JPH0558050B2 - - Google Patents

Info

Publication number
JPH0558050B2
JPH0558050B2 JP61075331A JP7533186A JPH0558050B2 JP H0558050 B2 JPH0558050 B2 JP H0558050B2 JP 61075331 A JP61075331 A JP 61075331A JP 7533186 A JP7533186 A JP 7533186A JP H0558050 B2 JPH0558050 B2 JP H0558050B2
Authority
JP
Japan
Prior art keywords
blowing
oxygen
decarburization
low
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61075331A
Other languages
Japanese (ja)
Other versions
JPS62230953A (en
Inventor
Kotaro Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7533186A priority Critical patent/JPS62230953A/en
Publication of JPS62230953A publication Critical patent/JPS62230953A/en
Publication of JPH0558050B2 publication Critical patent/JPH0558050B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は高炭素フエロマンガン溶湯を吹錬して
中・低炭素フエロマンガンを製造する方法に関
し、詳細には脱炭の進行を2段階に分けて制御す
ることにより、Mn歩留りに悪影響を与えること
なく効率良く目標C量を達成することのできる
中・低炭素フエロマンガンの製造方法に関するも
のである。 [従来の技術] 中・低炭素フエロマンガンを製造する従来の方
法は、所謂のシリサイド法と呼ばれる方法であつ
て、Fe−Mn合金に対するC及びSiの相互溶解度
を利用することによつて目標C含有量のSi−Mn
溶湯を製造し(電気炉)、これにMn鉱石等のMn
酸化物を添加してSi−Mn中のSiを酸化除去する
のが常法であつた。この方法は電気炉を使用する
ものである為電力コストの比重が高いという経済
上の問題を内包する他、上記酸化除去によつて大
量に副生するSiO2を捕捉する為の塩基性酸化物
(例えばCaO)を同じく大量に使用する必要があ
り、スラグ量が過大になるという操業上の問題も
ある。しかも該スラグ中には回収対象となるほど
に多くはないけれどもそのまま投棄するには公害
発生を惹起する程度の量のMnが混入しているの
で、スラグ処理に細心の注意を払わなければなら
ないという問題も抱えている。 [発明が解決しようとする問題点] そこで特公昭57−27166号に開示されている様
な酸素ガス吹錬法、即ち高炭素フエロマンガン溶
湯を対象としてこれに酸素ガスを吹込み、酸素に
よる脱炭を利用して中・低炭素フエロマンガンに
変換するという方法が提案されている。この方法
を更に詳細に検討すると、酸素吹込みの実施に先
立つて高炭素フエロマンガンをその融点より100
℃以上高くまで加熱しておき(炉ガスジヤケツト
ノズルを使用する)、酸素の吹込みに当たつては
1900℃近い高温度に昇温させて脱炭の促進を図
り、一方酸素吹きによつて形成されるMn酸化物
は石灰および珪素合金の添加によつて還元回収す
るという構成が採られている。しかしながらMn
は沸点が比較的低く且つ蒸気圧も高いので、上記
酸化による損失だけでなく蒸発による損失を考慮
する必要があり、電力コストの代りにMn歩留り
が低いという面でコスト高を避けることができな
いと考えられている。これに対し特開昭60−
56051号では、上底吹きを併行的に実施できる様
