JPH0873915A - Method for dephosphorizing and desulfurizing molten iron - Google Patents

Method for dephosphorizing and desulfurizing molten iron

Info

Publication number
JPH0873915A
JPH0873915A JP21158294A JP21158294A JPH0873915A JP H0873915 A JPH0873915 A JP H0873915A JP 21158294 A JP21158294 A JP 21158294A JP 21158294 A JP21158294 A JP 21158294A JP H0873915 A JPH0873915 A JP H0873915A
Authority
JP
Japan
Prior art keywords
ton
gas
oxygen
dephosphorization
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21158294A
Other languages
Japanese (ja)
Inventor
Shinya Kitamura
信也 北村
Yuji Ogawa
雄司 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21158294A priority Critical patent/JPH0873915A/en
Publication of JPH0873915A publication Critical patent/JPH0873915A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE: To provide an effective dephosphorizing and desulfurizing method of molten iron which can progress the desulfurization during dephosphorizing without bringing about the lowering of scrap consumption, related to the dephos phorizing treatment of the molten iron by using top-blowing gaseous oxygen. CONSTITUTION: In a refining apparatus by supplying the oxygen from a top- blowing lance and gas-stirring the molten steel, the ratio L/Lo of the recessed depth L (mm) on the molten iron surface by the gas spouted from the top- blowing lance and the molten iron depth Lo (mm) is made to be 0.3-0.7, the oxygen supplying rate (Nm<3> /min.ton) is made to be 0.3-0.9 and the stirring energy density (kW/ton) is made to be 1.5-4, and further, the ratio C/O of lime consumption C (kg/ton) and the oxygen consumption 0 (Nm<3> /ton) is made to be 1.5-3.5 and the ratio CF/C of fluorspar consumption CF (kg/ton) and the lime consumption C is made to be 0.05-0.3. Further, the lime or the mixed material of the lime and the fluorspar is supplied from the top-blowing lance or a stirring gas blowing hole.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は温度低下が少ない溶銑の
脱燐脱硫精錬方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dephosphorization and desulfurization refining of hot metal with a small temperature drop.

【0002】[0002]

【従来の技術】製鋼トータルコストのミニマム化や低燐
鋼の安定溶製に関して、従来、溶銑の脱燐法として、
(1)トピードカー内の溶銑に対して脱燐用フラックス
(酸化鉄、生石灰等)をインジェクションして予備脱燐
を行う方法、(2)取鍋内の溶銑に対して脱燐用フラッ
クスをインジェクションするか、もしくは吹付けを行
い、予備脱燐を行う方法、あるいは(3)2基の転炉を
用いて、一方で脱燐を行い、他方で脱炭を行う方法(例
えば、特開昭63−195210号公報)が用いられて
いる。
2. Description of the Related Art Regarding the minimization of the total cost of steelmaking and the stable melting of low-phosphorus steel, the conventional method for dephosphorizing hot metal has been
(1) Method of pre-dephosphorization by injecting flux for dephosphorization (iron oxide, quick lime, etc.) to hot metal in tope car, (2) Injecting flux for dephosphorization to hot metal in ladle Alternatively, a method of performing preliminary dephosphorization by spraying or (3) a method of performing dephosphorization on one side and decarburization on the other side by using two converters (for example, Japanese Patent Laid-Open No. 63- 195210) is used.

【0003】しかしながら、上記(1)、(2)の方法
は、(T.Fe)が低く、(CaO/SiO2 )が高い
スラグを用いるため、脱燐と同時に脱硫反応が進行する
という利点があるものの、酸化剤として鉄鉱石やスケー
ル粉に代表される酸化鉄を用いているため、処理中に温
度が低下し、次工程である転炉でのスクラップ消費量が
低下して溶鋼生産量が低減するという問題がある。この
方法で酸化鉄の代わりに酸素ガスを用いる場合、酸素ガ
スをインジェクションすると攪拌が過大となり、(T.
Fe)が極端に低くなって脱燐が進行しなくなる。ま
た、上方より単に吹付けた場合には、スラグの(T.F
e)が高くなって脱硫が悪化するという問題があった。
However, the above methods (1) and (2) use slag having a low (T.Fe) and a high (CaO / SiO 2 ), and therefore has an advantage that the desulfurization reaction proceeds simultaneously with the dephosphorization. However, since iron oxide represented by iron ore and scale powder is used as an oxidizer, the temperature decreases during processing, and the scrap consumption in the converter, which is the next process, decreases, resulting in a molten steel production amount. There is a problem of reduction. When oxygen gas is used instead of iron oxide in this method, if the oxygen gas is injected, agitation becomes excessive (T.
Fe) becomes extremely low and dephosphorization does not proceed. In addition, in the case of simply spraying from above, the slag (TF
There is a problem that desulfurization deteriorates because e) becomes high.

