JPS6146525B2 - - Google Patents

Info

Publication number
JPS6146525B2
JPS6146525B2 JP54124882A JP12488279A JPS6146525B2 JP S6146525 B2 JPS6146525 B2 JP S6146525B2 JP 54124882 A JP54124882 A JP 54124882A JP 12488279 A JP12488279 A JP 12488279A JP S6146525 B2 JPS6146525 B2 JP S6146525B2
Authority
JP
Japan
Prior art keywords
steel
refining
molten steel
soda ash
tapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54124882A
Other languages
Japanese (ja)
Other versions
JPS5647511A (en
Inventor
Yoshasu Shirota
Jujo Marukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12488279A priority Critical patent/JPS5647511A/en
Publication of JPS5647511A publication Critical patent/JPS5647511A/en
Publication of JPS6146525B2 publication Critical patent/JPS6146525B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、鋼の精錬方法、特にアルカリ金属炭
酸塩を主成分とする媒溶剤を用いて、溶鋼の脱
燐、脱硫を積極的に行なう方法に関する。 近年、アルカリ金属炭酸塩を主成分とする媒溶
剤、例えばソーダ灰を用いて溶銑の脱燐、脱硫を
行なう実験が進められている。しかしながら溶銑
自らの持つ保有熱は1300〜1500℃と差があり、ソ
ーダ灰原単位が一定ならば、第1図に破線で示す
如く、温度の上昇にともなつて脱燐率が低下する
現象がある。そのため脱燐率を上げるためには高
価なソーダ灰を多量に使用しなければならず、実
用化の大きな障害となつていた。 そこで本発明者らは、ソーダ灰等の媒溶剤を
「溶銑」にではなく、「精錬途中の溶鋼」に添加す
ることによつて、媒溶剤の脱燐、脱硫効果を飛躍
的に向上させる方法を先に開発したが(昭和54年
8月30日特許出願)、更に実験研究を続けた結
果、媒溶剤を「精錬後の溶鋼」に添加しても同様
の効果が得られることを知見した。 本発明は、上記知見に基づくもので、溶鋼を金
属精錬炉において溶鋼中の炭素含有量が成品目標
値以下になるまで精錬した後、溶鋼に媒溶剤を添
加する鋼の精錬方法を要旨とする。 具体的には、精錬後の出鋼時、あるいは出鋼後
の例えば取鍋やタンデイツシユ等において媒溶剤
を添加し、更に出鋼時に全投入量の一部の媒溶剤
を添加した後、残りの媒溶剤を出鋼後に添加する
ようにしてもよい。 先ず、ソーダ灰を溶鋼一般に添加した場合の効
能を化学反応の面から説明する。 溶鋼にソーダ灰(Na2CO3)を添加すると、鋼の
脱燐反応は(1)式により進行する。 4/5P+Na2CO3→Na2O+2/5P2O5+C ……(1) これに対して溶銑にソーダ灰を添加した場合
は、溶銑温度が高くなると、(2)(3)式により添加ソ
ーダ灰の〔C〕による還元蒸発ロスが生じるとと
もに、(3)式によりスラグ中の(Na2O)が減少し
て(P2O5)の活量(αP2O5)が増大し、これによ
つて(1)式の反応が抑制されるとともに、(4)式によ
る(P2O5)の還元反応によつて復燐の生じる割合
が増すため、結果として脱燐が進行しないと考え
られる。 Na2CO3+C→Na2O+2CO ……(2) Na2O+C→2Na+CO ……(3) P2O5+5C→2P+5CO ……(4) 第1図の実線および第2図は未脱酸溶鋼におけ
るソーダ灰の脱燐、脱硫効果を示したもので、T
=1650℃の低炭未脱酸溶鋼においてソーダ灰によ
る脱燐が、T=1350℃の炭素濃度の高い溶銑にお
ける脱燐と比較しても遜色ないことを示してい
る。これは、前記(3)式の反応による(Na2O)の
ロスが少ないとともに、(4)式の復燐反応が少な
く、更にソーダ灰自身の蒸発速度が従来考えられ
ているより遅く(Cによる還元がなければ)、こ
のためにT=1650℃においてもソーダ灰が溶鋼と
充分に反応しNa2O―P2O5系スラグとして安定し
たためと考えることができる。 そうして次に第3図に注目すれば、同図には本
発明者らの調査によるソーダ灰を用いた場合の、
溶鋼中の〔C〕量と脱燐率の関係が図示され、溶
鋼中の〔C〕量が0.50%近傍以下になると脱燐率
が大巾に低下することを示している。つまりこの
ことは、〔C〕量の成品目標値がC=0.50%以下
の場合は、例えば転炉で〔C〕量を目標値まで下
げた後、ソーダ灰に溶鋼を添加すれば非常に良好
な脱燐効果が得られるということであり、本発明
が脱燐効果の向上に極めて有効なことが理解され
る。 また、成品目標〔C〕量が0.50%以上である場
合は、例えば転炉吹錬にて〔C〕量を一旦0.50%
以下まで下げた後、溶鋼にソーダ灰を添加して鋼
の脱燐、脱硫を行ない、スラグの除去後、Cの添
加を行なつて最終的に目標値まで〔C〕量を調整
すれば上記と同様の効果が得られる。 第4図は本発明者らの別の調査結果を図示した
もので、精錬後の溶鋼に種々の量のソーダ灰を添
加して脱燐を生ぜしめたときのソーダ灰原単位、
脱燐率および溶鋼温度の関係を示している。この
調査はP=0.100〜0.120%の溶銑を転炉で吹錬し
てC=0.10%以下、温度1650〜1750℃の溶鋼とし
た後、これを出鋼後に原単位16、24Kg/Tのソー
ダ灰でそれぞれ処理することにより行なつたが、
いずれの場合もソーダ灰原単位が極めて低いにも
かかわらず80%以上の非常に高い脱燐率を示して
おり、本発明の有効性が一層明瞭に理解される。 更に同図によれば、この脱燐効果は溶鋼温度に
殆んど影響されないことが明らかであり、したが
つてソーダ灰は、精錬後であれば出鋼時、出鋼後
のいずれで添加しても略々同等の安定した効果を
発揮でき、更に出鋼時と出鋼後の分割添加も同様
に有効である。 また第5図はC=0.10%の時のP=0.100%溶
鋼をP=0.010%溶鋼にするのに必要なソーダ灰
原単位と溶鋼中の〔Si〕量の関係を示したもので
あるが、精錬後においては溶鋼中の〔Si〕量は
0.01%以下になるから、精錬後にソーダ灰を添加
する本発明方法では、溶銑に格別の脱硫処理を加
えなくても効率のよい脱燐が可能である。 本発明でいうアルカリ金属炭酸塩を主成分とす
る媒溶剤には、Na2CO3を主成分とする前記ソー
ダ灰の他、K2CO3を主成分とするもの等がある。 また金属精錬とは、上吹転炉、下吹転炉、浴面
下にノズルを有する複合吹錬炉、AOD炉、VOD
炉、電気炉等をいい、本発明は広範囲の鋼の精錬
法に適用可能である。 更に本発明の媒溶剤の添加方法としては、金属
精錬炉からの出鋼時に合金調整用ホツパーを用い
て添加する方法、出鋼時あるいは出鋼後に浴面下
に浸漬した耐火物ランスから気体等を媒体として
吹き込む方法、更には出鋼後にバブリング等で溶
鋼の撹拌を行ないながらホツパーを用いて上方よ
り投入する方法等があり、添加の方法は特に限定
するものではない。 以下、本発明の実施例を説明する。 <実施例 1> 下記の組成および温度の溶銑250tを転炉に装
入。