に構成された反応容器を用い、上吹き酸素ガスに
よる脱炭を、不活性ガスの底吹きによる撹拌効果
を利用して促進し、1830℃止まりの温度で高炭素
フエロマンガンを吹錬する方法が提案されてい
る。この方法によると酸素ガスの上吹きによる脱
炭である為、高炭素領域では大きな脱炭酸素効率
(供給酸素のうち脱炭反応に費やされた酸素の割
合)を期待できるが、中炭素領域から低炭素領域
にかけては炭素拡散律速になる為脱炭酸素効率が
低下し、目標C濃度へ下る迄の吹錬時間が長くな
ると共に、その分過剰の酸素が供給されることと
なつてMnの酸化損失が増大していくという欠点
があつた。 更に特開昭60−67608号では底吹きガスの一部
を酸素ガスに変更し(残りは不活性ガスのまま)
上からと底からの酸素吹きを併用することによつ
て初期段階での脱炭を促進すると共に、所定の
中・低炭素領域まで一気に下げてきた段階で酸素
の吹込みを上吹き、底吹き共完全に停止し、その
後は底吹不活性ガスによつて溶湯の撹拌を行なう
と共に、上記脱炭プロセスにおいて形成された
Mn酸化物をSi合金やAl等の還元剤を投入するこ
とによつて還元(Mnを回収)し、中・低炭素フ
エロマンガンを製造するという方法が提案されて
いる。しかしこの方法で使用される底吹酸素ガス
量は上吹酸素ガス量の高々6〜7%止まりである
為炭素濃度を中・低炭素領域まで下げようとする
ならば、該炭素濃度領域では脱炭酸素効率が低い
ことに鑑み、かなりの時間に亘つて上底吹き吹錬
を実行しなければならなくなる。従つて酸素吹込
総量の増大とこれに伴なうMn酸化ロスの増大と
いう問題が顕著になり、該脱炭プロセスに続いて
Si合金等によるMn酸化物の回収という工程を付
加するにしても、Si合金等の還元剤自身が高価で
あるから、全体として考えれば極めて不経済な方
法であると言わざるを得ない。 本発明は従来技術における上記の如き欠点を憂
慮してなされたものであつて、安価な高炭素フエ
ロマンガンを原料として吹錬するという点は踏襲
するが吹錬中のMn酸化をできる限り抑制するこ
とによつて経済的に中・低炭素フエロマンガンを
製造し得る方法を提供しようとするものである。
即ち吹錬中に燃焼するMn量を極力抑制すること
としたので、Mn量の低減をMn酸化物や還元剤
の投入によつて補償するにしても、その為の原料
コストを最小限に抑えることのできる吹錬方法の
確立を目的とするものである。 [問題点を解決する為の手段] 本発明者らは、上記従来技術の欠点を分析し、
脱炭素酸素効率の大きい前期と、脱炭酸素効率の
小さい後期にかけて吹錬方式を制御することを骨
子とする本発明を完成した。即ち本発明に係る
中・低炭素フエロマンガンの製造方法とは、高炭
素フエロマンガン溶湯を対象とし、酸素ガスの上
吹きと酸素および不活性ガスの底吹きによつて所
定炭素量まで脱炭する第1工程と、酸素ガスの底
吹きと不活性ガスの底吹きを併用して所望の炭素
量まで脱炭する第2工程に分けて吹錬すると共
に、前記第1工程および第2工程の実施途中およ
び/または第2工程の終了後にMn酸化物及び還
元剤を添加することによつて溶湯中のMn量を調
節する(製品のMn含有率を高める)様に構成し
た点に要旨を有するものである。従つて本発明は
高炭素フエロマンガンから出発し、比較的高炭素
濃度領域(例えばC濃度:3.0〜2.5%)を経て
(第1工程)中炭素フエロマンガン(例えばC濃
度:1.9〜1.7%)に到達(第2工程)する方法
と、同じく高炭素フエロマンガンから出発し、一
般的な中濃度の炭素領域(例えばC濃度、:2.5〜
1.9%)を経て(第1工程)低炭素フエロマンガ
ン(例えばC濃度:0.95〜0.70%)に到達(第2
工程)する方法を包含している。そしてMn量の
補償については、任意の時点でMn酸化物と還元
剤を投入し、吹錬中に形成されたMn酸化物およ
び追加投入したMn酸化物を還元し、金属Mnと
して溶湯中に歩留らせることとした。尚吹錬途中
でMn酸化物を投入してMnOの活量を高めると、
Mnの酸化反応平衡が被酸化方向に傾くのを多少
とも抑制し、むしろ脱炭を促進するという効果を
もたらす。 [作用] 高炭素フエロマンガンを酸素吹錬によつて脱炭
しようとする場合の酸化反応を熱力学的に考察し
てみると、 MnO+C=CO+Mn K=PCO・aMo/aMoO・aC logK=−12853/T+7.91 で示される関係が成立することが知られている。 従つて低温ではMnの酸化が優先し、高温では
Cの酸化が優先するという傾向が認められる。し
かしCの酸化によつて発生し溶湯の表面に存在す
るCOの影響を、例えばPCO(COの分圧)という観
点から見ると、低温であつてもPCOが低ければC
の酸化が優先するという傾向も認められる。尚温
度に関連して述べると、高温側になるほどMnの
蒸発ロスが顕著になるという係合がある。また
MnOの活量が高いほど上記反応式は右方向に進
み易くなつて脱炭が促進される。さらにCの活量
が高いほど脱炭が促進される。これらの傾向を総
括すると、高炭素フエロマンガンの脱炭吹錬は、
低温側で実施した方が安全であり、低温吹錬にお
けるC酸化の低迷はPCOの低減とMn酸化物の投入
によつて解消する方が有利であるという指針が得
られる。尚ここで添加されるMn酸化物としては
一般にMn鉱石が使用される。しかしその種類が
限定されるものではなく、Mn酸化物を含有する
ものであれば何でもよい。例えば高炭素フエロマ
ンガンやシリコンマンガンを製造するときに副生
するMnスラグやMn電池の廃棄物なども使用で
きる。正しMn鉱石やMnスラグの様にSiO2を含
有するもの添加するときは、Mn酸化物の活量を
高める上でもスラグ層を塩基性に保つ必要があ
り、CaO等を加えて塩基度を高めることが推奨さ
れる。 ところで原料となる高炭素フエロマンガンの温
度は、還元電気炉やシヤフト炉で製造する場合は
これらからの出湯温度、或は誘導炉やアーク炉に
よる再溶解で製造する場合は溶け落ち温度によつ
て夫々定められるが、いずれにしても必要以上の
高温はMnの蒸発ロスを招くので可及的に低温で
あることが望ましく、一般的には1300〜1400℃程
度で行なわれることになる。従つて吹錬の初期に
は溶湯温度が低く、またCの活量も高いのでこの
点では前記指針に沿つているという利点がある。
しかし低温吹錬におけるMnの酸化反応は必ずし
も十分低いという訳ではなく、本発明の第1工程
では酸素ガスの上下吹きを併用することとしてい
るので、初期の吹錬ではCの酸化とMnの酸化が
いずれも顕著に進行する。そしてこれらの酸化反
応による発熱は溶湯温度の上昇をもたらし、それ
に従つて脱炭酸素効率も60〜90%に上昇する。 こうして脱炭反応が進行し、フエロマンガン中
のC濃度が2%前後まで下つてくると、溶湯温度
が高温であるにもかかわらず脱炭酸素効率が低下
しはじめ、相対的にMnの酸化反応が顕著に進行
する。 従つて本発明ではこの段階で酸素の上吹きを中
止し、それ以上の脱炭は底吹酸素に主役を荷なわ
せることとする。即ちCの活量が低下した状態で
の脱炭はCの拡散律速で進行するので第2工程で
は酸素の底吹きと不活性ガスの底吹きによる穏や
かな脱炭を行なわせることとし、脱炭の進行に応
じて酸素比率(酸素ガス量/不活性ガス量)を低
下させる。最後には不活性ガスの単独底吹きでし
めくくることもある。酸素比率が低下した分は不
活性ガス吹込量の相対的増大又は絶対的に増大よ
つて不活性ガス比率の増大となつて現われ、脱炭
酸素効率が比較的高レベルに保持されるので、
Mn酸化の少ない状態で脱炭が促進され、目標と
する炭素レベルまで吹錬を続行する。尚第2工程
中においてもMn酸化物を投入すれば脱炭の進行
に寄与し得ることは言うまでもない。また本発明
で使用される不活性ガスとしては一般にArやN2
が汎用されるが、底吹ノズルの保護を目的とする
場合は炭化水素系ガスの使用も可能であり、もと
よりその種類は本発明を制限するものではない。
又酸素底吹きと不活性ガス底吹きは、単管ノズル
を介して行なつても良いが、2重管以上の復層ノ
ズルを使用し、内管から酸素ガスを、外管から不
活性ガスを不々吹込む様に構成しておけば、ノズ
ルの熱損防止という意味で好結果が得られる。 以上述べた様に本発明では、炭素濃度の推移ま
たは脱炭酸素効率の変化を見合わせながら2段階
に分けて効率的な脱炭を行なうので、Mnの酸化
ロスを可及的に抑制される。しかしながら吹錬工
程中のMn酸化ロスは、これを完全に防ぎ得る訳
ではない。また吹錬温度の調節用として冷却剤
(一般に中・低炭素フエロマンガン冷塊)を投入
する場合があるが、該冷却剤中のMn量が少なけ
れば吹錬終了時のMn含有量も当然低くなるし、
一方前述の様にMn酸化物の投入が必須要件とな
つている本発明では吹錬終了後のMn酸化物量は
かなり多くなる。そこで本発明では還元剤を投入
(一般的には酸素吹錬後である方が好ましい)し
てスラグ中のMn酸化物を還元し溶湯中のMn量
を増大させる様に工夫している。尚上記還元剤と
しては、フエロシリコン、金属Si、シリコマンガ
ン、金沿Ca、金属Al等を非限定的に例示するこ
とができる。 尚Mn酸化物は吹錬の進行中に添加することが
推奨されるが、脱炭でのMn酸化物が少ないとき
は吹錬終了後であつてもかまわない。 以上で本発明の重要ポイントを説明したが、次
に本発明を実施する上で好適な条件を説明する。 まず脱炭の第2工程における不活性ガスの底吹
量は、底吹き酸素ガス100容量部に対して20容量
部以上とすることが好ましく、20容量部未満であ
ると撹拌効果の不十分によつて脱炭酸素効率の増
大が少なくなり、その結果として脱炭の進行が抑
制され、結果的にMnの酸化ロスが増大する。従
つてより好ましい量は50容量部以上である。しか
し不活性ガス量が過剰になると溶湯温度を低下さ
せ、前述の如くMnの酸化が促進される。従つて
好ましい上限は400容量部であり、更に好ましい
上限は200容量部である。上記は本発明を総括し
て述べる場合であつて、目的とするフエロマンガ
ン中の目標C量に応じて増減することが望まれ
る。例えば中炭素フエロマンガン(たとえばC濃
度:1.9〜1.7%)を目標とする場合は、第1工程
における目標C濃度をたとえば3.0〜2.5%とし、
第2工程における不活性ガスの底吹量を20〜100
容量部(対酸素底吹量100容量部)に制御し、一
方低炭素フエロマンガン(たとえばC濃度:0.95
〜0.70%)を目標とする場合は第1工程における
目標C濃度をたとえば2.5〜1.9%とし、第2工程
における不活性ガスの吹込量を50〜200容量部
(同)に制御することが例示される。 次に該第2工程におる溶湯温度の制御を説明す
る。本発明は目標C濃度を2段階に分けて吹き下
げる様に制御しており、第1工程においては中間
目標として掲げる所定量の炭素濃度まで一気に脱
炭しているので、第2工程において更に所望の炭
素濃度まで吹下げる為の負荷が軽減されている。
従つて第2工程では溶湯温度を必要以上に高める
必要はなく、1800℃如何で十分である。1800℃を
超えるとMnの蒸発が盛んになるので回避しなけ
ればならない。但し低温になり過ぎると、前述の
如くMnの酸化が進行し易くなるのでできる限る
高温側、具体的には165℃以上にして脱炭酸素効
率の維持を図り、脱炭の進行に寄与せしめること
が推奨される。 上記説明における第1工程から第2工程への切
り換えポイントは、C濃度が所定値になることを
一応の基準としたが、第1工程の吹錬中に脱炭酸
素効率の推移をチエツクしておき、ある値以下
(例えば40〜25%)になれば第2工程への制御に
切り替えるという風に制御することも本発明の技
術的範囲に含まれる。 以上の様に第1工程は上吹酸素を中心とする脱
炭を行ない、第2工程では底吹酸素と底吹不活性
ガスの協力による脱炭操業を行なう方法を採用し
且つMn酸化物の投入によつて脱炭に好適な条件
を作る様に構成したので、第1図に示す様に、第
2工程における脱炭酸素効率を40〜50%のレベル
(破線)に維持することも可能であり、従来の様
に1段で最終目標濃度まで脱炭していた場合(第
1図の実線最終段、脱炭酸素効率:5〜15%)に
比べて効率の良い脱炭を行なうことができる。 [実施例] 実施例 1 MgO−C系レンガを内張りした内径600mmの反
応容器の容器底部中央に設置した2重管ノズルよ
り、内該管合計0.4Nm3/分のArを吹きながら高
炭素フエロマンガン溶湯(第1表参照)450Kgを
装入した。装入後の溶湯温度は1325℃であつた。
その後底吹きノズル外管よりArを0.25Nm3/分、
内管より酸素0.5Nm3/分の速度で吹き込むと同
時に、容器の上部に設置した水冷ランスより酸素
を1.5Nm3/分の速度で吹き込み22分間吹錬を行
なつた。その後上吹き酸素を停止して底吹き吹錬
のみを19分間続けた。この間Mn鉱石を60Kg、生
石灰を30Kg少しずつ添加した。そして吹錬終了後
はAr(0.4Nm3/分)を底吹きしつつフエロシリコ
ン25Kgと生石灰25Kgを分解投入し、最後に除滓、
出湯しメタルを鋳造した。添加物の成分は第2表
に併記した。Arリンス終了時の溶湯の成分組成
及び温度は第1表に示す通りでありMn含有量の
高い低炭素フエロマンガンを製造できた。また鋳
造したメタルは369Kgであり、歩留は75.1%であ
つた。 実施例 2 実施例1と同様の反応容器をもちいて脱炭精練
を行なうにあたり、底吹き2重管ノズルより
0.4Nm3/分のArを吹きながら第1表に示した高
炭素フエロマンガン溶湯500Kgを容器内に装入し
た。装入後の溶湯温度は1350℃であつた。その後
底吹きノズルの外管よりArを0.25Nm3/分、内管
より酸素を0.5Nm3/分の速度で吹き込むと同時
に容器上部に設置した水冷ランスより酸素を
1.5Nm3/分の速度で吹き込み26分間吹錬を続行
した。この間にMn鉱石40Kg、生石灰20Kgを投入
した。その後上吹き酸素を停止し、酸素0.5N
m3/分で22分間継続して吹錬を終了した。この間
にMn鉱石20Kg、生石灰10Kgを分割投入した。吹
錬終了後底吹きノズルによりArのみを内外管合
計0.4Nm3/分で吹き込みながら蛍石15Kg、フエ
ロシリコン55.5Kg、生石灰84Kgを分割投入し、除
滓後出場、鋳造した。鋳造終了時のメタル成分は
第1表に示すとおりであり、またMn含有量の高
い低炭素フエロマンガンが得られた。鋳造したメ
タルは474Kgで歩留は89.4%であつた。尚添加物
の成分は第2表に併記した。
[Industrial Application Field] The present invention relates to a method for producing medium- and low-carbon ferromanganese by blowing high-carbon ferromanganese molten metal. Specifically, the Mn yield is improved by controlling the progress of decarburization in two stages. The present invention relates to a method for producing medium- to low-carbon ferromanganese that can efficiently achieve a target C content without adversely affecting the carbon content. [Prior art] The conventional method for producing medium- to low-carbon ferromanganese is the so-called silicide method, which uses the mutual solubility of C and Si in Fe-Mn alloy to achieve the target C content. amount of Si−Mn
Molten metal is produced (electric furnace), and Mn such as Mn ore is added to it.