【0004】一方、上記(3)の方法においては、酸化
剤としては酸素ガスを用い、脱燐処理時の温度制御のた
めにスクラップを用いることができるため、スクラップ
消費量の低下はないものの、転炉を用いるため上吹き酸
素ガス流量が大きく、(T.Fe)が高く、脱燐中に脱
硫が進行しないという問題がある。ところで、上吹きラ
ンスから酸素を供給し、かつ鋼浴をガス攪拌せしめる精
錬装置の代表的なものに転炉がある。転炉を用いた溶銑
脱燐処理としては、鉄と鋼、第76巻11号、1817
頁以降に記載された技術や、鉄と鋼、第76巻11号、
1801頁以降に記載された技術が公知であるが、いず
れも酸素供給速度Fは1以上と大きく、攪拌エネルギー
密度Eも1以上であるが、溶銑面の凹み深さと浴深の比
L/L0 に関する記載はない。また、生石灰使用量と酸
素使用量の比C/Oは1.5よりも小さく、脱燐中の脱
硫はほとんど進行していない。
On the other hand, in the above method (3), although oxygen gas is used as the oxidizer and scrap can be used for temperature control during the dephosphorization treatment, the scrap consumption does not decrease, but Since a converter is used, there is a problem that the flow rate of top-blown oxygen gas is high, (T.Fe) is high, and desulfurization does not proceed during dephosphorization. By the way, a converter is a typical refining device that supplies oxygen from an upper blowing lance and stirs a steel bath with gas. As hot metal dephosphorization treatment using a converter, iron and steel, Vol. 76, No. 11, 1817
Techniques described on pages ff and iron and steel, Vol. 76, No. 11,
Although the techniques described on and after page 1801 are known, the oxygen supply rate F is as large as 1 or more, and the stirring energy density E is also 1 or more, but the ratio L / L of the depression depth of the hot metal surface to the bath depth is L / L. There is no description about 0 . Further, the ratio C / O of the amount of quick lime used to the amount of oxygen used is smaller than 1.5, and desulfurization during dephosphorization hardly progresses.

【0005】一方、トピードカーや溶銑鍋を用いた溶銑
脱燐は、酸素ガス上吹きのみで実施されることはなく、
必ず酸化鉄粉がインジェクションされている。この場合
には、鉄と鋼、第76巻11号、1801頁以降に記載
されているように、酸素供給速度Fは1よりも小さく、
攪拌エネルギー密度Eは1以上であるが、生石灰使用量
と酸素使用量の比C/Oは1.5よりも大きいため、脱
燐中に脱硫が進行している。
On the other hand, hot metal dephosphorization using a tope car or a hot metal ladle is not carried out by only blowing oxygen gas,
Be sure to inject iron oxide powder. In this case, as described in Iron and Steel, Vol. 76, No. 11, p. 1801, the oxygen supply rate F is smaller than 1,
Although the stirring energy density E is 1 or more, the ratio C / O of the amount of quick lime used and the amount of oxygen used is larger than 1.5, so desulfurization proceeds during the dephosphorization.

【0006】つまり、従来技術において、酸化鉄粉をイ
ンジェクションせずに、酸素ガス上吹きのみで実施され
る場合には、酸素供給速度Fが大きくなるため、生石灰
使用量と酸素使用量の比C/Oが小さくなって脱燐中の
脱硫が進行しないという問題がある。また、この方法で
単に酸素供給速度Fを低下させるのみでは、脱燐中の脱
硫反応は進行しない。また、トピードカーや溶銑鍋を用
いて酸化鉄粉をインジェクションする方法は、酸化鉄と
炭素との反応が吸熱反応のため処理中の温度低下が著し
く、スクラップ消費量が大幅に低下するという問題があ
る。
That is, in the prior art, when the iron oxide powder is not injected and only oxygen gas top blowing is performed, the oxygen supply rate F increases, so the ratio C of the amount of quick lime used to the amount of oxygen used C There is a problem that / O becomes small and desulfurization does not proceed during dephosphorization. Further, by simply lowering the oxygen supply rate F by this method, the desulfurization reaction during dephosphorization does not proceed. Further, the method of injecting iron oxide powder using a tope car or a hot metal ladle has a problem that the temperature decrease during processing is remarkable because the reaction between iron oxide and carbon is an endothermic reaction, and the scrap consumption is significantly reduced. .

