JPS62116752A - Manufacture of low-or medium-carbon ferroalloy - Google Patents
Manufacture of low-or medium-carbon ferroalloyInfo
- Publication number
- JPS62116752A JPS62116752A JP25680985A JP25680985A JPS62116752A JP S62116752 A JPS62116752 A JP S62116752A JP 25680985 A JP25680985 A JP 25680985A JP 25680985 A JP25680985 A JP 25680985A JP S62116752 A JPS62116752 A JP S62116752A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- femn
- molten metal
- low
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、低・中炭素合金鉄の製造方法に関し、特に高
炭素合金鉄、例えば高炭素フェロマンガン、高炭素フェ
ロクロムなどを脱炭処理して低・中炭素の合金鉄にする
有利な方法について提案する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing low- and medium-carbon ferroalloys, and in particular to a method for decarburizing high-carbon ferroalloys, such as high-carbon ferromanganese and high-carbon ferrochrome. We propose an advantageous method for producing low- and medium-carbon ferroalloys.
(従来の技術)
フェロマンガン(以下は単にrFeMnJで表示する)
等の合金鉄には、高炭素、中炭素、低炭素(以下はそれ
ぞれrHC−、MC−、LC−Jで表示する)ものがあ
り、例えば“FeMn ”について見るとJISでは第
1表のように分類している。(Prior art) Ferromanganese (hereinafter referred to simply as rFeMnJ)
There are high carbon, medium carbon, and low carbon (rHC-, MC-, and LC-J, respectively) types of ferroalloys such as It is classified into
かかるフェロマンガンのうちrHC−FeMnJは、炭
素濃度の飽和したものであるから低融点であり比較的安
価に製造できる。しかし、rMc−FeMn j、rL
C−FeMn Jは、大量の電気エネルギーを用いて、
シリコンマンガン(SiMn)溶湯を製造した後、この
溶湯からけい素(Si)を除去してrFeMnJとする
ので、高価であり、多量のエネルギーを必要としていた
。Among such ferromanganese, rHC-FeMnJ has a saturated carbon concentration, has a low melting point, and can be produced at a relatively low cost. However, rMc-FeMn j, rL
C-FeMn J uses a large amount of electrical energy,
After producing a silicon manganese (SiMn) molten metal, silicon (Si) is removed from the molten metal to form rFeMnJ, which is expensive and requires a large amount of energy.
従来、rHc−FeMn Jの炭素分を酸素吹精により
除去してrMc−FeMn J、rLc−FeMn J
を製造する幾つかの方法が提案されている。例えば、特
開昭60−56051号公報、特公昭57−27166
号公報には、酸素を上吹きランスからあるいは底吹き羽
口からHC−FeMn溶湯中に吹き込んで脱炭する方法
が開示されている。これらの既知脱炭方法の特徴は、次
の(1)式の脱炭反応を(2)式のマンガン酸化より優
先させる必要から、熱力学的にみてかなり高温状態で酸
素吹精をすることにある。Conventionally, the carbon content of rHc-FeMn J was removed by oxygen blowing to produce rMc-FeMn J and rLc-FeMn J.
Several methods have been proposed for manufacturing. For example, Japanese Patent Publication No. 60-56051, Japanese Patent Publication No. 57-27166
The publication discloses a method for decarburizing by blowing oxygen into molten HC-FeMn from a top blowing lance or a bottom blowing tuyere. These known decarburization methods are characterized by the need to prioritize the decarburization reaction in equation (1) below over the manganese oxidation in equation (2), which makes it necessary to carry out oxygen blowing at a fairly high temperature from a thermodynamic point of view. be.
例えば、1700℃〜1800℃の高温が必要である。For example, a high temperature of 1700°C to 1800°C is required.
