JPH09202912A - Method for dephosphorizing molten iron under condition excellent in scrap melting capacity - Google Patents

Method for dephosphorizing molten iron under condition excellent in scrap melting capacity

Info

Publication number
JPH09202912A
JPH09202912A JP1240496A JP1240496A JPH09202912A JP H09202912 A JPH09202912 A JP H09202912A JP 1240496 A JP1240496 A JP 1240496A JP 1240496 A JP1240496 A JP 1240496A JP H09202912 A JPH09202912 A JP H09202912A
Authority
JP
Japan
Prior art keywords
molten iron
hot metal
dephosphorization
oxygen
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1240496A
Other languages
Japanese (ja)
Inventor
Shinya Kitamura
信也 北村
Yuji Ogawa
雄司 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1240496A priority Critical patent/JPH09202912A/en
Publication of JPH09202912A publication Critical patent/JPH09202912A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dephosphorizing method of molten iron which has high melting capacity of scrap, related to the dephosphorizing treatment of the molten iron in a converter. SOLUTION: In the dephosphorizing refining of the molten iron used to a refining apparatus, in which oxygen is supplied from a top-blown lance 2 and the molten steel 5 is stirred by gas, carbonaceous material having <=3mm grain diameter from the center of the top-blown lance 2 to vertically downward is blown together with gaseous nitrogen and also, oxygen is supplied toward the furnace wall direction at 14-20 deg. angle to the vertical downward line, and the carbonaceous quantity W (ton/Hr) to the oxygen blowing quantity F (Nm<3> /Hr) is made to 0.2-0.6 as W/F. Further, a ratio LN/H of the depth LN of recessed part formed on the surface of the molten iron 5 with the gaseous nitrogen to the surface of the molten iron 5 with the gaseous nitrogen to the molten iron depth H is made to 0.65-0.85, and a ratio L0/H of the depth L0 of recessed part formed on the surface of the molten iron with the gaseous oxygen to the molten iron depth H is made to 0.15-0.55.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はスクラップ溶解能力
の高い溶銑の脱燐方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dephosphorizing hot metal having a high scrap melting capacity.

【0002】[0002]

【従来の技術】製鋼トータルコストのミニマム化や低燐
鋼の安定溶製に関して、従来、溶銑の脱燐法として、
(1)トピードカー内の溶銑に対して脱燐用フラックス
(酸化鉄、生石灰等)をインジェクションして予備脱燐
を行う方法、(2)取鍋内の溶銑に対して脱燐用フラック
スをインジェクション、もしくは吹き付けを行い予備脱
燐を行う方法が用いられている。
2. Description of the Related Art Regarding the minimization of the total cost of steelmaking and the stable melting of low-phosphorus steel, the conventional method for dephosphorizing hot metal has been
(1) A method for performing pre-phosphorization by injecting a flux for dephosphorization (iron oxide, quick lime, etc.) on the hot metal in the tope car, (2) Injecting a flux for dephosphorization on the hot metal in a ladle, Alternatively, a method of spraying and performing preliminary dephosphorization is used.

【0003】しかし、これらの方法は脱燐反応を推進す
るための酸化剤として鉄鉱石やスケール粉に代表される
酸化鉄を用いているため、処理中に溶銑温度が低下し、
次工程である転炉でのスクラップ消費量が低下し溶鋼生
産量が低減するという問題がある。
However, since these methods use iron oxide represented by iron ore and scale powder as an oxidant for promoting the dephosphorization reaction, the hot metal temperature decreases during the treatment,
There is a problem that scrap consumption in the converter, which is the next step, is reduced and molten steel production is reduced.

【0004】この方法で酸化鉄の代わりに酸素ガスを用
いる場合、酸素ガスをインジェクションすると撹拌が過
大となり(T・Fe)が極端に低くなって脱燐が進行しな
くなり、また、上方より単に吹き付けた場合には、スラ
グの(T・Fe)が高くスラグがスロッピングするという
問題があった。
When oxygen gas is used instead of iron oxide in this method, when the oxygen gas is injected, agitation becomes excessive and (T.Fe) becomes extremely low so that dephosphorization does not proceed, and it is simply sprayed from above. In that case, there was a problem that the (T · Fe) of the slag was high and the slag slopped.

【0005】また、2基の転炉を用いて、一方で脱燐を
行い、他方で脱炭を行う方法(例えば、特開昭63−1
95210号公報)が用いられている。この方法におい
ては、酸化剤としては酸素ガスを用い、脱燐処理時の温
度制御のためにスクラップを用いることができるが、脱
燐後の溶銑を出湯し脱炭炉へ装入するため熱ロスが生
じ、スクラップ消費量が低下し溶鋼生産量が低減すると
いう問題がある上、2基の転炉を用いるため設備投資が
大きいという問題がある。
A method in which two converters are used to perform dephosphorization on the one hand and decarburization on the other hand (for example, JP-A-63-1).
No. 95210) is used. In this method, oxygen gas is used as the oxidizer, and scrap can be used to control the temperature during the dephosphorization treatment, but heat loss occurs because the hot metal after dephosphorization is tapped and charged into the decarburization furnace. Occurs, the scrap consumption is reduced, the molten steel production is reduced, and there is a problem that capital investment is large because two converters are used.