【0007】[0007]

【発明が解決しようとする課題】本発明は、従来技術に
おいて、スクラップ消費量の低下を防ぐために酸化剤と
して酸素ガスを上吹きで用いると、(T.Fe)が高
く、脱燐中に脱硫が進行しないという問題点を解決しよ
うとするものである。
SUMMARY OF THE INVENTION In the prior art, when oxygen gas is used as the oxidant in the upper blowing in order to prevent the reduction of the scrap consumption, the (T.Fe) is high and the desulfurization occurs during the dephosphorization. It tries to solve the problem of not progressing.

【0008】[0008]

【課題を解決するための手段】本発明者らは、酸素ガス
を上吹きした場合に(T.Fe)を低く制御するには、
上吹きガスの鋼浴面への衝突エネルギーを考慮すること
が重要であることを知見した。本発明はこの知見に基づ
きなされたものであり、その要旨とするところは下記の
とおりである。
The inventors of the present invention have found that in order to control (T.Fe) low when oxygen gas is blown upward,
We have found that it is important to consider the collision energy of the top-blown gas on the steel bath surface. The present invention has been made based on this finding, and the gist thereof is as follows.

【0009】(1)上吹きランスから酸素を供給し、か
つ鋼浴をガス攪拌せしめる精錬装置において、上吹きラ
ンスから吐出したガスの運動エネルギーによる溶銑面の
凹み深さL(mm)と浴深L0 (mm)の比L/L0
0.3以上0.7以下、酸素供給速度F(Nm3 /(m
in・ton))を0.3以上0.9以下、攪拌エネル
ギー密度E(kW/ton)を1.5以上4以下とした
上で、生石灰使用量C(kg/ton)と酸素使用量O
(Nm3 /ton)の比C/Oを1.5以上3.5以
下、蛍石使用量CF(kg/ton)をCF/Cで0.
05以上0.3以下とすることを特徴とする溶銑の脱燐
脱硫精錬方法。
(1) In a refining apparatus that supplies oxygen from a top blowing lance and stirs a steel bath with gas, the depth L (mm) of the hot metal surface depression and the bath depth due to the kinetic energy of the gas discharged from the top blowing lance. The ratio L / L 0 of L 0 (mm) is 0.3 or more and 0.7 or less, and the oxygen supply rate F (Nm 3 / (m
in • ton)) is 0.3 or more and 0.9 or less, and the stirring energy density E (kW / ton) is 1.5 or more and 4 or less, and the quick lime use amount C (kg / ton) and oxygen use amount O
The ratio C / O of (Nm 3 / ton) is 1.5 or more and 3.5 or less, and the amount fluorite used CF (kg / ton) is CF / C of 0.
The method for dephosphorization and desulfurization refining of hot metal is characterized in that the content is from 05 to 0.3.

【0010】(2)前項(1)記載の溶銑の脱燐脱硫精
錬方法において、生石灰粉または生石灰粉および蛍石粉
の混合物を、上吹きランス、または上吹きガスによる火
点面の炉底への投影面内に設置された攪拌ガス吹込み孔
から供給することを特徴とする溶銑の脱燐脱硫精錬方
法。ここで、攪拌エネルギー密度E(kW/ton)
は、底吹きガス流量Q(Nm 3 /s)、温度T(K)、
溶鋼量W(ton)、底吹き羽口位置の静圧P(P
a)、大気圧P0 (Pa)とすると次式で表される。
(2) Dephosphorization and desulfurization of hot metal according to item (1)
In the smelting method, quicklime powder or quicklime powder and fluorspar powder
Of the mixture with a top-blown lance or a top-blown gas.
Stirring gas injection hole installed in the projection plane of the point surface onto the furnace bottom
Desulfurization and refining refining method of hot metal characterized by being supplied from
Law. Here, the stirring energy density E (kW / ton)
Is the bottom blowing gas flow rate Q (Nm 3/ S), temperature T (K),
Molten steel amount W (ton), static pressure P (P
a), atmospheric pressure P0If it is (Pa), it is expressed by the following equation.

【0011】E={371/(1000・W)}×Q×
T×{ln(P/P0 )+0.06(1−298/
T)} また、上吹きガスによるキャビティー深さL(m)はノ
ズル径d(mm)、ランスと鋼浴面間の距離h(m
m)、ノズル個数nとすると次式で計算される。 L={Lh ×exp(−0.78×h/Lh )}/10
0 Lh =63×(F×W×60/(n×d))2/3 さらに、上吹きガスによる火点面は、ランスノズルから
の噴流が片側12度の広がりを持つ円錐状であるとした
場合の、この円錐の溶銑面による切断部として計算され
る。
E = {371 / (1000 · W)} × Q ×
T × {ln (P / P 0 ) +0.06 (1-298 /
T)} Further, the cavity depth L (m) due to the top-blown gas is the nozzle diameter d (mm), the distance h (m) between the lance and the steel bath surface.
m) and the number of nozzles n, it is calculated by the following equation. L = {L h × exp (−0.78 × h / L h )} / 10
0 L h = 63 × (F × W × 60 / (n × d)) 2/3 Further, the fire point surface due to the upper blowing gas is a conical shape in which the jet from the lance nozzle has a spread of 12 degrees on one side. Is calculated as the cut portion by the hot metal surface of this cone.

【0012】[0012]

【作用】本発明はトピードカー、溶銑鍋、転炉のいずれ
かを反応容器として用いた場合に適用できる。転炉型容
器で実施した場合、上吹きランスはL/L0 を適正範囲
にするため、通常の転炉脱炭用ランスよりもノズル数が
少なく、かつノズル径が小さいランスとする必要があ
る。例えば、350トン転炉で実施した場合には、2〜
3孔で、ノズル径は20〜30mm程度が適正構造とな
る。また、トピードカー型や溶銑鍋型容器で実施した場
合の上吹きランスは、ランス高さが低くならざるを得な
いため、転炉型よりも多孔もしくは大径となり、例えば
350トントピードカーで実施した場合には、4孔で2
0〜30mm程度のノズル径が、2孔で40〜50mm
程度のノズル径が適正構造となる。
The present invention can be applied when any one of a tope car, a hot metal ladle and a converter is used as a reaction vessel. When it is carried out in a converter type container, the upper blowing lance has an L / L 0 within an appropriate range, and therefore, it is necessary to use a lance having a smaller number of nozzles and a smaller nozzle diameter than a normal converter decarburizing lance. . For example, if it is carried out in a 350 ton converter,
With three holes, a proper nozzle diameter is about 20 to 30 mm. Moreover, the top blowing lance when it is carried out in a tope car type or a hot metal ladle type container has a lower lance height, so it has a larger porosity or a larger diameter than the converter type, for example, it is carried out in a 350 ton tope car. In case of 4 holes 2
Nozzle diameter of 0 to 30 mm is 40 to 50 mm with 2 holes
The appropriate nozzle diameter is the proper structure.

【0013】図1は、L/L0 と脱燐率、脱硫率の関係
を示したものであるが、L/L0 が0.3よりも小さい
場合には(T.Fe)が高くなるため脱硫率が悪化し、
0.7よりも.きい場合には(T.Fe)が低くなるた
め脱燐率が悪化している。従って、L/L0 は0.3以
上0.7以下が適正範囲となる。また、L/L0 が適正
範囲であっても、酸素供給速度が0.3(Nm3 /(m
in・ton))よりも小さい場合には、酸素供給が不
足して(T.Fe)が低くなるため脱燐率が低下し、
0.9(Nm3 /(min・ton))よりも大きい場
合には、酸素供給が過大で(T.Fe)が高くなり過ぎ
るため脱硫率が低下する。
FIG. 1 shows the relationship between L / L 0 and the dephosphorization rate and the desulfurization rate. When L / L 0 is smaller than 0.3, (T.Fe) becomes high. Therefore, the desulfurization rate deteriorates,
Than 0.7. In the case of the threshold, (T.Fe) becomes low, so that the dephosphorization rate is deteriorated. Therefore, the proper range of L / L 0 is 0.3 or more and 0.7 or less. Even if L / L 0 is in the proper range, the oxygen supply rate is 0.3 (Nm 3 / (m
in.ton)), the oxygen supply becomes insufficient and (T.Fe) becomes low, so the dephosphorization rate decreases,
When it is larger than 0.9 (Nm 3 / (min · ton)), the oxygen supply is excessive and (T.Fe) becomes too high, so that the desulfurization rate decreases.

【0014】さらに、攪拌エネルギー密度を1.5(k
W/ton)よりも低くした場合には、反応速度が遅
く、脱燐率、脱硫率ともに悪く、4(kW/ton)よ
りも大きくした場合には、スラグの(T.Fe)の溶銑
中炭素による還元速度が大きくなり(T.Fe)が低く
なるため脱燐率が低下する。これに加えて、脱燐、脱硫
剤である生石灰量についても、生石灰使用量Cと酸素使
用量Oの比C/Oが1.5(kg/Nm3 )よりも小さ
い場合には、スラグの精錬能力を決める塩基度((Ca
O)/(SiO2 ))が低過ぎるため脱燐率、脱硫率と
もに悪く、C/Oが3.5(kg/Nm3 )よりも大き
い場合には未滓化の石灰が多量に生じるため、精錬コス
ト上現実的ではない。
Further, the stirring energy density is 1.5 (k
If it is lower than W / ton), the reaction rate is slow, and both the dephosphorization rate and the desulfurization rate are poor, and if it is higher than 4 (kW / ton), in the hot metal of (T.Fe) of the slag. The dephosphorization rate decreases because the rate of reduction by carbon increases (T.Fe) decreases. In addition to this, when the ratio C / O of the amount of quicklime used C and the amount of oxygen used O is smaller than 1.5 (kg / Nm 3 ), the amount of quicklime as a dephosphorization / desulfurization agent is less than that of slag. Basicity ((Ca
O) / (SiO 2 )) is too low, resulting in poor dephosphorization rate and desulfurization rate. When C / O is more than 3.5 (kg / Nm 3 ), a large amount of unsintered lime is produced. However, the refining cost is not realistic.

【0015】蛍石はスラグの流動性を向上させ、反応速
度を上げる効果があるが、本発明では、生石灰使用量C
(kg/ton)と蛍石使用量CF(kg/ton)の
比(CF/C)で0.05よりも小さい場合には反応速
度が低下し、0.3よりも大きい場合には耐火物損耗が
大きいという問題が生じた。さらに、本発明において、
生石灰粉または生石灰粉および蛍石粉の混合物を上吹き
ランス、または上吹きガスによる火点面の炉底への投影
面内に設置された攪拌ガス吹込み孔から供給することに
より、脱燐、脱硫ともにさらに効率的になる。これは、
L/L0 が適正範囲であれば、酸素噴流が溶銑面に衝突
する火点部分に2000℃以上の高温火点が生成するた
め、その部分に粉体が供給されることにより急速な溶解
滓化が実現されるためである。
Fluorite has the effect of improving the fluidity of slag and increasing the reaction rate, but in the present invention, the amount of quicklime used C
If the ratio (CF / C) of (kg / ton) to CF (kg / ton) used is less than 0.05, the reaction rate decreases, and if greater than 0.3, it is a refractory material. The problem of great wear occurred. Furthermore, in the present invention,
Dephosphorization and desulfurization by supplying quick lime powder or a mixture of quick lime powder and fluorspar powder from a top blowing lance or a stirring gas blowing hole installed in the projection surface of the fire point surface on the furnace bottom by top blowing gas Both will be more efficient. this is,
If L / L 0 is within an appropriate range, a high-temperature hot spot of 2000 ° C. or higher is generated at the hot spot where the oxygen jet collides with the hot metal surface, and the powder is supplied to the hot spot to rapidly melt the molten slag. Is realized.

【0016】なお、本発明では、(T.Fe)としてス
ラグに蓄積される酸素が少ないため酸素原単位が少な
く、そのため全ての酸素を酸素ガスとして供給しても温
度は1400℃程度までしか上昇せず、脱燐に対する悪
影響はほとんどない。また、適量のスクラップを脱燐精
錬炉で使用することで、温度を1350℃程度まで下げ
ることもできる。
In the present invention, the amount of oxygen accumulated in the slag as (T.Fe) is small, so the oxygen unit consumption is small. Therefore, even if all the oxygen is supplied as oxygen gas, the temperature rises to only about 1400 ° C. No adverse effect on dephosphorization. Moreover, the temperature can be lowered to about 1350 ° C. by using an appropriate amount of scrap in the dephosphorization refining furnace.

【0017】[0017]

【実施例】実施例1は350トン上底吹き転炉を用いて
行った。底吹きガスは窒素ガス、または酸素ガスと羽口
冷却用ガスを用い、上吹きランスより酸素ガスを吹付け
た。生石灰原単位は15〜20kg/tonであり、上
方より塊状の生石灰を蛍石とともにF/Cで0.07〜
0.27の範囲で投入した。処理後温度はスクラップを
投入することで1350〜1450℃とした。ランスは
ノズルが24mm径の2孔ランスを主に用い、ランス高
さを種々変化させるとともに、一部の実験ではノズル径
も変化させてL/L0 を調整した。
EXAMPLE Example 1 was carried out using a 350 ton top and bottom blowing converter. Nitrogen gas or oxygen gas and tuyere cooling gas were used as the bottom blowing gas, and oxygen gas was blown from the top blowing lance. The basic unit of quick lime is 15 to 20 kg / ton, and the quick lumps of lump calcium from the top together with fluorite are 0.07 in F / C.
It was input in the range of 0.27. The post-treatment temperature was set to 1350 to 1450 ° C. by adding scrap. As the lance, a 2-hole lance having a nozzle with a diameter of 24 mm was mainly used, and the lance height was variously changed, and in some experiments, the nozzle diameter was also changed to adjust L / L 0 .

