 C21C 7/064 C21C 7/076 Continuing from the front page (72) Inventor Bessho Nagayasu 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Kawasaki Steel Engineering Co., Ltd. (72) Inventor Hiroshi Nishikawa 1-Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation Inside steelworks (56) References JP-A-2-23212 (JP, A) JP-A-1-165709 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21C 5/28 C21C 7/064 C21C 7/076

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 精錬ガスの上底吹き機能をそなえる容器
内に装入した含クロム溶銑中に、炭素源および副原料を
添加すると共に酸素吹錬を行うことからなる含クロム溶
鋼の脱炭精錬において、 精錬初期の高炭素濃度期に、高塩基性の脱Sフラックス
を添加して鋼中Sをスラグ中に移行させつつ、上吹きラ
ンスから酸素ガスを吹き付けて気化脱硫する、ことを特
徴とする脱炭精錬における含クロム溶鋼の脱硫方法。
1. A decarburizing and refining process for molten chromium-containing steel, which comprises adding a carbon source and an auxiliary material to a chromium-containing hot metal charged in a vessel having a top and bottom blowing function of a refining gas and performing oxygen blowing. In the high carbon concentration period in the early stage of refining, a highly basic de-S flux is added to transfer S in the steel into the slag, and oxygen gas is blown from the top blowing lance to vaporize and desulfurize. Of chromium-containing molten steel in decarburization refining.
【請求項2】 請求項1において、炭素源の添加が、脱
炭精錬開始から溶鋼温度が1500℃に至るまでの間、溶鋼
中の炭素が飽和濃度を維持するように添加することを特
徴とする脱炭精錬における含クロム溶鋼の脱硫方法。
2. The method according to claim 1, wherein the carbon source is added so that the carbon in the molten steel maintains a saturated concentration from the start of the decarburization refining until the temperature of the molten steel reaches 1500 ° C. Of chromium-containing molten steel in decarburization refining.
【請求項3】 請求項1または2において、高塩基性の
脱Sフラックスが、アルカリ金属またはアルカリ土類金
属の酸化物、炭酸化物あるいは塩化物のうちから選んだ
少なくとも一種である脱炭精錬における含クロム溶鋼の
脱硫方法。
3. The decarburization refining according to claim 1, wherein the highly basic de-S flux is at least one selected from the group consisting of oxides, carbonates and chlorides of alkali metals or alkaline earth metals. Chromium-containing molten steel desulfurization method.
【請求項4】 請求項1,2または3において、副原料
が、高S濃度のCr,Ni原料である脱炭精錬における含ク
ロム溶鋼の脱硫方法。
4. The method for desulfurizing a chromium-containing molten steel in decarburization refining according to claim 1, 2 or 3, wherein the auxiliary material is a Cr or Ni material having a high S concentration.
【請求項5】 請求項1,2,3または4において、脱
炭精錬初期に、鋼中C濃度が1wt%以上、浴温が1650℃
以上となる量の炭素源を添加することからなる脱炭精錬
における含クロム溶鋼の脱硫方法。
5. The steel according to claim 1, wherein the C concentration in the steel is 1 wt% or more and the bath temperature is 1650 ° C. in the initial stage of the decarburization refining.
A method for desulfurizing chromium-containing molten steel in decarburization refining comprising adding the above amount of carbon source.
JP25301795A 1995-09-29 1995-09-29 Desulfurization method of chromium-containing molten steel in decarburization refining Expired - Fee Related JP3301683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25301795A JP3301683B2 (en) 1995-09-29 1995-09-29 Desulfurization method of chromium-containing molten steel in decarburization refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25301795A JP3301683B2 (en) 1995-09-29 1995-09-29 Desulfurization method of chromium-containing molten steel in decarburization refining

Publications (2)

Publication Number Publication Date
JPH0987721A JPH0987721A (en) 1997-03-31
JP3301683B2 true JP3301683B2 (en) 2002-07-15

Family

ID=17245334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25301795A Expired - Fee Related JP3301683B2 (en) 1995-09-29 1995-09-29 Desulfurization method of chromium-containing molten steel in decarburization refining

Country Status (1)

Country Link
JP (1) JP3301683B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100862798B1 (en) * 2002-09-04 2008-10-13 주식회사 포스코 Method for Pretreatment Hot Metal Improving Desulfuration Effiency
JP5272480B2 (en) * 2008-04-04 2013-08-28 新日鐵住金株式会社 Method for desulfurizing and refining molten iron
JP5458706B2 (en) * 2009-07-08 2014-04-02 新日鐵住金株式会社 Method for desulfurizing and refining molten iron

Also Published As

Publication number Publication date
JPH0987721A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
JP3428628B2 (en) Stainless steel desulfurization refining method
JP3301683B2 (en) Desulfurization method of chromium-containing molten steel in decarburization refining
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP2002020816A (en) Method for producing low nitrogen-containing chromium steel
JP2947063B2 (en) Stainless steel manufacturing method
JP2912963B2 (en) Slag reforming method as desulfurization pretreatment
JP3460595B2 (en) Melting method for extremely low sulfur steel
JP3854482B2 (en) Hot metal pretreatment method and refining method
RU2105072C1 (en) Method for production of steel naturally alloyed with vanadium in conversion of vanadium iron in oxygen steel-making converters by monoprocess with scrap consumption up to 30%
US4525209A (en) Process for producing low P chromium-containing steel
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JPH08134528A (en) Production of extra low carbon steel
JP2001262214A (en) Method for refining molten iron alloy
JPS6146525B2 (en)
JP2707783B2 (en) Refining method of ultra low carbon stainless steel
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JP3531480B2 (en) Hot metal dephosphorization method
JP2856106B2 (en) Hot metal desulfurization method
JPH0477045B2 (en)
JPH111714A (en) Steelmaking method
JPS5856005B2 (en) High chromium steel melting method
JP2001181725A (en) Method for modifying slag in refining of molten stainless steel
JPS6212301B2 (en)
JPH0673424A (en) Method for efficiently refining stainless steel using decarburized slag
Yugov et al. Technological Principles of the Production of Clean Cold-Resistant Steels from Pig Iron with Low Contents of Manganese and Silicon.

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080426

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees