JPH044388B2 - - Google Patents
Info
- Publication number
- JPH044388B2 JPH044388B2 JP58174156A JP17415683A JPH044388B2 JP H044388 B2 JPH044388 B2 JP H044388B2 JP 58174156 A JP58174156 A JP 58174156A JP 17415683 A JP17415683 A JP 17415683A JP H044388 B2 JPH044388 B2 JP H044388B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- blowing means
- molten metal
- blowing
- blown
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007664 blowing Methods 0.000 claims description 71
- 229910052760 oxygen Inorganic materials 0.000 claims description 53
- 239000001301 oxygen Substances 0.000 claims description 53
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 50
- 229910052751 metal Inorganic materials 0.000 claims description 43
- 239000002184 metal Substances 0.000 claims description 43
- 229910052799 carbon Inorganic materials 0.000 claims description 41
- 239000011572 manganese Substances 0.000 claims description 34
- 229910000616 Ferromanganese Inorganic materials 0.000 claims description 31
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 claims description 31
- 229910052748 manganese Inorganic materials 0.000 claims description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 23
- 239000002893 slag Substances 0.000 claims description 22
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 12
- 229910000720 Silicomanganese Inorganic materials 0.000 claims description 11
- 238000007670 refining Methods 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 7
- 238000005261 decarburization Methods 0.000 claims description 7
- 229910001882 dioxygen Inorganic materials 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910000519 Ferrosilicon Inorganic materials 0.000 claims description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 27
- 230000003647 oxidation Effects 0.000 description 12
- 238000007254 oxidation reaction Methods 0.000 description 12
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000003723 Smelting Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000000292 calcium oxide Substances 0.000 description 5
- 235000012255 calcium oxide Nutrition 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000011449 brick Substances 0.000 description 3
- 239000010459 dolomite Substances 0.000 description 3
- 229910000514 dolomite Inorganic materials 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000036284 oxygen consumption Effects 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 241000556720 Manga Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 241001062472 Stokellia anisodon Species 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 238000005262 decarbonization Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- -1 high Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/003—Making ferrous alloys making amorphous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C35/00—Master alloys for iron or steel
- C22C35/005—Master alloys for iron or steel based on iron, e.g. ferro-alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
Description
本発明は、中・低炭素フエロマンガンの製造方
法に関し、特に本発明は、溶融高炭素フエロマン
ガンを原料とし上吹・底吹転炉による中・低炭素
フエロマンガンの製造方法に関するものである。
従来、中・低炭素フエロマンガンは一般に下記
(a)、(b)の工程を経て製造されている。
(a) マンガン鉱石、珪石を主原料として電気製錬
炉中で炭材を還元剤として用いて還元製錬し
て、Mn60〜70%、Si14〜23%、C0.5〜2%、
残部鉄ならびに不可避的不純物よりなるシリコ
マンガンを製造する。
(b) 前記シリコマンガンを別個の電気製錬炉中に
高品位マンガン鉱石、石灰と共に装入して溶解
させることにより、前記シリコマンガン中のSi
を酸化させてSiO2となし、すなわち脱珪反応