【0018】表1に示す実験番号の1〜11は本発明の
実施例であるが、15〜20分程度の処理の結果、脱燐
率、脱硫率ともに高い値が得られている。一方、実験番
号12〜19に示すように、L/L0 、酸素供給速度
F、攪拌エネルギー密度E、生石灰使用量Cと酸素使用
量Oの比C/O、および生石灰使用量Cと蛍石使用量C
Fの比CF/Cのいずれかが本発明範囲から外れると、
脱燐率、脱硫率のいずれかが大きく低下している。
Experiment numbers 1 to 11 shown in Table 1 are examples of the present invention. As a result of the treatment for about 15 to 20 minutes, high values of both the dephosphorization rate and the desulfurization rate were obtained. On the other hand, as shown in Experiment Nos. 12 to 19, L / L 0 , oxygen supply rate F, stirring energy density E, ratio C / O of the amount of quicklime used C and oxygen used O, and the amount of quicklime used C and fluorite Usage C
When either of the ratios CF / C of F is out of the range of the present invention,
Either the dephosphorization rate or the desulfurization rate is greatly reduced.

【0019】[0019]

【表1】 [Table 1]

【0020】また、350トントピードカーを用いて以
下の実験を行った。攪拌ガスはインジェクションランス
より吹込んだ窒素ガスであり、上吹きランスより酸素ガ
スを吹付けた。この場合、生石灰原単位は15〜20k
g/tonであり、粉状の生石灰を蛍石とともにインジ
ェクションランスより吹込んだ。処理後温度は小型スク
ラップを投入することで1350〜1450℃とした。
ランスはノズルが24mm径の4孔ランスを用いた。ラ
ンス高さを調節し、L/L0 を0.5とし、酸素供給速
度Fを0.5Nm3 /(min・ton)、攪拌エネル
ギー密度Eを2.1kW/tonとした上で、生石灰使
用量Cと酸素使用量Oの比C/O(kg/Nm3 )を
2、生石灰使用量Cと蛍石使用量CFの比CF/Cを
0.15とした結果、脱燐率が84%、脱硫率が53%
という実施例1とほぼ同じ結果を得た。
Further, the following experiment was carried out using a 350 ton toped car. The stirring gas was nitrogen gas blown from the injection lance, and oxygen gas was blown from the top blowing lance. In this case, the quicklime basic unit is 15 to 20k.
It was g / ton, and powdered quicklime was blown together with fluorspar from the injection lance. The temperature after treatment was set to 1350 to 1450 ° C. by introducing small scrap.
The lance used was a 4-hole lance with a nozzle having a diameter of 24 mm. Adjusting the lance height to L / L 0 of 0.5, oxygen supply rate F of 0.5 Nm 3 / (min · ton), stirring energy density E of 2.1 kW / ton, and using quicklime The ratio C / O (kg / Nm 3 ) of the amount C and the amount O of oxygen used was 2, and the ratio CF / C of the amount C of quicklime used and the amount CF of fluorite used was 0.15. As a result, the dephosphorization rate was 84%. , Desulfurization rate is 53%
The same result as in Example 1 was obtained.

【0021】実施例2は350トン上底吹き転炉を用い
て行った結果である。底吹きガスは窒素ガスを用い、上
吹きランスより酸素ガスを吹付けた。生石灰原単位は1
5〜20kg/tonであり、処理後温度は1350〜
1450℃であった。ランスはノズルが24mm径の2
孔ランスを主に用いた。なお、いずれの実験も、L/L
0 を0.5、酸素供給速度Fを0.6Nm3 /(min
・ton)、攪拌エネルギー密度Eを2.5kW/to
nとした上で、生石灰使用量Cと酸素使用量Oの比C/
O(kg/Nm3 )を2とした。
Example 2 is a result obtained by using a 350 ton top and bottom blowing converter. Nitrogen gas was used as the bottom blowing gas, and oxygen gas was blown from the top blowing lance. Quicklime basic unit is 1
5 to 20 kg / ton, and the post-treatment temperature is 1350 to
It was 1450 ° C. The lance has 2 nozzles with a diameter of 24 mm.
The hole lance was mainly used. In addition, L / L was used for all experiments.
0 is 0.5 and the oxygen supply rate F is 0.6 Nm 3 / (min
・ Ton), stirring energy density E is 2.5 kW / to
Then, the ratio C of quicklime use C and oxygen use C /
O (kg / Nm 3 ) was set to 2.