【0006】これに対して、特願平6−011027号
に開示されているように、転炉を用いた溶銑脱燐工程に
引き続き、炉を傾動させ生成した脱燐スラグを排出する
工程、炉を直立させ、上吹きランスから酸素を供給して
脱炭せしめる工程、脱炭時に生成した脱炭スラグを排出
することなく溶鋼のみを出鋼する工程、および脱炭スラ
グを炉内に残したままで次チャージの溶銑を受銑する工
程を連続して実施する方法では、使用する転炉は1基の
ため設備投資は小さく、さらに脱燐溶銑の出湯工程がな
いため熱ロスが小さく、スクラップ消費量が低下しない
という特徴がある。
On the other hand, as disclosed in Japanese Patent Application No. 6-011027, subsequent to the hot metal dephosphorization process using a converter, the process of tilting the furnace to discharge the produced dephosphorization slag, the furnace Upright, supplying oxygen from the top blowing lance to decarburize, degassing only the molten steel without discharging the decarburizing slag generated during decarburization, and leaving the decarburizing slag in the furnace. In the method of continuously performing the hot metal of the next charge, the capital investment is small because there is only one converter used, and since there is no dephosphorization hot metal tapping process, heat loss is small and scrap consumption Is characterized by not decreasing.

【0007】しかし、この方法でもスクラップ溶解は溶
銑の保有する顕熱と潜熱を利用するに過ぎないためスク
ラップ溶解量には限界がある。また、転炉においては上
吹きランスより炭材を供給する方法は知られているもの
の着熱効率が必ずしも高くなく、また、これを溶銑脱燐
に適用するとスラグ中の(T・Fe)を下げるため脱燐効
率が低下するという問題があった。
However, even with this method, the amount of scrap melted is limited because scrap melting only utilizes the sensible heat and latent heat of the hot metal. Also, in the converter, a method of supplying carbonaceous material from a top-blown lance is known, but the heat deposition efficiency is not always high, and if this is applied to hot metal dephosphorization, (T ・ Fe) in the slag is lowered. There is a problem that the dephosphorization efficiency is lowered.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従来技術に
おいて、スクラップ溶解が溶銑の保有する顕熱と潜熱を
利用するに過ぎないため、スクラップ溶解量には限界が
あるという問題点を解決しようとするものである。
DISCLOSURE OF THE INVENTION The present invention solves the problem in the prior art that the amount of scrap melted is limited because the scrap melt only utilizes the sensible heat and latent heat of the hot metal. It is what

【0009】[0009]

【課題を解決するための手段】本発明の発明者らは、転
炉での溶銑脱燐において炭材を吹き付けた場合でも、ラ
ンス構造の適正化により炭材のキャリアーガスである窒
素ガス噴流と、酸素ガス噴流とを合体させない上に、窒
素ガス噴流の湯面到達流速を大きくし(ハードブロ
ー)、炭材を溶鉄内に充分に侵入させて浸炭を促進さ
せ、一方、酸素ガスの湯面到達流速を小さくし(ソフト
ブロー)、スラグ中の(T・Fe)を高く維持し脱燐を促
進させることで、脱燐反応を阻害あるいは低下させずに
炭材供給が可能なことを見いだした。
Means for Solving the Problems Even when the carbonaceous material is sprayed in the hot metal dephosphorization in the converter, the inventors of the present invention have realized that the nitrogen gas jet flow, which is the carrier gas of the carbonaceous material, is improved by optimizing the lance structure. , The oxygen gas jet is not united, and the nitrogen gas jet flow velocity is high (hard blow) to allow the carbonaceous material to sufficiently penetrate into the molten iron to promote carburization, while the oxygen gas jet surface It was found that the carbonaceous material can be supplied without inhibiting or reducing the dephosphorization reaction by reducing the reaching flow rate (soft blow) and maintaining high (T · Fe) in the slag to promote dephosphorization. .