The present invention relates to a method for refining steel, and particularly to a method for actively dephosphorizing and desulfurizing molten steel using a solvent containing an alkali metal carbonate as a main component. In recent years, experiments have been underway to dephosphorize and desulfurize hot metal using a solvent containing an alkali metal carbonate as a main component, such as soda ash. However, the heat possessed by hot metal itself varies from 1300 to 1500℃, and if the soda ash consumption rate is constant, the dephosphorization rate decreases as the temperature rises, as shown by the broken line in Figure 1. be. Therefore, in order to increase the dephosphorization rate, a large amount of expensive soda ash must be used, which has been a major obstacle to practical application. Therefore, the present inventors have developed a method to dramatically improve the dephosphorization and desulfurization effects of solvents by adding solvents such as soda ash not to "hot metal" but to "molten steel in the process of being refined." was first developed (patent application filed on August 30, 1978), but as a result of further experimental research, it was discovered that the same effect could be obtained by adding a solvent to ``refined molten steel.'' . The present invention is based on the above findings, and the gist of the present invention is a steel refining method in which a solvent is added to the molten steel after refining the molten steel in a metal refining furnace until the carbon content in the molten steel becomes less than the target value for the finished product. . Specifically, a solvent is added at the time of tapping after refining or, for example, in a ladle or tundish after tapping, and after adding a portion of the total input amount of the solvent at the time of tapping, the remaining amount is The solvent may be added after tapping. First, the effects of adding soda ash to molten steel in general will be explained from the perspective of chemical reactions. When soda ash (Na 2 CO 3 ) is added to molten steel, the dephosphorization reaction of the steel proceeds according to equation (1). 4/5P + Na 2 CO 3 → Na 2 O + 2/5P 2 O 5 +C ... (1) On the other hand, when soda ash is added to hot metal, as the hot metal temperature increases, the addition rate increases according to equations (2) and (3). Along with the reduction and evaporation loss caused by [C] in soda ash, (Na 2 O) in the slag decreases according to equation (3), and the activity (α P2O5 ) of (P 2 O 5 ) increases; Therefore, the reaction of formula (1) is suppressed, and the rate of rephosphorization due to the reduction reaction of (P 2 O 5 ) according to formula (4) increases, so it is thought that dephosphorization does not proceed as a result. . Na 2 CO 3 +C→Na 2 O+2CO …(2) Na 2 O+C→2Na+CO …(3) P 2 O 5 +5C→2P+5CO …(4) The solid line in Figure 1 and Figure 2 are undeoxidized molten steel. This shows the dephosphorization and desulfurization effects of soda ash in T.
This shows that dephosphorization using soda ash in low-carbon undeoxidized molten steel at T = 1650°C is comparable to dephosphorization in hot metal with a high carbon concentration at T = 1350°C. This is because the loss of (Na 2 O) due to the reaction in equation (3) is small, the rephosphorization reaction in equation (4) is small, and the evaporation rate of soda ash itself is slower than previously thought (C Therefore, even at T=1650°C, the soda ash reacted sufficiently with the molten steel and became stable as Na 2 O--P 2 O 5 -based slag. Next, if we pay attention to Fig. 3, it shows the case where soda ash is used according to the research conducted by the present inventors.
The relationship between the amount of [C] in molten steel and the dephosphorization rate is illustrated, and it shows that when the amount of [C] in molten steel becomes around 0.50% or less, the dephosphorization rate decreases significantly. In other words, this means that if the target value of the finished product for the amount of [C] is C = 0.50% or less, for example, if the amount of [C] is reduced to the target value in a converter and then molten steel is added to soda ash, the product will be very good. It is understood that the present invention is extremely effective in improving the dephosphorization effect. In addition, if the target amount of [C] in the finished product is 0.50% or more, for example, the amount of [C] should be reduced to 0.50% in the converter blowing process.
After lowering the amount to below, add soda ash to the molten steel to dephosphorize and desulfurize the steel, remove slag, add C, and finally adjust the [C] amount to the target value. The same effect can be obtained. Figure 4 shows the results of another investigation by the present inventors, showing the soda ash consumption rate when dephosphorization was caused by adding various amounts of soda ash to molten steel after refining;
The relationship between the dephosphorization rate and molten steel temperature is shown. This investigation involved blowing hot metal with P = 0.100 to 0.120% in a converter to produce molten steel with C = 0.10% or less and a temperature of 1650 to 1750℃, and after tapping it, it was made into molten steel with a consumption rate of 16 and 24 kg/T. This was done by treating each with ashes,
In all cases, although the basic unit of soda ash was extremely low, a very high dephosphorization rate of 80% or more was shown, and the effectiveness of the present invention can be understood more clearly. Furthermore, according to the same figure, it is clear that this dephosphorization effect is almost unaffected by the molten steel temperature, so soda ash can be added either at the time of tapping or after tapping as long as it is after refining. Almost the same stable effect can be achieved even if the steel is tapped, and adding it in portions during and after tapping is equally effective. Furthermore, Figure 5 shows the relationship between the soda ash unit required to convert P = 0.100% molten steel to P = 0.010% molten steel when C = 0.10% and the amount of [Si] in the molten steel. , after refining, the amount of [Si] in the molten steel is
Since the amount is 0.01% or less, the method of the present invention in which soda ash is added after refining allows efficient dephosphorization without adding any special desulfurization treatment to the hot metal. In the present invention, the solvent containing an alkali metal carbonate as a main component includes, in addition to the above-mentioned soda ash containing Na 2 CO 3 as a main component, those containing K 2 CO 3 as a main component. In addition, metal refining includes top-blown converters, bottom-blown converters, composite blowing furnaces with nozzles below the bath surface, AOD furnaces, and VOD furnaces.
The present invention is applicable to a wide range of steel refining methods, including furnaces, electric furnaces, etc. Furthermore, methods of adding the solvent of the present invention include adding it using an alloy adjustment hopper during tapping from a metal smelting furnace, and adding gas etc. from a refractory lance immersed under the bath surface during or after tapping. The method of addition is not particularly limited, and there are methods such as injecting the molten steel as a medium, or adding it from above using a hopper while stirring the molten steel by bubbling or the like after tapping. Examples of the present invention will be described below. <Example 1> 250 tons of hot metal with the following composition and temperature were charged into a converter.

【表】 転炉内にて下記の組成まで脱炭。【table】 Decarburized in a converter to the following composition.

【表】 出鋼時にソーダ灰18Kg/tを約5分間にわた
り連続投入。得られた溶鋼の組成および温度な
らびにスラグの組成は下記のとおりである
[Table] During tapping, 18 kg/t of soda ash was continuously added for about 5 minutes. The composition and temperature of the obtained molten steel and the composition of the slag are as follows.

【表】 上記の如く、C=0.05%、Mn=0.25%、P=
0.130%、S=0.032%の溶鋼に原単位18Kg/tの
ソーダ灰を用いたところ、最終溶鋼中のPおよび
Sをそれぞれ0.015%、0.010%と非常に低くで
き、更にこのソーダ灰添加量は従来の添加量の1/
3〜1/2に相当し、ソーダ灰添加量を大巾に低減さ
せることができた。 また、本発明方法によつて発生したスラグから
燐、バナジウム等の回収が可能である。 <実施例 2> 下記の組成および温度の溶銑250Tを転炉に
装入。
[Table] As above, C=0.05%, Mn=0.25%, P=
When soda ash with a basic unit of 18 kg/t is used in molten steel with 0.130% and S = 0.032%, P and S in the final molten steel can be extremely low at 0.015% and 0.010%, respectively, and the amount of soda ash added is 1/ of the conventional addition amount
This corresponds to 3 to 1/2, making it possible to significantly reduce the amount of soda ash added. Furthermore, it is possible to recover phosphorus, vanadium, etc. from the slag generated by the method of the present invention. <Example 2> 250T of hot metal with the following composition and temperature was charged into a converter.

【表】 転炉内にて脱炭して出鋼し下記の組成にし
た。
[Table] The steel was decarburized and tapped in a converter to have the composition shown below.

【表】 出鋼後、取鍋内にて耐火物ランスよりArガ
スを媒体としてソーダ灰15Kg/tをインジエク
シヨン法により添加。得られた溶鋼の組成およ
び温度は下記のとおりである。
[Table] After tapping, 15 kg/t of soda ash was added using the injection method using Ar gas as a medium from a refractory lance in the ladle. The composition and temperature of the obtained molten steel are as follows.

【表】 <実施例 3> 下記の組成および温度の溶銑250Tを転炉に
装入。
[Table] <Example 3> 250T of hot metal with the following composition and temperature was charged into a converter.

【表】 転炉内にて下記の組成まで脱炭。【table】 Decarburized in a converter to the following composition.

【表】 出鋼時にソーダ灰10Kg/tを添加して下記の
組成まで脱燐および脱硫。
[Table] Dephosphorization and desulfurization are performed by adding 10 kg/t of soda ash to the following composition during tapping.

【表】 出鋼後、取鍋内にて耐火物ランスよソーダ灰
15Kg/tをインジエクシヨン法により添加。溶
鋼の最終組成および温度は下記のとおりであ
る。
[Table] After tapping, pour soda ash into the refractory lance in the ladle.
15Kg/t was added using the injection method. The final composition and temperature of the molten steel are as follows.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図はソーダ灰原単位一定のときの溶銑およ
び溶鋼の温度と脱燐率の関係を示す線図、第2図
はソーダ灰による未脱酸溶鋼の脱燐、脱硫効果の
時間的推移を示す線図、第3図はソーダ灰を用い
た場合の溶鋼中の〔C〕量と脱燐率の関係を示す
線図、第4図はソーダ灰による低炭未脱酸溶鋼の
脱燐率と溶鋼温度の関係をソーダ灰原単位をパラ
メータとして表わした線図、第5図は低炭未脱酸
溶鋼にソーダ灰を添加した場合のソーダ灰原単位
と鋼中の〔Si〕量の関係を示す線図である。
Figure 1 is a diagram showing the relationship between the temperature of hot metal and molten steel and the dephosphorization rate when the soda ash consumption rate is constant, and Figure 2 is a diagram showing the time course of the dephosphorization and desulfurization effects of undeoxidized molten steel by soda ash. Fig. 3 is a diagram showing the relationship between the amount of [C] in molten steel and the dephosphorization rate when soda ash is used, and Fig. 4 is a diagram showing the dephosphorization rate of low-carbon undeoxidized molten steel using soda ash. Figure 5 shows the relationship between the soda ash unit and the molten steel temperature using the soda ash unit as a parameter. FIG.

Claims (1)

【特許請求の範囲】 1 アルカリ金属炭酸塩を主成分とする媒溶剤を
用いて鋼の精錬を行なう方法において、アルカリ
金属炭酸塩を主成分とする媒溶剤を、金属精錬炉
で鋼の精錬を行なつた後、溶鋼に添加する鋼の精
錬方法。 2 アルカリ金属炭酸塩を主成分とする媒溶剤
を、金属精錬炉で鋼の精錬を行なつた後の出鋼時
に溶鋼に添加する特許請求の範囲第1項記載の鋼
の精錬方法。 3 アルカリ金属炭酸塩を主成分とする媒溶剤
を、金属精錬炉で鋼の精錬を行ない、出鋼した
後、取鍋またはタンデツシユ内において溶鋼に添
加する特許請求の範囲第1項記載の鋼の精錬方
法。 4 全投入量の1部のアルカリ金属炭酸塩を主成
分とする媒溶剤を、金属精錬炉で鋼の精錬を行つ
た後の出鋼時に溶鋼に添加する特許請求の範囲第
3項記載の鋼の精錬方法。
[Claims] 1. A method for refining steel using a solvent containing an alkali metal carbonate as a main component, in which a solvent containing an alkali metal carbonate as a main component is used to refine steel in a metal refining furnace. A method of refining steel that is added to molten steel after refining. 2. The method for refining steel according to claim 1, wherein a solvent containing an alkali metal carbonate as a main component is added to molten steel at the time of tapping the steel after refining the steel in a metal refining furnace. 3. The steel according to claim 1, in which a solvent containing an alkali metal carbonate as a main component is added to molten steel in a ladle or tundish after refining the steel in a metal refining furnace and tapping the steel. Refining method. 4. The steel according to claim 3, wherein a part of the total input amount of a solvent mainly composed of an alkali metal carbonate is added to the molten steel at the time of tapping after refining the steel in a metal refining furnace. Refining method.
JP12488279A 1979-09-27 1979-09-27 Refining steel Granted JPS5647511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12488279A JPS5647511A (en) 1979-09-27 1979-09-27 Refining steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12488279A JPS5647511A (en) 1979-09-27 1979-09-27 Refining steel

Publications (2)

Publication Number Publication Date
JPS5647511A JPS5647511A (en) 1981-04-30
JPS6146525B2 true JPS6146525B2 (en) 1986-10-15

Family

ID=14896422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12488279A Granted JPS5647511A (en) 1979-09-27 1979-09-27 Refining steel

Country Status (1)

Country Link
JP (1) JPS5647511A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290090A (en) * 1999-02-05 2000-10-17 Nkk Corp Slow-release potash fertilizer
JP2000226285A (en) * 1999-02-05 2000-08-15 Nkk Corp Slow acting potassic fertilizer
JP3649029B2 (en) * 1999-03-18 2005-05-18 Jfeスチール株式会社 K2O-CaO-SiO2 crystal material and slow-release potash fertilizer

Also Published As

Publication number Publication date
JPS5647511A (en) 1981-04-30

Similar Documents

Publication Publication Date Title
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JPS6146525B2 (en)
JP2002020816A (en) Method for producing low nitrogen-containing chromium steel
JPH09165615A (en) Denitrifying method for molten metal
GB2141739A (en) Process for producing low P chromium-containing steel
US4525209A (en) Process for producing low P chromium-containing steel
JPH11323420A (en) Pretreating method for molten iron
JP3301683B2 (en) Desulfurization method of chromium-containing molten steel in decarburization refining
JP3194212B2 (en) Converter steelmaking method
JPS6143409B2 (en)
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JPS6121285B2 (en)
JPH08134528A (en) Production of extra low carbon steel
JPH111714A (en) Steelmaking method
JPH01147012A (en) Steelmaking method
JP3531480B2 (en) Hot metal dephosphorization method
JPH0978119A (en) Method for denitrification of molten metal and flux for denitrification
JPH0813016A (en) Method for dephosphorizing and desulfurizing molten iron
JPS5856005B2 (en) High chromium steel melting method
JPS636606B2 (en)
JPS58100608A (en) Dephosphorizing and desulfurizing method for molten high alloy
JPS6212301B2 (en)
US4405364A (en) Process of refining iron in oxygen converters with additions of materials containing sodium carbonate
JP2002317218A (en) Molten iron dephosphorizing method
JPH01246309A (en) Method for melting high alloy steel