【0022】表2に示す実験番号20〜22は、上吹き
酸素ガス噴流に生石灰粉、もしくは生石灰粉と蛍石粉を
混合して吹付けた場合である。また、実験番号23〜2
5は、底吹き窒素ガス噴流に生石灰粉、もしくは生石灰
粉と蛍石粉を混合して吹付けた場合である。ここで、攪
拌ガス吹込み孔は、上吹きガスによる溶銑面の凹み部
(キャビティー)の炉底への投影面内に設置した場合で
ある。具体的には火点は炉断面中心から0.2〜0.5
mの半径で広がるため、粉体を供給する底吹きノズルは
炉底中心から0.2〜0.5mの半径内に設置した。一
方、実験番号26は、攪拌用窒素ガス噴流に生石灰粉と
蛍石粉を混合して吹付けた場合であるが、羽口を炉壁に
設けて、上吹きガスによるキャビティーの炉底への投影
面内に攪拌ガス吹込み孔を設置しなかった場合である。
具体的には前述の如く、火点投影面は炉底中心から0.
2〜0.5mの半径内になるため、この場合の粉体供給
用底吹ノズルは、炉底中心よりも0.6m以上離れた位
置に設置した。これより、脱燐率、脱硫率ともに実施例
1で示した実験番号1〜10よりも高い値を示すことが
わかる。しかし、上吹きガスによるキャビティーの炉底
への投影面内に攪拌ガス吹込み孔を設置しなかった実験
番号26は、実験番号1〜10と同程度の脱燐率、脱硫
率に過ぎないことがわかる。
Experiment Nos. 20 to 22 shown in Table 2 are the cases in which quick lime powder, or quick lime powder and fluorspar powder were mixed and sprayed to the top-blown oxygen gas jet. In addition, experiment numbers 23-2
No. 5 is a case where quick lime powder, or quick lime powder and fluorite powder were mixed and sprayed to the bottom blowing nitrogen gas jet. Here, the stirring gas blowing hole is a case where the stirring gas blowing hole is installed in the projection surface of the recessed portion (cavity) of the hot metal surface onto the furnace bottom by the top blowing gas. Specifically, the fire point is 0.2 to 0.5 from the center of the furnace cross section.
Since it spreads at a radius of m, the bottom blowing nozzle for supplying the powder was installed within a radius of 0.2 to 0.5 m from the center of the furnace bottom. On the other hand, Experiment No. 26 is a case in which quick lime powder and fluorspar powder were mixed and sprayed into a nitrogen gas jet for agitation, but tuyere was provided on the furnace wall to blow the gas onto the furnace bottom of the cavity. This is the case where the stirring gas blowing hole is not installed in the projection plane.
Specifically, as described above, the fire point projection plane is 0.
Since it is within a radius of 2 to 0.5 m, the powder-supplying bottom-blowing nozzle in this case was installed at a position separated by 0.6 m or more from the furnace bottom center. From this, it can be seen that both the dephosphorization rate and the desulfurization rate are higher than those of Experiment Nos. 1 to 10 shown in Example 1. However, Experiment No. 26, in which the stirring gas injection holes were not installed in the projection surface of the cavity onto the furnace bottom by the top-blown gas, had only the same dephosphorization rate and desulfurization rate as Experiment Nos. 1-10. I understand.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明を用いることにより、上吹き酸素
ガスを用いた上で低い(T.Fe)での溶銑精錬が可能
となり、スクラップ消費量の低下をまねくことなく、脱
燐中に脱硫を進行させることが可能となった。
EFFECTS OF THE INVENTION By using the present invention, it is possible to perform hot metal refining at a low (T.Fe) level using top-blown oxygen gas, and to desulfurize during dephosphorization without reducing scrap consumption. It has become possible to proceed.

【図面の簡単な説明】[Brief description of drawings]