を生起させることによりMn75〜85%、Si0.2%
〜2%、C0.5〜2%を含有し、残部実質的に
Feよりなる中・低炭素フエロマンガンを製造
する。
上記従来のシリコマンガンを脱珪して中・低炭
素フエロマンガンを製造する方法によれば、(a)工
程のシリコマンガンを製造する際の電気エネルギ
ーが1t当り3500〜500KWh消費され、さらに(b)脱
珪反応工程で製品1t当り800〜1200KWhが消費さ
れるため、電気エネルギーコストが高くなり、こ
の結果特に電力代の高い我が国においては製品コ
ストが国際競争力に耐えられない程高くなつてい
る。さらに(b)の工程においても電気炉を必要とす
るため設備ならびに作業人員の面でも経費がかか
つている。
一方、シリコマンガン法によらずに溶融高炭素
フエロマンガンに酸素を吹込んで中・低炭素フエ
ロマンガンを製造する方法が特公昭55−4238号お
よび特公昭57−27166号により開示されており、
前者の方法によれば反応容器側壁に設けられたジ
ヤケツト式ノズルから酸素を吹込み、後者の方法
によれば反応容器底面に設けた二重管構造のノズ
ルから酸素および天然ガスを吹込んでいる。この
他にU.S特許3305352および中華人民共和国鋼鉄
誌Vol.16No.5 May1981にはそれぞれ上吹ラン
スを用いて反応容器内に酸素を吹込む方法が、ま
た特開昭54−97521号には底吹き転炉を用いる製
造方法が開示されている。
ところでマンガンは鉄あるいはクロムに比較し
て酸化され易く、また蒸気圧も相当高いため、酸
素吹精中にマンガンはスラグとなるかあるいは蒸
発して系外へ逸出する量が多くなるので、従来方
法によれば脱炭は行なわれてもMnの歩留の点で
経済的な精錬にはなり得ず、このため上吹き、側
吹きあるいは底吹きの何れかにより酸素を吹込む
中・低酸素フエロマンガンの製造方法は工業的規
模では行なわれていない。
本発明は、従来の酸素吹込みによる中・低炭素
フエロマンガンの製造方法の有する欠点を除去、
改善した方法を提供することを目的とし、特許請
求の範囲記載の方法を提供することにより前記目
的を達成することができる。
次に本発明を詳細に説明する。
溶融高炭素フエロマンガンを酸素吹精により
中・低炭素フエロマンガンとなす精錬において
は、吹込まれた酸素による脱炭素率を上げるこ
と、マンガンの酸化を極力防止すること、脱炭反
応に伴つて生起するマンガンの蒸発損失を抑制す
ることおよび精錬によりスラグ中へ移行したマン
ガン分を効率よく回収することなどが達成される
必要がある。
熱力学的にマンガン、炭素、酸素が関与する下
記の反応式(1)にあつては、式(2)の平衡が成立する
ことが知られている。
MnO+C=Mn+CO ……(1)
logK=−12853/T+7.91 ……(2)
式(2)より判るように低温領域においてはCの酸化
よりもMnの酸化が優先し、高温領域においては
逆にMnの酸化よりもCの酸化が優先する。従つ
て脱炭の目的からすれば反応を極力高温下で生起
させることが望ましいが、一方マンガンの蒸発が
活発になり、また反応容器のライニング等の損耗
が問題になつてくる。このため容器の温度を適正
に制御することが操業上の重要な因子となる。
本発明において使用する反応容器はその底部あ
るいは底部に近い側壁部に1個あるいは複数個の
ガス吹込み手段を有し、この手段は二重管もしく
は三重管からなり、これら管の外管からはアルゴ
ン、窒素、炭酸ガス、プロパンのなかから選ばれ
る少なくとも1種のカスを管の先端の溶損を防止
するための冷却ガスとして吹込み、内管から酸素
ガスを、あるいはアルゴン、窒素等の不活性ガス
を精錬工程中に切替えて吹込むことができる。
本発明において、主原料として使用する溶融高
酸素フエロマンガンは一般に電気製錬炉あるいは
シヤフト炉により製造され、その成分組成Si2%
以下、C6〜7%、Mn75〜85%を含有し残部実質
的にFeよりなる高炭素フエロマンガンを有利に
使用することができ、かかる溶湯は製錬炉から抽
出されたものを直接あるいはこの溶湯を一旦保持
炉に装入した後、必要の都度反応容器に装入して
精錬する。反応容器に装入される溶湯の温度は脱
炭反応を考慮して高温である程好ましいが、溶融
温度以上であれば何ら問題はない。
前記溶湯を反応容器に装入するに際しては、容
器の底部あるいは底部に近い側壁部に設けられた
底吹き手段の内管よりは酸素を、外管よりは不活
性ガスを吹込みながら溶湯を装入する。その際の
底吹き手段の内管からの吹込み酸素量は上吹き手
段と底吹き手段とより吹込まれる全酸素容量の3
〜20%であり、底吹き手段の外管からの不活性ガ
スの吹込み量は前記内管からの酸素容量とほぼ同
量とすることが有利である。
上述のようにして反応容器内に溶湯の注入を終
了した後、上吹き手段より酸素吹精を開始する。
その際の酸素容量は全使用酸素容量の80〜97%で
ある。吹精開始と同時に生石灰、ドロマイトある
いはフエロマンガンスラグ等を容器中に投入して
早期にスラグを生成させてマンガンの損失を防止
することは有利である。酸素吹精の初期には溶湯
中のシリコンおよびマンガンが酸化され、溶湯温
度は急速に上昇し、引続いて炭素の酸化が始つて
溶湯温度は上昇を続けるが溶湯温度を1650〜1850
℃に制御して最終製品の炭素含有量を制御する。
すなわち最終製品中のCを2%以下にするには溶
湯最終到達温度を1750〜1780℃に、またCを1%
以下にするには前記温度を1820〜1850℃に調整す
る。
溶湯温度が1650℃より低いと炭素の酸化よりマ
ンガンの酸化が優先し、一方1850℃より高いとマ
ンガンの蒸発が活発になつてマンガンの損失が激
しくなるので、溶湯温度は1650〜1850℃の範囲内
で精錬することが好ましい。なお溶湯温度を制御
するには高、中あるいは低炭素フエロマンガン等
の冷材あるいはフラツクスを装入することのほ
か、酸素吸込み量を調整することによつて行なう
ことができる。
このようにして溶湯中の炭素含有量を所定値に
低下させると、生成されるスラグ中にはマンガが
酸化されて酸化マンガンとしてマンガン含有量で
30〜50%含有されている。このスラグ中のマンガ
ン分を回収するには上吹き手段からの酸素吹込み
を停止し、底吹き手段の内管よりの酸素吹込みを
不活性ガス吹込みに切替え、シリコマンガン、フ
エロシリコン、金属シリコン、アルミニウムのな
かから選ばれる何れか1種または2種以上を必要
によりフラツクスと共に容器中に装入し、10〜15
分間不活性ガスを底吹きして溶湯ならびにスラグ
を撹拌して、スラグ中の酸化マンガンを還元して
還元されたマンガンを溶湯中に回収して精錬を終
了する。
以上に述べた本発明方法の特徴を従来の方法と
比較しながら以下に説明する。
(1) 溶融高酸素フエロマンガン中の炭素を酸化し
て脱炭するには、上吹き手段より吹込まれる酸
素を常に新鮮な溶湯と接触する機会を多くして
やる必要があり、本発明によれば、従来の上吹
きのみにより酸素吹精する場合に比し下吹き手
段よりの不活性ガスならびに酸素ガス吹込みに
より溶湯の撹拌が有効に行なわれるだけでな
く、底吹き酸素ガスによる溶湯中の炭素の酸化
が促進され、かつ炭素の酸化により生成される
COあるいはCO2により溶湯の撹拌がさらに増
加する。
溶湯の精錬が進行してスラグが生成してスラ
グ層が溶湯表面上に形成されるとスラグ層を局
部的に排除して上吹き手段より吹込まれる酸素
を溶湯面に到達させる必要がある。このため、
従来の単独上吹き手段により酸素を吹込む場合
にはスラグ層を排除するため酸素圧力を上昇さ
せることが必要であるが、このようにすると容
器中でスピツテイング、フオーミング等の現象
が生起して順調な操業ができなくなるため、必
然的に操業時間が延長されるばかりでなく使用
される酸素効率が低かつた。一方本発明によれ