The conventional method was to add an oxide to oxidize and remove the Si in Si-Mn. Since this method uses an electric furnace, it has the economical problem of high electricity costs, and it also requires the use of basic oxides to capture SiO 2 , which is produced in large quantities by the above oxidation removal process. It is also necessary to use a large amount of (for example, CaO), and there is also an operational problem that the amount of slag becomes excessive. Moreover, although the amount of Mn contained in the slag is not large enough to be collected, it does contain enough Mn to cause pollution if it is simply dumped, so the problem is that great care must be taken when disposing of the slag. I also have [Problems to be Solved by the Invention] Therefore, the oxygen gas blowing method as disclosed in Japanese Patent Publication No. 57-27166, in which oxygen gas is blown into the high carbon ferromanganese molten metal, is decarburized by oxygen. A method has been proposed in which ferromanganese is converted into medium- to low-carbon ferromanganese. Examining this method in more detail, it is found that prior to performing oxygen blowing, high carbon ferromanganese is
Heat it to a temperature above ℃ (using a furnace gas jacket nozzle), and when blowing oxygen,
The structure is such that decarburization is promoted by raising the temperature to a high temperature close to 1900°C, while Mn oxides formed by oxygen blowing are reduced and recovered by adding lime and silicon alloy. However, Mn
Since Mn has a relatively low boiling point and high vapor pressure, it is necessary to consider not only the loss due to oxidation but also the loss due to evaporation, and the cost increase cannot be avoided due to the low Mn yield in exchange for the electricity cost. It is considered. On the other hand, JP-A-60-
In No. 56051, a reaction vessel configured to perform top-bottom blowing in parallel was used, and decarburization by top-blowing oxygen gas was promoted using the stirring effect of bottom-blowing inert gas. A method of blowing high-carbon ferromanganese at a freezing temperature has been proposed. According to this method, since decarburization is performed by upward blowing of oxygen gas, a high decarburization oxygen efficiency (ratio of oxygen consumed for decarburization reaction out of supplied oxygen) can be expected in the high carbon region, but in the medium carbon region In the low-carbon region, carbon diffusion becomes rate-limiting, so the decarburization oxygen efficiency decreases, and the blowing time until the target C concentration is reached becomes longer. The disadvantage was that oxidation loss increased. Furthermore, in JP-A No. 60-67608, part of the bottom blowing gas was changed to oxygen gas (the rest remained inert gas).
By using a combination of oxygen blowing from the top and the bottom, decarburization is promoted in the initial stage, and when the oxygen has been rapidly lowered to the specified medium/low carbon range, the oxygen blowing is changed from top blowing to bottom blowing. After that, the molten metal is stirred by bottom-blown inert gas, and the molten metal formed in the decarburization process is removed.
A method has been proposed in which Mn oxide is reduced (Mn is recovered) by adding a reducing agent such as Si alloy or Al to produce medium- to low-carbon ferromanganese. However, the amount of bottom-blown oxygen gas used in this method is only 6 to 7% of the top-blown oxygen gas amount, so if you are trying to lower the carbon concentration to a medium-low carbon range, it is necessary to In view of the low carbon-oxygen efficiency, top-bottom blowing must be carried out over a considerable period of time. Therefore, the problem of an increase in the total amount of oxygen injection and an accompanying increase in Mn oxidation loss has become significant, and following the decarburization process,
Even if the process of recovering Mn oxide using a Si alloy or the like is added, the reducing agent itself, such as a Si alloy, is expensive, so it must be said that this is an extremely uneconomical method when considered as a whole. The present invention was made in consideration of the above-mentioned drawbacks of the prior art, and although it follows the point of blowing using inexpensive high-carbon ferromanganese as a raw material, it is necessary to suppress Mn oxidation during blowing as much as possible. The purpose of the present invention is to provide a method for economically producing medium- to low-carbon ferromanganese.