【0010】本発明はこの知見に基づきなされたもの
で、その要旨とするところは、 (1)上吹きランスから酸素を供給し、かつ鋼浴をガス撹
拌せしめる精錬装置を用い、撹拌エネルギー密度E(kW/
ton)を1〜3とし、脱燐精錬吹き止め時の溶銑温度を1
250〜1450℃、溶銑中の炭素濃度を2.5〜3.
5%とした条件での脱燐方法において、上吹きランス中
心から垂直下方の鋼浴面上に粒径が3mm以下の炭材を
窒素ガスとともに吹き付けるとともに、垂直下方から炉
壁方向に向かって14〜20度の角度で鋼浴面上の別の
位置に酸素を供給し、炭材量W(ton/Hr)を酸素量F(Nm3
/Hr)を酸素量F(Nm3/Hr)に対してW/Fとして0.2
〜0.6とすることを特徴とするスクラップ溶解能に優
れた溶銑脱燐方法である。 (2)前項(1)において、窒素ガスにより溶鉄表面に形成
される凹み深さLNと溶鉄の浴深Hの比をLN/Hで0.
65〜0.85とし、これと同時に酸素ガスにより溶鉄
表面に形成される別の凹み深さLOと溶鉄の浴深Hの比
をLO/Hで0.15〜0.55とすることを特徴とす
るスクラップ溶解能に優れた溶銑脱燐方法である。
The present invention has been made on the basis of this finding, and the gist thereof is as follows. (1) Using a refining device that supplies oxygen from an upper blowing lance and stirs a steel bath with gas, a stirring energy density E (kW /
ton) is 1 to 3 and the hot metal temperature at the time of dephosphorization refining blowing stop is 1
250 to 1450 ° C., the carbon concentration in the hot metal is 2.5 to 3.
In the dephosphorization method under the condition of 5%, carbonaceous material having a grain size of 3 mm or less was blown together with nitrogen gas onto the steel bath surface vertically downward from the center of the upper blowing lance, and 14 Oxygen is supplied to another position on the steel bath surface at an angle of ~ 20 degrees, and the amount of carbonaceous material W (ton / Hr) is changed to the amount of oxygen F (Nm 3
/ Hr) is 0.2 as W / F with respect to the oxygen amount F (Nm 3 / Hr)
It is a hot metal dephosphorization method excellent in scrap dissolving ability, characterized in that (2) In the above item (1), the ratio of the depth LN of the depression formed on the surface of the molten iron by the nitrogen gas to the bath depth H of the molten iron is LN / H.
65 to 0.85, and at the same time, the ratio of another recess depth LO formed on the molten iron surface by oxygen gas and the bath depth H of molten iron is set to 0.15 to 0.55 in LO / H. It is a hot metal dephosphorization method with excellent scrap dissolving ability.

【0011】(3)前項(1)又は(2)に記載の溶銑脱燐方
法(工程1)に引き続き、炉を傾動させ生成した脱燐ス
ラグを排出する工程(工程2)、炉を直立させ上吹きラ
ンスから酸素を供給して脱炭せしめる工程(工程3)、
脱炭時に生成した脱炭スラグを排出することなく溶鋼の
みを出鋼する工程(工程4)、および脱炭スラグを炉内
に残したままで次チャージの溶銑を受銑する工程(工程
5)を連続して繰返し実施することを特徴とする、生産
性が高くかつスクラップ溶解能に優れた溶銑脱燐方法で
ある。
(3) Subsequent to the hot metal dephosphorization method (step 1) described in (1) or (2) above, a step of tilting the furnace to discharge the produced dephosphorization slag (step 2), the furnace is erected. A step of supplying oxygen from the upper blowing lance to decarburize (step 3),
The step of tapping only the molten steel without discharging the decarburized slag generated during decarburization (step 4) and the step of receiving the hot metal of the next charge with the decarburized slag left in the furnace (step 5) It is a hot metal dephosphorization method having high productivity and excellent scrap dissolving ability, which is characterized by being continuously and repeatedly carried out.

【0012】ここで、撹拌エネルギ−密度E(kW/ton)
は、底吹きガス流量Q(Nm3/s)、温度T(K)、溶鉄量W(t
on)、底吹き羽口位置の静圧P(Pa)、大気圧P0(Pa)とす
ると(1)式で表される。
Here, the stirring energy-density E (kW / ton)
Is the bottom blowing gas flow rate Q (Nm 3 / s), temperature T (K), molten iron amount W (t
on), static pressure P (Pa) at the bottom blowing tuyere position, and atmospheric pressure P 0 (Pa) are expressed by the equation (1).

【0013】[0013]

【数1】 [Equation 1]

【0014】窒素ガスにより溶鉄表面に形成される凹み
深さLN(mm)は(2)式で、酸素ガスにより溶鉄表面に形
成される凹み深さL0(mm)は(3)式で計算される。
The depression depth LN (mm) formed on the molten iron surface by the nitrogen gas is calculated by the equation (2), and the depression depth L0 (mm) formed by the oxygen gas on the molten iron surface is calculated by the equation (3). It

【0015】[0015]

【数2】 [Equation 2]

【0016】hはランス先端から溶鉄面までの距離(m
m)、dはランスノズル直径(mm)、nはノズル個数、
FNは上吹き窒素ガス流量(Nm3/Hr)で、FOは上吹き酸
素ガス流量(Nm3/Hr)である。溶鉄面、浴深Hは溶鉄の比
重を7g/cm3として幾何学的に計算して求めた。
H is the distance from the tip of the lance to the molten iron surface (m
m) and d are lance nozzle diameters (mm), n is the number of nozzles,
FN is the top-blown nitrogen gas flow rate (Nm 3 / Hr), and FO is the top-blown oxygen gas flow rate (Nm 3 / Hr). The molten iron surface and the bath depth H were calculated geometrically with the specific gravity of the molten iron being 7 g / cm 3 .