また、特開昭54−97521号公報には、熱力学的に
有利なように、酸素と水蒸気、アルゴンとを、同時にH
C−FeMn溶湯に吹き込み、COガスを非酸化性ガス
で稀釈しく1)式の右辺のCD分圧を低下させて優先脱
炭する方法が開示されている。しかしながらこの方法の
場合にもやはり高温度が要求される。In addition, Japanese Patent Application Laid-open No. 54-97521 discloses that oxygen, water vapor, and argon can be simultaneously mixed with hydrogen in order to be thermodynamically advantageous.
A method for preferential decarburization by blowing into a C-FeMn molten metal and diluting CO gas with a non-oxidizing gas to lower the CD partial pressure on the right side of equation 1) is disclosed. However, this method still requires high temperatures.
またこの方法では後述するように多量の非酸化性ガスを
必要とする欠点を有する。This method also has the disadvantage of requiring a large amount of non-oxidizing gas, as will be described later.
(発明が解決しようとする問題点)
前記各方法はいずれも高温度が必要条件となっており、
かつ酸素を炉底羽口から吹き込んでいるため、反応容器
の耐火物溶損が顕著である。それは通常の溶銑の脱炭に
よる溶鋼製造と比較して5倍以上の耐火物溶損量である
ことが経験的に知られている。さらに、高温であるため
マンガンの蒸発が著しく、製造時のマンガン歩留り低下
の原因となっていた。例えば、純酸素をHC−FeMn
溶湯浴面上から吹きつけた場合、初期マンガン量の13
%が蒸発により損失されたとの報告もある。(Problems to be solved by the invention) Each of the above methods requires high temperature,
In addition, since oxygen is blown into the furnace through the bottom tuyeres, the refractories in the reaction vessel are subject to significant erosion. It is known from experience that the amount of refractory erosion is more than five times that of molten steel production by normal decarburization of hot metal. Furthermore, due to the high temperature, manganese evaporates significantly, causing a decrease in manganese yield during production. For example, pure oxygen is converted into HC-FeMn
When sprayed from above the molten metal bath surface, the initial amount of manganese is 13
There are also reports that % was lost through evaporation.
本発明の目的は、かかる従来技術が抱える高温吹錬の弊
害を克服し、高Mn歩留りでHC−FeMnからMC−
FeMn、 LC−FeMnを安価に製造する方法を提
案するところにある。The purpose of the present invention is to overcome the disadvantages of high-temperature blowing that the conventional technology has, and to convert HC-FeMn to MC-FeMn with a high Mn yield.
The purpose is to propose a method for manufacturing FeMn and LC-FeMn at low cost.
(問題点を解決するための手段)
上記既知の技術からも明らかであるが、HC−FeMn
の脱炭をマンガン酸化に優先させて行うには、CD分圧
を下げることが効果的である。(Means for solving the problem) As is clear from the above known techniques, HC-FeMn
In order to prioritize decarburization of carbon over manganese oxidation, it is effective to lower the CD partial pressure.
そこで本発明は、00分圧低下のために、HC−FeM
nの脱炭反応を減圧下で行うことに着目し、以下に説明
するような方法を開発した。HC−FeMn溶湯に対し
、酸化性ガスあるいは酸化性ガスと非酸化性ガスとの混
合ガスを供給する際に、減圧下で操業することにより、
ガスとHC−FeMn溶湯との反応界面の00分圧を低
下させ、上記(1)式の反応を右側へ効率よく進行させ
るようにしたのである。Therefore, the present invention aims to reduce the partial pressure by HC-FeM.
Focusing on carrying out the decarburization reaction of n under reduced pressure, we developed the method described below. By operating under reduced pressure when supplying oxidizing gas or a mixed gas of oxidizing gas and non-oxidizing gas to the HC-FeMn molten metal,
The 00 partial pressure at the reaction interface between the gas and the molten HC-FeMn was lowered to allow the reaction of equation (1) above to proceed efficiently to the right.
なお、本発明において溶湯への上記ガスの供給は、上吹
きおよび底吹き法を併用し、
また本発明においては減圧の程度を脱炭の進行にあわせ
て400〜10トルの範囲内で次第に強化することが望
ましい。In addition, in the present invention, the above-mentioned gas is supplied to the molten metal by using a combination of top blowing and bottom blowing methods, and in the present invention, the degree of pressure reduction is gradually increased within the range of 400 to 10 Torr as decarburization progresses. It is desirable to do so.
(作 用)
減圧によってCD分圧を低下させる本発明法を、従来の
混合ガスによる吹錬方法に比較すると、該混合ガスによ
る方法ではCD分圧を低下させるのに非酸化性ガスを大
量に使用する必要がある。例えば、低炭素濃度領域にな
った場合に酸化性ガスと非酸化性ガスの比を1対2〜1
対6程度にしている。ところが、この方法だと、非酸化
性ガスとして一般的にアルゴン(Ar)が用いられるが
、Arは高価なガスであり、精錬費用が嵩んで経済的で
ない。(Function) Comparing the method of the present invention, which lowers the CD partial pressure by decompression, with the conventional blowing method using a mixed gas, it is found that the method using a mixed gas requires a large amount of non-oxidizing gas to lower the CD partial pressure. need to use. For example, in the case of a low carbon concentration region, the ratio of oxidizing gas to non-oxidizing gas should be increased to 1:2 to 1.
I set it to about 6. However, in this method, argon (Ar) is generally used as the non-oxidizing gas, but Ar is an expensive gas and the refining cost increases, making it uneconomical.
しかも多量の非酸化性ガスを溶湯に対し、供給するとス
プラッシュおよびダスト量が多くなるのでMn歩留りが
低下する。Moreover, when a large amount of non-oxidizing gas is supplied to the molten metal, the amount of splash and dust increases, resulting in a decrease in the Mn yield.
これに対する本発明減圧法は、CD分圧を減圧にするこ
とによって低下させるので、低温度でも脱炭精錬が可能
であり、上述の問題は解消される。In contrast, the depressurization method of the present invention reduces the CD partial pressure by reducing the pressure, so decarburization and refining can be performed even at low temperatures, and the above-mentioned problem is solved.
以下に本発明にかかる脱炭工程の一例を順に説明する。An example of the decarburization process according to the present invention will be explained below in order.
まず、HC−FeMn溶湯を脱炭反応容器に装入する。First, HC-FeMn molten metal is charged into a decarburization reaction vessel.
脱炭反応容器としては、真空脱炭装置(VOD)が適し
ているが、減圧機能を有する転炉でもよいし、また誘導
加熱炉に減圧機能を付加した装置でもよい。いずれの場
合でも、必要とされる機能は減圧機能および脱炭用の酸
化性ガスを供給するランスあるいは浴面下の羽口である
。その他付加的に、溶湯の電気的な加熱装置や副原料の
減圧添加設備を有することが望ましい。As the decarburization reaction vessel, a vacuum decarburization device (VOD) is suitable, but a converter having a pressure reduction function may be used, or a device in which a pressure reduction function is added to an induction heating furnace may be used. In either case, the required functions are a pressure reduction function and a lance or tuyere below the bath surface for supplying oxidizing gas for decarburization. Additionally, it is desirable to have an electric heating device for molten metal and equipment for adding auxiliary materials under reduced pressure.
前記容器内に装入されたHC−FeMn溶湯に対し、酸
化性ガスとして、酸素(0□)、二酸化炭素(Co□)
、水蒸気(H2O) 、空気などを供給する。酸化性ガ
スが溶湯にあたる高温部からのMn蒸発を抑制するため
に、非酸化性ガスを混合供給するか、別個に火点に向け
て供給してもよい。Oxygen (0□) and carbon dioxide (Co□) are added as oxidizing gases to the HC-FeMn molten metal charged in the container.
, water vapor (H2O), air, etc. In order to suppress Mn evaporation from the high-temperature part where the oxidizing gas hits the molten metal, the non-oxidizing gas may be supplied in a mixed manner or may be supplied separately toward the fire point.
該容器内の減圧は、ガス供給の前あるいは供給開始後の
適当な時間に開始する。減圧の程度は、低圧はど脱炭の
効率がよいが、減圧のための費用を考慮すると、400
トル(400mmHg) 〜10 ) ル程度が望まし
い。また、高炭素濃度の領域では減圧の程度を小さくし
、そして脱炭の進行に従って漸次低圧に移行させること
が望ましく、こうすれば減圧費用を低減できる。The vacuum in the container is started before or at an appropriate time after the gas supply starts. As for the degree of depressurization, low pressure is more efficient for decarburization, but considering the cost of decompression, it is 400%
It is desirable to have a pressure of about 400 mmHg to 10 mmHg. Further, it is desirable to reduce the degree of pressure reduction in a region of high carbon concentration and gradually shift to a lower pressure as decarburization progresses, thereby reducing the cost of pressure reduction.
精錬用の酸化性ガスの供給方法としては、第2図(a)
〜(C)のような各種の方法が可能であるが、一般的に
は(a)の上吹きランスから酸化性ガスを供給し、底吹
き羽口から攪拌用非酸化性ガスを供給する組合わせが、
設備的にも簡単であり、保守費用、稼動費も少額ですむ
。The method of supplying oxidizing gas for refining is shown in Figure 2 (a).
Although various methods such as those in (C) to (C) are possible, the general method is (a), in which the oxidizing gas is supplied from the top blowing lance and the non-oxidizing gas for stirring is supplied from the bottom blowing tuyere. The combination is
It is simple in terms of equipment, and maintenance costs and operating costs are low.
減圧下での脱炭でも、やはり高温はど有利であるが、従
来法のように1700〜1800℃もの高温にする必要
はなく、融点の100〜200℃高温(実際には140
0〜1500℃)にすればよく、耐火物の溶損・蒸発に
よるMn損失の点で非常に有利である。Even in decarburization under reduced pressure, high temperatures are advantageous, but there is no need to raise the temperature to as high as 1,700 to 1,800 degrees Celsius as in conventional methods.
0 to 1500°C), which is very advantageous in terms of Mn loss due to melting and evaporation of the refractory.
所定量の脱炭が完了したら、圧力を大気圧に戻し、鋳型
へ注入して製品とする。Once a predetermined amount of decarburization is completed, the pressure is returned to atmospheric pressure and the product is poured into a mold.
本発明を実施するうえで、減圧の程度と操業コストや設
備費など総合的な経済性との関係を第1図に示す。40
0トル以上であると脱炭効率が悪くかつ精錬時間が長く
なる。また10トル以下にしても脱炭効率は顕著に向上
せずかえって減圧にするためのコストが大きくなり、蒸
発によるMnのロスも大きくなる。したがって減圧の程
度は400〜10トルが最適である。FIG. 1 shows the relationship between the degree of pressure reduction and the overall economic efficiency such as operating cost and equipment cost when carrying out the present invention. 40
If it is 0 torr or more, the decarburization efficiency will be poor and the refining time will be long. Furthermore, even if the pressure is lower than 10 torr, the decarburization efficiency does not improve significantly, but the cost for reducing the pressure increases, and the loss of Mn due to evaporation also increases. Therefore, the optimum degree of pressure reduction is 400 to 10 torr.
また、HC−FeMnの溶湯は攪拌しないと、浴内の均
一性が劣化し、浴内の上部のみ脱炭が進むことになる。Furthermore, if the molten HC-FeMn is not stirred, the uniformity within the bath will deteriorate and decarburization will proceed only in the upper part of the bath.
したがって浴面下にガスを吹込むことにより攪拌を行い
、均一に脱炭が進むようにする。Therefore, stirring is performed by blowing gas under the bath surface to ensure uniform decarburization.
このガス種は浴面上に吹きつけるものと同一でもよいし
、攪拌が主目的であるので非酸化性ガスを単独で用いて
もよい。This type of gas may be the same as that sprayed onto the bath surface, or since stirring is the main purpose, a non-oxidizing gas may be used alone.
なお、第3図は、HC−FeMnを脱炭する場合に、マ
ンガンの酸化が開始する炭素濃度と00分圧との関係を
熱力学的計算より求めたものである。本発明にあっては
低温でも効率よく脱炭できることが熱力学的にも確認さ
れた。In addition, FIG. 3 shows the relationship between the carbon concentration at which manganese oxidation starts and the 00 partial pressure when decarburizing HC-FeMn, determined by thermodynamic calculation. It has also been thermodynamically confirmed that the present invention can efficiently decarburize even at low temperatures.
(実施例)
通常の電気炉で溶製したHC−FeMnの溶?is9.
5トンを取鍋7に受け、この取鍋7を第4図に示す減圧
容器1の中へ設置した。この取17の底部にはポーラス
プラグ4を3個配置し、アルゴンガスの配管と接続でき
るようになっている。次に減圧容器1に蓋をした後、蓋
の中央部から上吹きガス用のランス3を挿入し、HC−
FeMnの浴面上700Cmの位置に下端5がくるよう
に設置した。(Example) Is HC-FeMn melted in a normal electric furnace? is9.
Five tons were received in the ladle 7, and the ladle 7 was placed in the vacuum vessel 1 shown in FIG. Three porous plugs 4 are arranged at the bottom of this receptacle 17 so that they can be connected to argon gas piping. Next, after putting a lid on the vacuum container 1, insert the top blowing gas lance 3 from the center of the lid, and
It was installed so that the lower end 5 was located 700 cm above the FeMn bath surface.
次に、容器1内を減圧すると同時に上吹きランス3から
酸素を流しはじめ、容器内を約300トルに保ちながら
酸素供給を続けた。また底部のポーラスプラグ4からは
合計6(1〜12ON1/min −tのアルゴンを供
給し続けた。Next, at the same time as the pressure inside the container 1 was reduced, oxygen was started to flow from the top blowing lance 3, and oxygen supply was continued while maintaining the inside of the container at about 300 torr. Further, a total of 6 (1 to 12 ON1/min -t) of argon was continuously supplied from the porous plug 4 at the bottom.
第5図には、この操業の真空度、上吹き酸素流量底吹き
アルゴン流量の経時変化および炭素濃度の変化を示す。FIG. 5 shows changes over time in the degree of vacuum, top-blown oxygen flow rate, bottom-blown argon flow rate, and changes in carbon concentration during this operation.
また第2表は精錬前後の溶湯成分を示す。この時溶湯温
度は1450〜1500℃の範囲よ収まるように、温度
が低い時にはFe−3iやAIなどの発熱剤を、また高
い時にはMC−FeMnの破砕屑やマンガン鉱石などの
冷材を適時添加した。かような精錬後、鋳型に注入した
MC−FeMnの重量は、8.6トンであった。Table 2 also shows the molten metal components before and after refining. At this time, in order to keep the molten metal temperature within the range of 1450 to 1500℃, when the temperature is low, a heat generating agent such as Fe-3i or AI is added, and when the temperature is high, a coolant such as crushed MC-FeMn waste or manganese ore is added as appropriate. did. After such refining, the weight of MC-FeMn injected into the mold was 8.6 tons.
第2表
実施例2
前記実施例1と全く同様の方法でHC−FeMnの脱炭
を行った。ただし、上吹きランス3から、純酸素の代わ
りに酸素とアルゴンの混合ガスを用い、かつその混合比
を精錬の進行に従って変更し、アルゴン量を増加した。Table 2 Example 2 HC-FeMn was decarburized in exactly the same manner as in Example 1. However, from the top blowing lance 3, a mixed gas of oxygen and argon was used instead of pure oxygen, and the mixing ratio was changed as the refining progressed to increase the amount of argon.
この例における精錬中の操業条件を第6図に溶湯成分を
一覧表にして第3表に示す。精錬開始後約52分の時点
で炭素濃度は2%以下となり、第1表に示したJIS規
格のMC−FeMnとなった。さらに85分まで精錬を
続けると炭素濃度は1%以下となりLC−FeMnの成
分となった。The operating conditions during refining in this example are shown in FIG. 6 and the molten metal components are listed in Table 3. At about 52 minutes after the start of refining, the carbon concentration became 2% or less, resulting in MC-FeMn according to the JIS standard shown in Table 1. When the refining was further continued for 85 minutes, the carbon concentration decreased to 1% or less and became a component of LC-FeMn.
適当な時点で溶湯中にCuを5kg投入してその濃度上
昇から精錬途中の溶湯重量を推算し、これを第3表に示
した。この重量からマンガンの歩留りを計算すると、M
C−FeMnまで精錬した時点で98%、L C−F
e M nまで精錬した時点で97%であり、当初予測
していた蒸発による損失分は経済的に不利になるほどの
量ではなかった。5 kg of Cu was added to the molten metal at an appropriate time, and the weight of the molten metal during refining was estimated from the increase in concentration, and this is shown in Table 3. Calculating the yield of manganese from this weight, M
98% when refined to C-FeMn, L C-F
It was 97% at the time of refining to e M n, and the loss due to evaporation, which was originally predicted, was not large enough to be economically disadvantageous.
第3表
なお、本発明減圧下精錬と従来の大気圧下精錬との関係
について製造コストを比較したのが第4表であるが、本
発明の方が有利である。Table 3 Table 4 compares the manufacturing costs between the vacuum refining of the present invention and the conventional atmospheric pressure refining, and the present invention is more advantageous.
第4表
(発明の効米)
以上説明したように、本発明によれば、!、4 C−F
e !A n 。Table 4 (Effects of the invention) As explained above, according to the present invention,! , 4 C-F
E! An.
LC−FeMnを製造するに際し、高価な電気エネルギ
ーを多量に使用する必要がなく、比較的安価な)IC−
FeMnを原料としてこれを脱炭することによって製造
できるようになったので経済的である。しかも、従来の
方法と比較して、低温で精錬ができるので、耐火物の費
用量が低減でき、さらにマンガンのスラグへの酸化損失
が少ないので総合的にみて効果的である。When manufacturing LC-FeMn, there is no need to use large amounts of expensive electrical energy, and it is relatively inexpensive) IC-
It is economical because it can now be produced by decarburizing FeMn as a raw material. Moreover, compared to conventional methods, smelting can be carried out at low temperatures, reducing the cost of refractories, and there is less oxidation loss of manganese to slag, making it more effective overall.
第1図は、本発明での減圧度とコスト指数との関係を示
すグラフ、
第2図は、本発明で精錬ガスを供給する各種の態様を示
す線図、
第3図は、熱力学的に計算した)Anの酸化が開始する
C濃度とCD分圧の関係、
第4図は、本発明を実施するために使用する設備の概略
図、
第5.6各図は、いずれも本発明を実施した時の操業デ
ータを示すグラフである。
1・・・減圧容器 2・・・減圧容器の蓋3・・
・0□供給用ランス
4・・・底吹きAr用ポーラスプラグ
5・・・溶湯 6・・・減圧用ダクト7・・
・取鍋Fig. 1 is a graph showing the relationship between the degree of pressure reduction and the cost index in the present invention, Fig. 2 is a diagram showing various aspects of supplying refining gas in the present invention, and Fig. 3 is a graph showing the relationship between the degree of pressure reduction and the cost index in the present invention. Figure 4 is a schematic diagram of the equipment used to carry out the present invention. It is a graph showing operational data when implementing. 1...Reduced pressure container 2...Lid of the reduced pressure container 3...
・0□ Supply lance 4...Porous plug for bottom-blown Ar 5...Molten metal 6...Duct for pressure reduction 7...