ば、底吹き手段よりガスを吹込むため溶湯表面
のスラグ層を局部的に排除することができるこ
とにより、上吹き酸素圧を低くすること、すな
わちソフトブローすることができるため酸素効
率もよく、操業時間が短縮され、操業の安定度
も上昇する。
(2) 単独上吹き吹精によると酸化されたマンガン
は速かにスラグ中に移行する。一方本発明によ
れば、底吹き手段の内管より吹込まれた酸素に
より酸化された酸化マンガンは溶湯中を浮上し
て表面に至る間に溶湯中の炭素とを接触反応し
て酸化マンガンは還元されてマンガンとなつて
溶湯中に溶合する。かくして酸素効率は上昇す
るだけでなく、底吹き吹精により従来方法に比
し酸素吹精終了期のスラグ中のマンガン分の含
有量も低いので、スラグ中の酸化マンガンを還
元するのに用いられる還元剤すなわちシリコマ
ンガン、フエロシリコン、金属シリコンあるい
はアルミニウムなどの使用量を低下させること
ができ、またマンガンの歩留を4〜5%向上さ
せることができる。
(3) 従来の上吹き単独吹精方法によれば、反応容
器中の溶融高炭素フエロマンガンの温度が低い
と酸素吹精の際の着火が困難であるばかりでな
く、たとえ着火しても初期には低温によるマン
ガンの酸化損失が大きい。このため溶融高炭素
フエロマンガンの温度を反応容器に装入する前
に別の昇温炉で所定の温度まで上昇させる必要
がある。一方本発明方法によれば、底吹き吹精
により着火の如何は問題なく解消されるため、
溶湯の初期温度の如何の影響は少ないので昇温
炉により溶湯温度を上昇させる必要度は軽減さ
れて、例えば電気製錬炉よりの溶湯を直接反応
容器中に装入することができる。
以上本発明によれば、従来方法に比し精錬に使
用される酸素原単位は20%程度低減し、前述のよ
うにマンガン歩留は4〜5%上昇する。
次に本発明を実施例について説明する。
実施例 1
下記第1表に示す成分組成を有する諸原料を用
いて、マグネシヤ系レンガを内張りした内径1100
mmφの反応容器中で溶融高炭素フエロマンガンを
本発明により酸素吹精するに当つて、容器底部中
央に設けた底吹き手段の内管から酸素450/
min、外管からアルゴン450/minを吹込みな
がら前記溶湯3tを容器中に装入した。その時の溶
湯温度は1280℃であつたが、上吹き手段より酸素
を吹込むと容易に着火し、脱炭反応が開始され
た。上吹き酸素の送酸速度は最初の10分間は
9.6Nm3/min、その後の15分45秒間は7.2Nm3/
minであり、酸素使用量は上吹き、底吹合計で
221Nm3であつた。
その間、生石灰120Kg、ドロマイト30Kg、マン
ガンスラグ45Kgをフラツクスとして装入した。送
酸速度の変更は溶湯温度を見ながら行つた。すな
わちマンガンの酸化が炭素のそれより優先して進
行する1650℃に至るまでは9.6Nm3/minで酸素吹
精した。これまでの時間は着火後10分間であつ
た。1650℃になつた後7.2Nm3/minに送酸量を減
じて1770℃になるまで送酸した。これまでの時間
は着火後25分45秒であつた。この時点で上吹きを
停止し、底吹き手段の内管の酸素を同量の窒素に
切換え、シリコマンガン250Kg、中炭素フエロマ
ンガンのサイズ下品150Kg、生石灰40Kgを投入し、
10分間撹拌精錬を行い、除滓後溶湯を鋳造した。
得られた製品重量は3030Kgであり、メタルとスラ
グの分離は良好でスラグ中へのメタル混入はほと
んどなかつた。
製品の成分組成を第2表に示す。
The present invention relates to a method for producing medium- and low-carbon ferromanganese, and particularly the present invention relates to a method for producing medium- and low-carbon ferromanganese using a top-blown and bottom-blown converter using molten high-carbon ferromanganese as a raw material. Conventionally, medium and low carbon ferromanganese are generally as follows:
Manufactured through steps (a) and (b). (a) Using manganese ore and silica stone as main raw materials, reduction smelting is performed in an electric smelting furnace using carbonaceous material as a reducing agent to produce 60-70% Mn, 14-23% Si, 0.5-2% C,
Silicomanganese is produced, the balance being iron and unavoidable impurities. (b) By charging and melting the silicomanganese together with high-grade manganese ore and lime in a separate electric smelting furnace, the Si in the silicomanganese is dissolved.
By oxidizing to form SiO 2 , that is, by causing a desiliconization reaction, Mn75-85%, Si0.2%
~2%, C0.5~2%, the remainder is essentially
Manufacture medium/low carbon ferromanganese made of Fe. According to the above-mentioned conventional method for producing medium-low carbon ferromanganese by desiliconizing silicomanganese, the electrical energy consumed in producing silicomanganese in step (a) is 3500 to 500 KWh per ton, and (b) Since 800 to 1200 KWh is consumed per ton of product in the desiliconization reaction process, the cost of electrical energy is high, and as a result, especially in Japan, where electricity costs are high, product costs have become too high to meet international competitiveness. Furthermore, the process (b) also requires an electric furnace, which increases costs in terms of equipment and personnel. On the other hand, Japanese Patent Publication Nos. 55-4238 and 57-27166 disclose a method for producing medium- and low-carbon ferromanganese by blowing oxygen into molten high-carbon ferromanganese without using the silicomanganese method.
According to the former method, oxygen is blown in through a jacket-type nozzle provided on the side wall of the reaction vessel, and in the latter method, oxygen and natural gas are blown in through a double-pipe structure nozzle provided on the bottom of the reaction vessel. In addition, US Patent No. 3305352 and People's Republic of China Steel Magazine Vol. A manufacturing method using a converter is disclosed. By the way, manganese is more easily oxidized than iron or chromium, and its vapor pressure is quite high. Even if decarburization is carried out according to this method, it cannot be an economical refining process in terms of Mn yield, and therefore, medium- to low-oxygen smelting methods, in which oxygen is blown by top blowing, side blowing, or bottom blowing, are used. The method for producing ferromanganese has not been carried out on an industrial scale. The present invention eliminates the drawbacks of the conventional method for producing medium- and low-carbon ferromanganese by blowing oxygen,
It is an object to provide an improved method, and this object can be achieved by providing the method according to the claims. Next, the present invention will be explained in detail. In refining molten high-carbon ferromanganese into medium- to low-carbon ferromanganese by oxygen blowing, it is important to increase the decarbonization rate by the blown oxygen, to prevent manganese oxidation as much as possible, and to reduce the amount of manganese generated during the decarburization reaction. It is necessary to suppress the evaporation loss of manganese and to efficiently recover the manganese that has migrated into the slag during refining. It is known that the equilibrium of formula (2) is thermodynamically established in the following reaction formula (1) involving manganese, carbon, and oxygen. MnO+C=Mn+CO ……(1) logK=−12853/T+7.91 ……(2) As can be seen from equation (2), in the low temperature range, the oxidation of Mn has priority over the oxidation of C, and in the high temperature range, the opposite is true. oxidation of C takes precedence over oxidation of Mn. Therefore, for the purpose of decarburization, it is desirable to cause the reaction to occur at as high a temperature as possible, but on the other hand, the evaporation of manganese becomes more active, and wear and tear of the lining of the reaction vessel becomes a problem. Therefore, appropriately controlling the temperature of the container is an important operational factor. The reaction vessel used in the present invention has one or more gas blowing means at the bottom or a side wall near the bottom, and this means consists of a double or triple pipe, and from the outer pipe of these pipes, gas blowing means is provided. At least one type of gas selected from argon, nitrogen, carbon dioxide, and propane is injected as a cooling gas to prevent melting and damage at the tip of the tube, and oxygen gas or waste gas such as argon, nitrogen, etc. is injected from the inner tube. The active gas can be switched and injected during the refining process. In the present invention, the molten high-oxygen ferromanganese used as the main raw material is generally produced in an electric smelting furnace or shaft furnace, and its composition is Si2%.