【0017】[0017]

【発明の実施の形態】図1は、本発明の実施形態の例を
示したものである。溶銑脱燐工程(工程1)、転炉1を
傾動させ工程1で生成した脱燐スラグ6を排出する工程
(工程2)、転炉1を直立させ上吹きランス2から酸素
を供給して脱炭せしめる工程(工程3)、脱炭時に生成
した脱炭スラグ4を排出することなく溶鋼5のみを出鋼
する工程(工程4)、および脱炭スラグ4を炉内に残し
たままで次チャージの溶銑5を受銑する工程(工程5)
とからなっている。
1 shows an example of an embodiment of the present invention. Hot metal dephosphorization step (step 1), step of tilting the converter 1 to discharge the dephosphorization slag 6 generated in step 1 (step 2), standing the converter 1 upright and supplying oxygen from the upper blowing lance 2 to remove it. The step of carbonizing (step 3), the step of tapping only the molten steel 5 without discharging the decarburized slag 4 generated during decarburization (step 4), and the next charging with the decarburized slag 4 left in the furnace. Process of receiving hot metal 5 (process 5)
It consists of

【0018】図1の工程1に示した脱燐工程は、上吹き
ランス2から酸素を供給し、かつ、炉底に設けた2重管
の底吹き羽口3より酸素とLPGを供給し鋼浴をガス撹
拌する。ここで、底吹き羽口3からAr又はCO2又は
2を供給して撹拌しても何等問題はない。
In the dephosphorization step shown in step 1 of FIG. 1, oxygen is supplied from a top blowing lance 2 and oxygen and LPG are supplied from a bottom blowing tuyere 3 of a double tube provided in the furnace bottom. Gas stir the bath. Here, there is no problem even if Ar or CO 2 or N 2 is supplied from the bottom blowing tuyere 3 and stirred.

【0019】前チャージの脱炭スラグ4を約30kg/ton
残した状態で、まずスクラップ7を150〜250kg/t
on装入した後、溶銑を所定量装入し精錬を開始する。精
錬中の撹拌エネルギー密度E(kW/ton)は1〜3とし、脱
燐精錬終了時(吹き止め)の溶銑温度は1250〜145
0℃、溶銑中の炭素濃度を2.5〜3.5%とした条件
での脱燐処理を実施する。
About 30 kg / ton of pre-charged decarburizing slag 4
Scrap 7 is 150-250 kg / t with the remaining state.
After charging, a predetermined amount of hot metal is charged and refining is started. The stirring energy density E (kW / ton) during refining is 1 to 3, and the hot metal temperature at the end of dephosphorization refining (blowing stop) is 1250 to 145.
Dephosphorization treatment is carried out at 0 ° C. under the condition that the carbon concentration in the hot metal is 2.5 to 3.5%.

【0020】ここで、脱燐精錬吹き止め時の溶銑温度が
1250℃よりも低い場合にはスラグの滓化が悪く脱燐
率が低下する上に工程2での排滓率が低下し、1450
℃よりも高い場合には化学平衡関係上、脱燐率が低下す
る。
When the hot metal temperature at the time of blowing off the dephosphorization refining is lower than 1250 ° C., the slag is poorly slagged and the dephosphorization rate is lowered, and the slag rate in the step 2 is lowered to 1450.
When the temperature is higher than ° C, the dephosphorization rate decreases due to the chemical equilibrium relationship.

【0021】また、溶銑中の炭素濃度が2.5%よりも
低い場合には、工程3の脱炭期の熱が不足するため脱炭
終了時の温度が連続鋳造工程での要求にマッチせず、
3.5%よりも高い場合には脱炭期の熱が過剰となるた
め冷材が必要となる上、上吹きランスから供給された炭
材の溶鉄への溶解速度が低下し、炭材粒がスラグに混入
するためスラグ中の(T・Fe)が低下し脱燐が悪化する
という問題が生ずる。
Further, when the carbon concentration in the hot metal is lower than 2.5%, the heat at the decarburization stage of the process 3 is insufficient, so the temperature at the end of the decarburization should meet the requirements of the continuous casting process. No
If it is higher than 3.5%, the heat during the decarburization period becomes excessive, so a cold material is required, and the rate of dissolution of the carbonaceous material supplied from the top-blowing lance into the molten iron decreases and the carbonaceous material particles However, since (T · Fe) in the slag is lowered because of mixing with the slag, dephosphorization becomes worse.

【0022】撹拌エネルギ−密度Eが1(kW/ton)より
も低い場合には、脱燐反応が遅い上にスクラップ溶解速
度も小さく充分な精錬効果が得られず、3(kW/ton)より
大きい場合には、スラグ中の酸化鉄が溶銑中の炭素で還
元されるため酸化力が維持できず脱燐率が低下する。
When the stirring energy density E is lower than 1 (kW / ton), the dephosphorization reaction is slow, and the scrap dissolution rate is small, so that a sufficient refining effect cannot be obtained, so that it is higher than 3 (kW / ton). When it is large, the iron oxide in the slag is reduced by the carbon in the hot metal, so that the oxidizing power cannot be maintained and the dephosphorization rate decreases.

【0023】図2は、本発明で用いる上吹きランスの例
を示したものである。図2において、ランス9は4つの
主孔系ノズル10と1つの副孔系ノズル11を有し、主
孔系及び副孔系は各々独立にガス種、流量の制御ができ
る。副孔系ノズル11は垂直下方に向けてガスを噴出さ
せ、主孔系ノズル10は垂直下方から14〜20度の角
度で炉壁方向に向けてガスを噴出させる構造となってい
る。
FIG. 2 shows an example of the upper blowing lance used in the present invention. In FIG. 2, the lance 9 has four main hole system nozzles 10 and one sub hole system nozzle 11. The main hole system and the sub hole system can independently control the gas species and the flow rate. The sub-hole type nozzle 11 has a structure for ejecting gas vertically downward, and the main hole system nozzle 10 has a structure for ejecting gas toward the furnace wall at an angle of 14 to 20 degrees from vertically downward.