・Ladle
Claims (1)
炭素または中炭素の合金鉄を製造する方法において、 上記の処理を、高炭素合金鉄溶湯に酸化性 ガスまたは酸化性ガスと非酸化性ガスとの混合ガスを供
給して減圧下で行うことを特徴とする低・中炭素合金鉄
の製造方法。 2、溶湯へのガスの供給を、溶湯表面への吹付けと共に
浴面下から溶湯中に吹込むことにより実現することを特
徴とする特許請求の範囲1に記載の製造方法。 3、脱炭の進行とともに400〜10トルの範囲内で次
第に減圧の程度を強化することを特徴とする特許請求の
範囲1又は2に記載の製造方法。[Claims] 1. A method for producing a low-carbon or medium-carbon ferroalloy by decarburizing a high carbon-containing ferroalloy, wherein the above treatment is carried out by adding an oxidizing gas or A method for producing a low/medium carbon alloy iron, characterized by supplying a mixed gas of an oxidizing gas and a non-oxidizing gas and carrying out the process under reduced pressure. 2. The manufacturing method according to claim 1, wherein the gas is supplied to the molten metal by blowing it onto the surface of the molten metal and also by blowing into the molten metal from below the bath surface. 3. The manufacturing method according to claim 1 or 2, characterized in that the degree of pressure reduction is gradually increased within the range of 400 to 10 torr as decarburization progresses.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25680985A JPS62116752A (en) | 1985-11-18 | 1985-11-18 | Manufacture of low-or medium-carbon ferroalloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25680985A JPS62116752A (en) | 1985-11-18 | 1985-11-18 | Manufacture of low-or medium-carbon ferroalloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62116752A true JPS62116752A (en) | 1987-05-28 |
Family
ID=17297737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25680985A Pending JPS62116752A (en) | 1985-11-18 | 1985-11-18 | Manufacture of low-or medium-carbon ferroalloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62116752A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6447833A (en) * | 1987-08-14 | 1989-02-22 | Kawasaki Steel Co | Production of medium and low carbon ferromanganese |
JPH01316437A (en) * | 1988-06-14 | 1989-12-21 | Kawasaki Steel Corp | Manufacture of medium-low carbon ferromanganese |
-
1985
- 1985-11-18 JP JP25680985A patent/JPS62116752A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6447833A (en) * | 1987-08-14 | 1989-02-22 | Kawasaki Steel Co | Production of medium and low carbon ferromanganese |
JPH01316437A (en) * | 1988-06-14 | 1989-12-21 | Kawasaki Steel Corp | Manufacture of medium-low carbon ferromanganese |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08225880A (en) | Production of and production plant for alloy steel | |
JPH044388B2 (en) | ||
CA2052737C (en) | Method of producing ultra-low-carbon steel | |
US3282679A (en) | Production of alloy steel | |
JPS62116752A (en) | Manufacture of low-or medium-carbon ferroalloy | |
EP0688877B1 (en) | Process for producing low-carbon chromium-containing steel | |
JPH09165615A (en) | Denitrifying method for molten metal | |
JP6726777B1 (en) | Method for producing low carbon ferromanganese | |
JPH0355538B2 (en) | ||
JPS6213405B2 (en) | ||
JP3774674B2 (en) | Method for producing low nitrogen-containing chromium molten steel | |
EA003345B1 (en) | Method for denitriding molten steel during its production | |
KR100191010B1 (en) | Oxygen refining method of low carbon steel | |
JPS5834527B2 (en) | Teirinyousennoseizohouhou | |
US4436553A (en) | Process to produce low hydrogen steel | |
JPH0558050B2 (en) | ||
JPS6010087B2 (en) | steel smelting method | |
JPH02166256A (en) | Method for refining medium-or low-carbon ferromanganese | |
US4066442A (en) | Method of making chrome steel in an electric arc furnace | |
JPS61272346A (en) | Melting-reducing refining method for high manganese ferrous alloy | |
JPS6232247B2 (en) | ||
JPH0136546B2 (en) | ||
JP3067636B2 (en) | Copper removal from molten iron | |
JPS63206446A (en) | Production of middle-and low-carbon ferromanganese | |
JPH11293332A (en) | Decarburize-refining of molten ferro-manganese |