Hereinafter, high carbon ferromanganese containing 6 to 7% of C and 75 to 85% of Mn, with the remainder substantially composed of Fe, can be advantageously used, and such molten metal can be extracted directly from a smelting furnace or by using this molten metal. Once charged into a holding furnace, it is charged into a reaction vessel and refined whenever necessary. The temperature of the molten metal charged into the reaction vessel is preferably as high as possible in consideration of the decarburization reaction, but there is no problem as long as it is above the melting temperature. When charging the molten metal into the reaction vessel, the molten metal is charged while blowing oxygen through the inner tube of the bottom blowing means provided at the bottom of the vessel or the side wall near the bottom, and blowing inert gas through the outer tube. Enter. At this time, the amount of oxygen blown from the inner pipe of the bottom blowing means is 3 of the total oxygen capacity blown by the top blowing means and the bottom blowing means.
20%, and it is advantageous that the amount of inert gas blown from the outer pipe of the bottom blowing means is approximately the same as the oxygen capacity from the inner pipe. After completing the injection of the molten metal into the reaction vessel as described above, the top blowing means starts blowing oxygen.
The oxygen capacity at that time is 80-97% of the total oxygen capacity used. It is advantageous to introduce quicklime, dolomite, ferromanganese slag, etc. into the container at the same time as the ejaculation starts to generate slag early and prevent loss of manganese. At the beginning of oxygen blowing, silicon and manganese in the molten metal are oxidized, and the molten metal temperature rises rapidly.Subsequently, carbon oxidation begins and the molten metal temperature continues to rise, but the molten metal temperature remains at 1650~1850.
℃ to control the carbon content of the final product.
In other words, to reduce the C content in the final product to 2% or less, the final temperature of the molten metal must be 1750 to 1780°C, and the C content must be 1%.
To achieve the following, adjust the temperature to 1820-1850°C. If the molten metal temperature is lower than 1650℃, manganese oxidation takes precedence over carbon oxidation, while if it is higher than 1850℃, manganese evaporation becomes active and loss of manganese increases, so the molten metal temperature should be in the range of 1650 to 1850℃. It is preferable to smelt in-house. The temperature of the molten metal can be controlled not only by charging a coolant such as high, medium or low carbon ferromanganese or flux, but also by adjusting the amount of oxygen absorbed. When the carbon content in the molten metal is lowered to a predetermined value in this way, manga is oxidized in the slag that is generated, and the manganese content is reduced as manganese oxide.
Contains 30-50%. To recover the manganese in this slag, the oxygen blowing from the top blowing means is stopped, and the oxygen blowing from the inner pipe of the bottom blowing means is switched to inert gas blowing. One or more selected from metal silicon and aluminum are charged into a container along with flux if necessary, and
The molten metal and slag are stirred by blowing inert gas from the bottom for a minute to reduce the manganese oxide in the slag and recover the reduced manganese into the molten metal to complete the refining. The features of the method of the present invention described above will be explained below while comparing with the conventional method. (1) In order to oxidize and decarburize the carbon in the molten high-oxygen ferromanganese, it is necessary to increase the chances of the oxygen blown in from the top blowing means always coming into contact with fresh molten metal.According to the present invention, Compared to conventional oxygen blowing using only top blowing, the blowing of inert gas and oxygen gas from the bottom blowing means not only effectively stirs the molten metal, but also eliminates carbon in the molten metal by bottom blowing oxygen gas. Oxidation is promoted and produced by the oxidation of carbon
CO or CO 2 further increases the stirring of the molten metal. When slag is generated as the molten metal is refined and a slag layer is formed on the surface of the molten metal, it is necessary to locally remove the slag layer and allow the oxygen blown from the top blowing means to reach the surface of the molten metal. For this reason,