【図1】脱燐率、脱硫率に対するL/L0 の影響を示す
図である。
FIG. 1 is a diagram showing the effect of L / L 0 on the dephosphorization rate and the desulfurization rate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上吹きランスから酸素を供給し、かつ鋼
浴をガス攪拌せしめる精錬装置において、上吹きランス
から吐出したガスの運動エネルギーによる溶銑面の凹み
深さL(mm)と浴深L0 (mm)の比L/L0 を0.
3以上0.7以下、酸素供給速度F(Nm3 /(min
・ton))を0.3以上0.9以下、攪拌エネルギー
密度E(kW/ton)を1.5以上4以下とした上
で、生石灰使用量C(kg/ton)と酸素使用量O
(Nm3 /ton)の比C/Oを1.5以上3.5以
下、蛍石使用量CF(kg/ton)をCF/Cで0.
05以上0.3以下とすることを特徴とする溶銑の脱燐
脱硫精錬方法。
1. In a refining device for supplying oxygen from a top blowing lance and stirring a steel bath with gas, the depth L (mm) and the bath depth L of the hot metal surface are caused by the kinetic energy of the gas discharged from the top blowing lance. The ratio L / L 0 of 0 (mm) is set to 0.
3 or more and 0.7 or less, oxygen supply rate F (Nm 3 / (min
・ Ton)) is 0.3 or more and 0.9 or less, and stirring energy density E (kW / ton) is 1.5 or more and 4 or less, and then quicklime use amount C (kg / ton) and oxygen use amount O
The ratio C / O of (Nm 3 / ton) is 1.5 or more and 3.5 or less, and the amount fluorite used CF (kg / ton) is CF / C of 0.
The method for dephosphorization and desulfurization refining of hot metal is characterized in that the content is from 05 to 0.3.
【請求項2】 請求項1記載の溶銑の脱燐脱硫精錬方法
において、生石灰粉または生石灰粉および蛍石粉の混合
物を、上吹きランス、または上吹きガスによる火点面の
炉底への投影面内に設置された攪拌ガス吹込み孔から供
給することを特徴とする溶銑の脱燐脱硫精錬方法。
2. The hot metal dephosphorization and desulfurization refining method according to claim 1, wherein quick lime powder or a mixture of quick lime powder and fluorspar powder is top-blown lance or a projection surface of a fire point surface onto the furnace bottom by top-blown gas. A method for dephosphorization and desulfurization refining of hot metal, which is characterized in that the gas is supplied from a stirring gas blowing hole installed inside.
JP21158294A 1994-09-05 1994-09-05 Method for dephosphorizing and desulfurizing molten iron Pending JPH0873915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21158294A JPH0873915A (en) 1994-09-05 1994-09-05 Method for dephosphorizing and desulfurizing molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21158294A JPH0873915A (en) 1994-09-05 1994-09-05 Method for dephosphorizing and desulfurizing molten iron

Publications (1)

Publication Number Publication Date
JPH0873915A true JPH0873915A (en) 1996-03-19

Family

ID=16608156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21158294A Pending JPH0873915A (en) 1994-09-05 1994-09-05 Method for dephosphorizing and desulfurizing molten iron

Country Status (1)

Country Link
JP (1) JPH0873915A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100391904B1 (en) * 1999-07-13 2003-07-16 주식회사 포스코 Process of refining a molten steel having superior desulfurization ratio
JP2010084154A (en) * 2008-09-29 2010-04-15 Sumitomo Metal Ind Ltd Method for dephosphorizing molten iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100391904B1 (en) * 1999-07-13 2003-07-16 주식회사 포스코 Process of refining a molten steel having superior desulfurization ratio
JP2010084154A (en) * 2008-09-29 2010-04-15 Sumitomo Metal Ind Ltd Method for dephosphorizing molten iron

Similar Documents

Publication Publication Date Title
KR0159180B1 (en) Steel manufacturing method using converter
TW201331376A (en) Converter steelmaking method
CN109207672A (en) A kind of production method of Slagoff method and ultra-low phosphoretic steel in ultra-low phosphoretic steel production process
JP2018178260A (en) Converter steelmaking process
CN109790590B (en) Dephosphorization apparatus and dephosphorization method of molten iron using the same
JPH1180825A (en) Top-blown lance for converter refining and converter refining method by using this
JPS6023163B2 (en) steel smelting method
JP2003239009A (en) Dephosphorization refining method of hot metal
JPH0873915A (en) Method for dephosphorizing and desulfurizing molten iron
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP2002220615A (en) Converter steelmaking method
JP5338251B2 (en) Hot phosphorus dephosphorization method
TW201945549A (en) Dephosphorization method of hot metal
JP2912963B2 (en) Slag reforming method as desulfurization pretreatment
JP2020125541A (en) Converter refining method
JPS6333512A (en) Pre-treating method for molten iron
JPH0860221A (en) Converter steelmaking method
JP3665600B2 (en) Hot metal dephosphorization method
JP2005139529A (en) Method for dephosphorization-refining molten pig iron
JP3668172B2 (en) Hot metal refining method
JPH0297611A (en) Method for melting cold iron source
WO2024038715A1 (en) Method for denitrifying melted steel
JP2011058046A (en) Method for dephosphorizing molten iron
JP3825733B2 (en) Hot metal refining method
JPH09202912A (en) Method for dephosphorizing molten iron under condition excellent in scrap melting capacity