【0024】副孔系から窒素をキャリアーガスとして粒
径が3mm以下の炭材を吹き付け、主孔系からは酸素を
供給する。主孔系ノズル10の垂直下方からの角度θが
14度よりも小さい場合には、副孔系ノズル11から出
る炭材と酸素が空間で合体し、噴流中で炭材が燃焼する
ため着熱が極めて悪化し、またθが20度よりも大きい
場合には酸素噴流により炉壁が溶損される問題を生ず
る。
A carbonaceous material having a particle size of 3 mm or less is sprayed from the auxiliary pore system using nitrogen as a carrier gas, and oxygen is supplied from the main pore system. When the angle θ from the vertically lower side of the main hole system nozzle 10 is smaller than 14 degrees, the carbonaceous material and oxygen discharged from the subhole system nozzle 11 are combined in the space, and the carbonaceous material is burned in the jet flow to heat the heat. Is extremely deteriorated, and when θ is larger than 20 degrees, a problem occurs that the furnace wall is melted and damaged by the oxygen jet flow.

【0025】副孔系ノズルから供給される炭材の粒径が
3mmよりも大きい場合には、炭材の溶鉄への溶解に長
時間を要するため、未溶解の炭材粒がスラグに混入して
脱燐が悪化するという問題が生ずる。
When the particle size of the carbonaceous material supplied from the sub-hole type nozzle is larger than 3 mm, it takes a long time to dissolve the carbonaceous material into the molten iron, so that undissolved carbonaceous material particles are mixed in the slag. As a result, the problem of dephosphorization becomes worse.

【0026】炭材量W(ton/Hr)は酸素量F(Nm3/Hr)に対
してW/Fとして0.2〜0.6である必要がある。W
/Fが0.6よりも大きい場合には酸素による溶鉄の脱
炭量よりも過剰の炭材が供給されるため、未溶解の炭材
粒がスラグに混入して脱燐が悪化するという問題が生
じ、0.2よりも小さい場合には炭材添加によるスクラ
ップ溶解能アップの効果が小さく実用的ではない。
The amount of carbonaceous material W (ton / Hr) must be 0.2 to 0.6 as W / F with respect to the amount of oxygen F (Nm 3 / Hr). W
When / F is larger than 0.6, an excess amount of carbonaceous material is supplied compared to the amount of decarburization of molten iron due to oxygen, so that undissolved carbonaceous material particles are mixed in the slag and dephosphorization deteriorates. When the ratio is less than 0.2, the effect of increasing the scrap dissolving ability by adding the carbonaceous material is small and not practical.

【0027】さらに、ランス先端から溶鉄面までの距離
h(mm)や主孔、副孔のランスノズルの直径d(mm)を適正
にすることで、窒素ガスにより溶鉄表面に形成される凹
み深さLNと溶鉄の溶深Hの比をLN/Hで0.65〜
0.85とし、酸素ガスにより溶鉄表面に形成される凹
み深さLOと溶鉄の浴深Hの比をLO/Hで0.15〜
0.55とすると一層高いスクラップ溶解能が発現され
る。
Further, by optimizing the distance h (mm) from the tip of the lance to the molten iron surface and the diameter d (mm) of the lance nozzle of the main hole and the auxiliary hole, the depth of the recess formed on the molten iron surface by nitrogen gas The ratio of LN to the molten depth H of molten iron is LN / H of 0.65
0.85, and the ratio of the depth L0 of the recess formed on the surface of the molten iron by the oxygen gas to the bath depth H of the molten iron is 0.15 as LO / H.
When it is set to 0.55, a higher scrap dissolving ability is exhibited.

【0028】LN/Hが0.65よりも小さい場合には
炭材粒の溶鉄への侵入が不十分のため未溶解の炭材粒が
発生し、0.85よりも大きい場合には炉底耐火物の損
耗が生ずる。また、LO/Hが0.15よりも小さいと
スロッピングが発生し、0.55よりも大きいとハード
ブローとなるため(T・Fe)が低くなり脱燐率が低下す
る。
When LN / H is less than 0.65, undissolved carbonaceous material particles are generated due to insufficient penetration of carbonaceous material particles into molten iron. Wear of refractories occurs. If LO / H is smaller than 0.15, sloping occurs, and if it is larger than 0.55, hard blow occurs, so that (T · Fe) decreases and the dephosphorization rate decreases.