When blowing oxygen using the conventional single top blowing method, it is necessary to increase the oxygen pressure to eliminate the slag layer, but this method causes phenomena such as spitting and forming in the container, making it difficult to proceed smoothly. As a result, not only the operating time was inevitably extended, but also the efficiency of oxygen used was low. On the other hand, according to the present invention, since the gas is blown from the bottom blowing means, the slag layer on the surface of the molten metal can be locally removed, and the top blowing oxygen pressure can be lowered, that is, soft blowing can be performed. It is efficient, reduces operating time, and improves operational stability. (2) According to single top blowing, oxidized manganese quickly migrates into the slag. On the other hand, according to the present invention, manganese oxide oxidized by oxygen blown from the inner tube of the bottom blowing means floats in the molten metal and while reaching the surface, it contacts and reacts with carbon in the molten metal, and the manganese oxide is reduced. It becomes manganese and melts into the molten metal. In this way, not only does the oxygen efficiency increase, but the manganese content in the slag at the end of the oxygen blowing process is lower than that in the conventional method due to the bottom blowing process, so it can be used to reduce manganese oxide in the slag. The amount of reducing agent, ie, silicomanganese, ferrosilicon, metallic silicon, or aluminum, used can be reduced, and the yield of manganese can be improved by 4 to 5%. (3) According to the conventional top-blowing single ejaculation method, if the temperature of the molten high carbon ferromanganese in the reaction vessel is low, it is not only difficult to ignite it during oxygen ejaculation, but even if it is ignited, it will be difficult to ignite it in the initial stage. The oxidation loss of manganese is large due to low temperatures. For this reason, it is necessary to raise the temperature of the molten high carbon ferromanganese to a predetermined temperature in a separate heating furnace before charging it into the reaction vessel. On the other hand, according to the method of the present invention, the problem of ignition is resolved by the bottom blowing semen, so
Since the initial temperature of the molten metal has little influence, the need to raise the molten metal temperature using a heating furnace is reduced, and the molten metal from, for example, an electric smelting furnace can be directly charged into the reaction vessel. As described above, according to the present invention, the oxygen consumption rate used in refining is reduced by about 20% compared to the conventional method, and the manganese yield is increased by 4 to 5% as described above. Next, the present invention will be explained with reference to examples. Example 1 A brick with an inner diameter of 1100 mm was lined with magnesia brick using raw materials having the composition shown in Table 1 below.
When molten high carbon ferromanganese is blown with oxygen in a reaction vessel of mmφ according to the present invention, 450 ml of oxygen is blown from the inner tube of the bottom blowing means provided at the center of the bottom of the vessel.
3 tons of the molten metal was charged into the container while blowing argon at 450/min from the outer tube. The temperature of the molten metal at that time was 1280°C, but when oxygen was blown in from the top blower, it was easily ignited and the decarburization reaction started. For the first 10 minutes, the top-blown oxygen delivery rate is
9.6Nm 3 /min, and 7.2Nm 3 / min for the next 15 minutes and 45 seconds.
min, and the amount of oxygen used is the total of top blowing and bottom blowing.
It was 221Nm3 . During that time, 120 kg of quicklime, 30 kg of dolomite, and 45 kg of manganese slag were charged as flux. Changes in the oxygen supply rate were made while monitoring the molten metal temperature. In other words, oxygen was blown at 9.6 Nm 3 /min until the temperature reached 1650°C, at which the oxidation of manganese proceeded with priority over that of carbon. The time up until now was 10 minutes after ignition. After the temperature reached 1650°C, the oxygen flow rate was reduced to 7.2Nm 3 /min and the oxygen was continued until the temperature reached 1770°C. The time taken so far was 25 minutes and 45 seconds after ignition. At this point, the top blowing was stopped, the oxygen in the inner tube of the bottom blowing means was changed to the same amount of nitrogen, and 250 kg of silicomanganese, 150 kg of medium carbon ferromanganese, and 40 kg of quicklime were added.
Stirring and refining was performed for 10 minutes, and after removing the slag, the molten metal was cast.
The weight of the obtained product was 3030 kg, and the metal and slag were well separated, with almost no metal mixed into the slag. The ingredient composition of the product is shown in Table 2.
【表】【table】
【表】
実施例 2
実施例1と同様の反応容器に溶融高炭素フエロ
マンガン3000Kgを、底吹き手段の内管より酸素を
450/min、外管よりアルゴンを450/minの
速度で吹き込みながら装入した。高炭素フエロマ
ンガンの温度は1250℃であり、上吹きランスより
酸素を吹き込むと容易に着火した。送酸速度は
9.6Nm3/minで溶融温度が1650℃に達するまで11
分間行い、その後7.2Nm3/minで1830℃に達する
まで20分15秒吹精を行つた。使用酸素量は265N
m3であつた。その間、フラツクスとして生石灰
120Kg、ドロマイト3Kg、マンガンスラグ45Kgを
装入した。
上吹き酸素を停止後、底吹きの酸素を同量の窒
素に切替え、シリコマンガン325Kg、低炭素フエ
ロマンガンサイズ下品150Kg、生石灰50Kgを投入
し、10分間底吹き撹拌を行い除滓後、製品を鋳造
した。得られた製品は2940Kgであり、メタルとス
ラグの分離は良好であつた。
尚、製品の成分組成を第3表に示す。[Table] Example 2 3000 kg of molten high carbon ferromanganese was placed in the same reaction vessel as in Example 1, and oxygen was introduced from the inner tube of the bottom blowing means.
The reactor was charged while blowing argon at a rate of 450/min from the outer tube. The temperature of the high carbon ferromanganese was 1250℃, and it was easily ignited when oxygen was blown into it from a top blowing lance. The oxygen delivery rate is
11 until the melting temperature reaches 1650℃ at 9.6Nm 3 /min.