【0029】本発明は図1に示した工程を連続して実施
することが有効であるが、工程1の溶銑脱燐と工程3の
脱炭を別の転炉で実施する場合でも有効である。図1に
おいて、溶銑脱燐工程(工程1)と脱炭工程(工程3)
を分離するのは、脱燐に適正な温度やスラグ組成の条件
と、脱炭に適正な温度やスラグ組成の条件とは異なり、
それぞれを分割して実施した方が生石灰に代表される副
材料コストが低くなるためである。
Although the present invention is effective in continuously carrying out the steps shown in FIG. 1, it is also effective when the hot metal dephosphorization in step 1 and the decarburization in step 3 are carried out in different converters. . In FIG. 1, hot metal dephosphorization step (step 1) and decarburization step (step 3)
Is different from the conditions of temperature and slag composition suitable for dephosphorization, and the conditions of temperature and slag composition suitable for decarburization,
This is because the cost of the auxiliary material typified by quick lime is lower when the steps are performed separately.

【0030】また、脱燐スラグ6を脱炭工程へ持ち越す
とスラグ中の燐が溶鉄へ戻る、いわゆる復燐が起こるた
め、工程1と3の間に中間排滓(工程2)が必要とな
る。中間排滓は最も時間が短く排滓率も高い、転炉を傾
動させてスラグを排出する方法が望ましい。
Further, when the dephosphorization slag 6 is carried over to the decarburization step, phosphorus in the slag returns to molten iron, so-called recondensation occurs, so that an intermediate slag (step 2) is required between steps 1 and 3. . The middle slag is shortest and the slag ratio is high. It is desirable to tilt the converter to discharge the slag.

【0031】脱炭工程(工程3)に引き続いて脱炭時に
生成した脱炭スラグ4を排出することなく溶鋼5のみを
出鋼する工程(工程4)、および脱炭スラグ4を炉内に
残したままで次チャージの溶銑5を受銑する工程(工程
5)が続く。ここで、脱炭スラグを残す理由は脱炭スラ
グは温度を低下させた場合には脱燐能力があるため、脱
炭スラグを工程1で再利用することで生石灰や酸化鉄コ
ストが削減できるためである。
Subsequent to the decarburization step (step 3), a step of tapping only the molten steel 5 without discharging the decarburization slag 4 generated during decarburization (step 4), and leaving the decarburization slag 4 in the furnace The process (process 5) of receiving the hot metal 5 of the next charge is continued as it is. Here, the reason why the decarburized slag is left is that the decarburized slag has a dephosphorization ability when the temperature is lowered, and therefore the cost of quick lime and iron oxide can be reduced by reusing the decarburized slag in the step 1. Is.

【0032】[0032]

【実施例】実験は6トン規模の転炉を用いて図1と同一
工程で実施した。底吹きガスは窒素ガス、もしくは、酸
素ガスと羽口冷却用ガスを用い、上吹きランスの主孔よ
り酸素ガスを、副孔より窒素ガスと炭材を吹き付けた。
主な操業条件を以下に示す。
EXAMPLE The experiment was conducted in the same process as in FIG. 1 using a 6 ton scale converter. Nitrogen gas or oxygen gas and tuyere cooling gas was used as the bottom blowing gas, and oxygen gas was blown from the main hole of the top blowing lance, and nitrogen gas and carbonaceous material were blown from the auxiliary hole.
The main operating conditions are shown below.

【0033】 浴深(スクラップ溶解後) 約0.5m 上吹き酸素流量 1200〜1800Nm3/Hr 上吹き窒素流量 250〜350Nm3/Hr 上吹き炭材供給速度 60〜120kg/Hr 底吹きガス流量 100〜150Nm3/Hr 生石灰原単位 15〜20kg/ton スラグ量 35〜45kg/ton (CaO/SiO2) 1.8〜2.2 スクラップ使用量 175〜225kg/ton ランス/溶鉄面間距離 800〜1200mm ランスは図2に示した形状のものを用い、主孔のノズル
径は10〜15mm、副孔のノズル径は4.5〜6.5mm
とした。
Bath depth (after melting scrap) About 0.5 m Top-blown oxygen flow rate 1200-1800 Nm 3 / Hr Top-blown nitrogen flow rate 250-350 Nm 3 / Hr Top-blown carbonaceous material feed rate 60-120 kg / Hr Bottom-blown gas flow rate 100 ~ 150Nm 3 / Hr Quick lime basic unit 15 ~ 20kg / ton Slag amount 35 ~ 45kg / ton (CaO / SiO 2 ) 1.8 ~ 2.2 Scrap usage amount 175 ~ 225kg / ton Lance / molten iron surface distance 800 ~ 1200mm The lance has the shape shown in FIG. 2, the nozzle diameter of the main hole is 10 to 15 mm, and the nozzle diameter of the auxiliary hole is 4.5 to 6.5 mm.
And

【0034】表1は粒径が3mm以下の炭材を窒素ガス
とともに吹き付けるとともに、主孔の広がり角度が17
度のランスを用いた場合の試験結果である。本発明にお
いては、脱燐精錬後のスクラップの未溶解はなく、下式
に示す着熱効率は90%以上で、脱燐率も良好であっ
た。
In Table 1, carbonaceous material having a particle size of 3 mm or less is sprayed together with nitrogen gas, and the spread angle of the main holes is 17
It is a test result when a degree lance is used. In the present invention, there was no undissolved scrap after dephosphorization refining, the heat deposition efficiency shown by the following formula was 90% or more, and the dephosphorization rate was also good.

【0035】[0035]

【数3】 (Equation 3)

【0036】しかし、実験条件が表1と同一でも、主孔
の広がり角度が12度のランスを用いた場合には、脱燐
精錬後のスクラップの未溶解が発生し、着熱効率は65
%に急激に悪化した。
However, even if the experimental conditions are the same as those in Table 1, when a lance having a main hole divergence angle of 12 degrees is used, unmelting of scrap after dephosphorization refining occurs, and the heat transfer efficiency is 65.
It suddenly deteriorated to%.

【0037】図3は種々の直径のノズルを用いた場合
の、窒素ガスにより溶鉄表面に形成される凹み深さLN
と溶鉄の浴深Hの比(LN/H)と脱燐率の関係について
の実験結果であるが、LN/Hが0.65よりも小さい
と脱燐率が低下している。
FIG. 3 shows the depth LN of the recess formed on the surface of molten iron by nitrogen gas when nozzles of various diameters are used.
The results of experiments on the relationship between the ratio of molten iron bath depth H (LN / H) and the dephosphorization rate are shown below. When LN / H is less than 0.65, the dephosphorization rate decreases.

【0038】また、図4は酸素ガスにより溶鉄表面に形
成される凹み深さLOと溶鉄の浴深Hの比(LO/H)と脱
燐率の関係についての実験結果であるが、LO/Hが
0.55よりも大きい場合に脱燐率が低下している。
FIG. 4 shows the experimental results on the relationship between the dephosphorization rate and the ratio (LO / H) of the dent depth LO formed on the surface of molten iron by oxygen gas and the bath depth H of molten iron. When H is larger than 0.55, the dephosphorization rate decreases.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【発明の効果】本発明により、スクラップを150kg/t
on以上使用した上での溶銑脱燐が可能となった。
According to the present invention, scrap of 150 kg / t can be obtained.
It has become possible to dephosphorize the hot metal after using more than on.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施工程の例を示す図。FIG. 1 is a diagram showing an example of an implementation process of the present invention.

【図2】本発明に用いられる上吹きランスの例を示す
図。
FIG. 2 is a diagram showing an example of an upper blowing lance used in the present invention.

【図3】窒素ガスにより溶鉄表面に形成される凹み深さ
LNと溶鉄の浴深Hの比(LN/H)と脱燐率の関係につい
ての実験結果を示す図。
FIG. 3 is a diagram showing experimental results on the relationship between the ratio of the depression depth LN formed on the surface of molten iron by nitrogen gas to the bath depth H of molten iron (LN / H) and the dephosphorization rate.

【図4】酸素ガスにより溶鉄表面に形成される凹み深さ
LOと溶鉄の浴深Hの比(LO/H)と脱燐率の関係につい
ての実験結果を示す図。
FIG. 4 is a diagram showing experimental results on a relationship between a ratio (LO / H) of a depression depth LO formed on the surface of molten iron by oxygen gas and a bath depth H of molten iron and a dephosphorization rate.

【符号の説明】[Explanation of symbols]