After that, ejaculation was performed for 20 minutes and 15 seconds at 7.2 Nm 3 /min until the temperature reached 1830°C. The amount of oxygen used is 265N
It was m3 . Meanwhile, quicklime is used as flux.
120Kg, dolomite 3Kg, and manganese slag 45Kg were charged. After stopping the top blowing oxygen, change the bottom blowing oxygen to the same amount of nitrogen, add 325 kg of silicomanganese, 150 kg of low carbon ferromanganese size, and 50 kg of quicklime, and perform bottom blowing stirring for 10 minutes to remove the sludge, and then remove the sludge. was cast. The weight of the obtained product was 2940 kg, and the metal and slag were separated well. The component composition of the product is shown in Table 3.
【表】
比較例
中炭素フエロマンガンを上吹き単独の酸素吹精
により製造した。上・底吹き法の効果を見極める
為、実施例1で示す反応容器の底面のノズルを取
り外し、マグネシア系レンガを施工した。実施例
1と同様の方法で吹精を行つたが、注湯された高
炭素フエロマンガンは温度が1270℃であつたのに
もかかわらず着火がきわめて困難であつた。又着
火するも、吹精中何度もの失火のトラブルが生じ
た。脱炭反応が活発になる1650℃を越えてからス
ロツピングが激しくなり、送酸速度を上・底吹き
時に比較して20%程減ずることを強いられた。そ
の間、相当量のマンガンロスが発生している。そ
の結果、得られた製品の酸素原単位は本発明方法
に比べて50%の増加、又マンガン歩留は5〜7%
の低下となつた。
以上の結果より、中・低炭素品の製造原価をみ
てみると、本発明は従来のシリコマンガン法及び
従来の酸素吹精法と比較して総合コストで中炭素
フエロマンガンを製造する場合には91%、低炭素
フエロマンガンを製造する場合には92%となり、
本発明によれば工業規模で最も経済的に中・低炭
素フエロマンガンを製造することができる。[Table] Comparative Example Medium carbon ferromanganese was produced by top blowing alone with oxygen blowing. In order to assess the effects of the top and bottom blowing methods, the nozzle at the bottom of the reaction vessel shown in Example 1 was removed and magnesia bricks were constructed. Blowing was carried out in the same manner as in Example 1, but it was extremely difficult to ignite the poured high carbon ferromanganese, even though the temperature was 1270°C. Although it ignited again, there were many misfires during the blowing process. After the temperature exceeded 1650℃, where the decarburization reaction becomes active, slopping became severe, forcing the oxygen delivery rate to be reduced by about 20% compared to top and bottom blowing. During this period, a considerable amount of manganese loss occurs. As a result, the oxygen consumption rate of the obtained product increased by 50% compared to the method of the present invention, and the manganese yield was 5 to 7%.
There was a decline in From the above results, when looking at the manufacturing cost of medium- and low-carbon products, the present invention has a cost of 91% compared to the conventional silicomanganese method and the conventional oxygen blowing method when producing medium-carbon ferromanganese at a total cost. %, 92% when producing low carbon ferromanganese,
According to the present invention, medium to low carbon ferromanganese can be produced most economically on an industrial scale.
Claims (1)
容器中に、C:6〜7%、Mn:75〜85%を含有
する溶融高炭素フエロマンガンを装入し、上吹き
手段および底吹き手段からそれぞれ精錬用酸素ガ
スを溶湯中に吹込み、該溶湯中のC含有量を2%
以下にまで低下させ、 その後前記上吹き手段よりの酸素ガス吹込みを
停止する一方、底吹き手段からは不活性ガスを吹
込むと共に、前記容器内にはシリコマンガン、フ
エロシリコン、金属シリコン、アルミニウムのな
かから選ばれるいずれか少なくとも1種を装入す
ることにより、前記脱炭精錬中にスラグ中に移行
した酸化マンガンを溶融金属中に還元回収するこ
とを特徴とする中・低酸素フエロマンガンの製造
方法。 2 上吹きおよび下吹き手段より吹込まれる酸素
ガスの合計容量を標準状態に換算して100容量部
とするときは、上吹き手段より吹込まれる酸素ガ
スは80〜97容量部である特許請求の範囲第1項記
載の方法。[Claims] 1. A reaction vessel equipped with top blowing means and bottom blowing means is charged with molten high carbon ferromanganese containing 6 to 7% C and 75 to 85% Mn, and the top blowing means is Refining oxygen gas is blown into the molten metal from the bottom blowing means and the C content in the molten metal is 2%.