1 転炉、 2 上吹きランス、 3 底吹
き羽口、4 脱炭スラグ、 5 溶銑又は溶鋼、
6 脱燐スラグ、7 スクラップ、 9 ランス、
10 主孔系ノズル、11 副孔系ノズル。
1 converter, 2 top blowing lance, 3 bottom blowing tuyere, 4 decarburizing slag, 5 hot metal or molten steel,
6 dephosphorization slag, 7 scrap, 9 lance,
10 main hole type nozzles, 11 sub hole type nozzles.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上吹きランスから酸素を供給し、かつ鋼
浴をガス撹拌せしめる精錬装置を用い、撹拌エネルギー
密度E(kW/ton)を1〜3とし、脱燐精錬吹き止め時の溶
銑温度を1250〜1450℃、溶銑中の炭素濃度を
2.5〜3.5%とした条件での脱燐方法において、上
吹きランス中心から垂直下方の鋼浴面上に粒径が3mm
以下の炭材を窒素ガスとともに吹き付けるとともに、垂
直下方から炉壁方向に向かって14〜20度の角度で鋼
浴面上の別の位置に酸素を供給し、炭材量W(ton/Hr)を
酸素量F(Nm3/Hr)に対してW/Fとして0.2〜0.6
とすることを特徴とするスクラップ溶解能に優れた溶銑
脱燐方法。
1. A refining apparatus that supplies oxygen from a top-blowing lance and stirs a steel bath with a gas, and has a stirring energy density E (kW / ton) of 1 to 3 and a hot metal temperature when dephosphorization refining is stopped. In the dephosphorization method under the conditions of 1250 to 1450 ° C. and the carbon concentration in the hot metal of 2.5 to 3.5%, the grain size is 3 mm on the steel bath surface vertically downward from the center of the upper blowing lance.
The following carbonaceous materials are blown together with nitrogen gas, and oxygen is supplied to another position on the steel bath surface at an angle of 14 to 20 degrees from the vertically downward direction toward the furnace wall, and the carbonaceous material amount W (ton / Hr) Is 0.2 to 0.6 as W / F with respect to the oxygen amount F (Nm 3 / Hr)
A hot metal dephosphorization method having excellent scrap dissolving ability, characterized by:
【請求項2】 請求項1において、窒素ガスにより溶鉄
表面に形成される凹み深さLNと溶鉄の浴深Hの比をLN
/Hで0.65〜0.85とし、これと同時に酸素ガス
により溶鉄表面に形成される別の凹み深さLOと溶鉄の
浴深Hの比をLO/Hで0.15〜0.55とすること
を特徴とするスクラップ溶解能に優れた溶銑脱燐方法。
2. The ratio between the depth LN of the depression formed on the surface of the molten iron by nitrogen gas and the bath depth H of the molten iron is LN according to claim 1.
/ H is set to 0.65 to 0.85, and at the same time, the ratio of another dent depth LO formed on the molten iron surface by oxygen gas to the bath depth H of molten iron is set to 0.15 to 0.55. A hot metal dephosphorization method having excellent scrap dissolving ability, characterized by:
【請求項3】 請求項1又は2記載の溶銑脱燐方法(工
程1)に引き続き、炉を傾動させ生成した脱燐スラグを
排出する工程(工程2)、炉を直立させ上吹きランスか
ら酸素を供給して脱炭せしめる工程(工程3)、脱炭時
に生成した脱炭スラグを排出することなく溶鋼のみを出
鋼する工程(工程4)、および脱炭スラグを炉内に残し
たままで次チャージの溶銑を受銑する工程(工程5)を
連続して繰返し実施することを特徴とする、生産性が高
くかつスクラップ溶解能に優れた溶銑脱燐方法。
3. A method of tilting the furnace to discharge the generated dephosphorization slag (step 2) subsequent to the hot metal dephosphorization method (step 1) according to claim 1 or 2, wherein the furnace is erected upright and oxygen is supplied from an upper blowing lance. To decarburize (step 3), to discharge only the molten steel without discharging the decarburized slag generated during decarburization (step 4), and to leave the decarburized slag in the furnace as the next step. A hot metal dephosphorization method having high productivity and excellent scrap dissolving ability, characterized in that the step of receiving hot metal of charge (step 5) is continuously and repeatedly performed.
JP1240496A 1996-01-29 1996-01-29 Method for dephosphorizing molten iron under condition excellent in scrap melting capacity Withdrawn JPH09202912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1240496A JPH09202912A (en) 1996-01-29 1996-01-29 Method for dephosphorizing molten iron under condition excellent in scrap melting capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1240496A JPH09202912A (en) 1996-01-29 1996-01-29 Method for dephosphorizing molten iron under condition excellent in scrap melting capacity

Publications (1)

Publication Number Publication Date
JPH09202912A true JPH09202912A (en) 1997-08-05

Family

ID=11804330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1240496A Withdrawn JPH09202912A (en) 1996-01-29 1996-01-29 Method for dephosphorizing molten iron under condition excellent in scrap melting capacity

Country Status (1)

Country Link
JP (1) JPH09202912A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322506A (en) * 2001-04-23 2002-11-08 Nippon Steel Corp Method for dephosphorizing molten iron in converter
JP2011144415A (en) * 2010-01-13 2011-07-28 Nippon Steel Corp Converter refining method
JP2019031725A (en) * 2017-08-09 2019-02-28 Jfeスチール株式会社 Steel refining method by using converter-type container

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322506A (en) * 2001-04-23 2002-11-08 Nippon Steel Corp Method for dephosphorizing molten iron in converter
JP2011144415A (en) * 2010-01-13 2011-07-28 Nippon Steel Corp Converter refining method
JP2019031725A (en) * 2017-08-09 2019-02-28 Jfeスチール株式会社 Steel refining method by using converter-type container

Similar Documents

Publication Publication Date Title
KR0159180B1 (en) Steel manufacturing method using converter
JP2012031452A (en) Method of dephosphorizing hot metal
CN109207672A (en) A kind of production method of Slagoff method and ultra-low phosphoretic steel in ultra-low phosphoretic steel production process
JPH0770626A (en) Converter steel making method
JP6693536B2 (en) Converter steelmaking method
CN109790590B (en) Dephosphorization apparatus and dephosphorization method of molten iron using the same
JP6665884B2 (en) Converter steelmaking method
JPH09202912A (en) Method for dephosphorizing molten iron under condition excellent in scrap melting capacity
TWI703219B (en) Dephosphorization method of hot metal
JPH11269524A (en) Pre-treatment of molten iron
JP2003239009A (en) Dephosphorization refining method of hot metal
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP4065225B2 (en) Dephosphorization method for hot metal
JPH08311519A (en) Steelmaking method using converter
JP2020125541A (en) Converter refining method
JPH0860221A (en) Converter steelmaking method
JP2000337776A (en) Method for improving secondary combustion rate and heating efficiency of melting furnace, or the like
JP4686880B2 (en) Hot phosphorus dephosphorization method
JP2002012907A (en) Method for operating metal melting furnace, smelting furnace, refining furnace and vacuum refining furnace
JP2002129221A (en) Method for refining molten iron
JP2005068532A (en) Smelting method through top-blowing oxygen
JP3668172B2 (en) Hot metal refining method
JP3825733B2 (en) Hot metal refining method
JPH0873915A (en) Method for dephosphorizing and desulfurizing molten iron
JP4103503B2 (en) Hot phosphorus dephosphorization method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401