After that, the blowing of oxygen gas from the top blowing means is stopped, while inert gas is blown from the bottom blowing means, and silicomanganese, ferrosilicon, metal silicon, A medium/low oxygen ferromanganese which is characterized in that the manganese oxide transferred to the slag during the decarburization refining is reduced and recovered into the molten metal by charging at least one selected from aluminum. Production method. 2. When the total volume of oxygen gas blown from the top blowing means and the bottom blowing means is converted to 100 parts by volume in a standard state, the patent claim that the oxygen gas blown from the top blowing means is 80 to 97 parts by volume. The method described in item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17415683A JPS6067608A (en) | 1983-09-22 | 1983-09-22 | Manufacture of medium or low carbon ferromanganese |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17415683A JPS6067608A (en) | 1983-09-22 | 1983-09-22 | Manufacture of medium or low carbon ferromanganese |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6067608A JPS6067608A (en) | 1985-04-18 |
JPH044388B2 true JPH044388B2 (en) | 1992-01-28 |
Family
ID=15973662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17415683A Granted JPS6067608A (en) | 1983-09-22 | 1983-09-22 | Manufacture of medium or low carbon ferromanganese |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6067608A (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06939B2 (en) * | 1985-05-29 | 1994-01-05 | 新日本製鐵株式会社 | Method for producing high manganese iron alloy by smelting reduction smelting |
JPH06940B2 (en) * | 1985-05-29 | 1994-01-05 | 新日本製鐵株式会社 | Method for smelting reduction refining of high manganese iron alloy |
DE3707696A1 (en) * | 1987-03-11 | 1988-09-22 | Thyssen Stahl Ag | METHOD FOR PRODUCING FERROMANGAN AFFINE |
BE1005461A3 (en) * | 1991-10-16 | 1993-08-03 | Wurth Paul Sa | High-carbon ferromanganese refining method and installation |
JP2683487B2 (en) * | 1993-05-18 | 1997-11-26 | 水島合金鉄株式会社 | Manufacturing method and manufacturing apparatus for medium / low carbon ferromanganese |
KR100363608B1 (en) * | 2000-12-26 | 2002-12-05 | 동부한농화학 주식회사 | Method of low-carbon ferromanganese(LCFeMn) manufacturing by recycling dust containing manganese |
KR100889859B1 (en) * | 2008-05-06 | 2009-03-24 | 주식회사 동부메탈 | Process for production of ultra low phosphorous and carbon ferromananganese by using of ferromanganese slag |
KR101326050B1 (en) * | 2012-03-19 | 2013-11-07 | 주식회사 포스코 | Treatment apparatus for molten metal and the method thereof |
KR102286427B1 (en) * | 2020-02-26 | 2021-08-04 | (주)포스코엠텍 | Manufacturing method of deoxidation alloys and deoxidation agnet by using the same |
EP4116443A4 (en) * | 2020-03-06 | 2024-05-22 | JFE Steel Corporation | Method for producing low-carbon ferromanganese |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5834159A (en) * | 1981-08-25 | 1983-02-28 | Chuo Denki Kogyo Kk | Recovering method for manganese from manganese slag |
-
1983
- 1983-09-22 JP JP17415683A patent/JPS6067608A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5834159A (en) * | 1981-08-25 | 1983-02-28 | Chuo Denki Kogyo Kk | Recovering method for manganese from manganese slag |
Also Published As
Publication number | Publication date |
---|---|
JPS6067608A (en) | 1985-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH044388B2 (en) | ||
EP0033780B1 (en) | Method for preventing slopping during subsurface pneumatic refining of steel | |
JPH10130714A (en) | Production of steel for wire rod excellent in wire drawability and cleanliness | |
JPS6056051A (en) | Production of medium- and low-carbon ferromanganese | |
JPH0437136B2 (en) | ||
JPH0477046B2 (en) | ||
JP3774674B2 (en) | Method for producing low nitrogen-containing chromium molten steel | |
WO2003029498A1 (en) | Method for pretreatment of molten iron and method for refining | |
JPS6358203B2 (en) | ||
JPH11131122A (en) | Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy | |
JP4411934B2 (en) | Method for producing low phosphorus hot metal | |
JPH0558050B2 (en) | ||
JPH0437135B2 (en) | ||
JPS63206446A (en) | Production of middle-and low-carbon ferromanganese | |
JPH01316437A (en) | Manufacture of medium-low carbon ferromanganese | |
JPH0557349B2 (en) | ||
JP3511685B2 (en) | Bottom blow converter steelmaking | |
JPH01312020A (en) | Method for dephosphorizing molten iron by heating | |
JPS63130746A (en) | Manufacture of low-silicon medium-or low-carbon ferromanganese | |
JPH024938A (en) | Manufacture of medium-carbon and low-carbon ferromanganese | |
JPS62116752A (en) | Manufacture of low-or medium-carbon ferroalloy | |
JPH04224612A (en) | Method for refining in converter | |
RU2002816C1 (en) | Process of degassing and desulfurization of stainless steel | |
JPS613816A (en) | Production of carbon unsaturated high manganese iron alloy | |
JPH0699774B2 (en) | Method for producing medium and low carbon ferromanganese |