In other words, we decided to suppress the amount of Mn burned during blowing as much as possible, so even if the reduction in the amount of Mn is compensated for by adding Mn oxide or a reducing agent, the cost of raw materials for this can be kept to a minimum. The purpose is to establish a method of blowing that can be used. [Means for solving the problems] The present inventors analyzed the drawbacks of the above-mentioned prior art, and
The present invention is based on controlling the blowing method during the early stage when the decarbonizing oxygen efficiency is high and the latter stage when the decarburizing oxygen efficiency is low. That is, the method for producing medium/low carbon ferromanganese according to the present invention is a first step in which a high carbon ferromanganese molten metal is decarburized to a predetermined carbon content by top blowing with oxygen gas and bottom blowing with oxygen and inert gas. The blowing process is divided into a second step of decarburizing to a desired carbon content using a combination of oxygen gas bottom blowing and inert gas bottom blowing, and during the implementation of the first and second steps, The gist is that the amount of Mn in the molten metal is adjusted (increasing the Mn content of the product) by adding Mn oxide and a reducing agent after the completion of the second step. . Therefore, the present invention starts from high carbon ferromanganese, passes through a relatively high carbon concentration region (for example, C concentration: 3.0 to 2.5%), and then reaches medium carbon ferromanganese (for example, C concentration: 1.9 to 1.7%) (first step). (2nd step) Similarly, starting from high carbon ferromanganese, a general medium carbon concentration range (e.g. C concentration: 2.5~
1.9%) (first step) to reach low carbon ferromanganese (e.g. C concentration: 0.95-0.70%) (second step).
process). In order to compensate for the amount of Mn, Mn oxide and a reducing agent are added at any point in time to reduce the Mn oxide formed during blowing and the additionally added Mn oxide, which is then added to the molten metal as metallic Mn. I decided to keep it. If Mn oxide is added during blowing to increase the activity of MnO,
This has the effect of somewhat suppressing the tilting of the Mn oxidation reaction equilibrium toward the oxidation direction, and rather promoting decarburization. [Effect] If we consider thermodynamically the oxidation reaction when trying to decarburize high carbon ferromanganese by oxygen blowing, we find that MnO + C = CO + Mn K = P CO・a Mo /a MoO・a C logK It is known that the relationship expressed as =-12853/T+7.91 holds true. Therefore, there is a tendency that oxidation of Mn takes priority at low temperatures, and oxidation of C takes priority at high temperatures. However, if we look at the influence of CO generated by the oxidation of C and present on the surface of the molten metal from the perspective of P CO (partial pressure of CO), we can see that even at low temperatures, if P CO is low, then C
There is also a tendency for oxidation to take precedence. Regarding temperature, there is a relationship in which the higher the temperature, the more significant the evaporation loss of Mn becomes. Also
The higher the activity of MnO, the more easily the above reaction equation proceeds in the right direction, promoting decarburization. Furthermore, the higher the activity of C, the more decarburization is promoted. To summarize these trends, decarburization blowing of high carbon ferromanganese
This suggests that it is safer to carry out the process at low temperatures, and that it is advantageous to eliminate the stagnation of C oxidation in low temperature blowing by reducing P CO and adding Mn oxide. Note that Mn ore is generally used as the Mn oxide added here. However, the type thereof is not limited, and any material containing Mn oxide may be used. For example, Mn slag, which is produced as a by-product when producing high-carbon ferromanganese or silicon manganese, or waste from Mn batteries can also be used. When adding materials containing SiO 2 such as Mn ore or Mn slag, it is necessary to keep the slag layer basic in order to increase the activity of Mn oxide. It is recommended to increase the By the way, the temperature of high carbon ferromanganese, which is a raw material, depends on the temperature at which the hot water is discharged when manufactured in a reduction electric furnace or shaft furnace, or the melt-through temperature when manufactured by remelting in an induction furnace or arc furnace. However, in any case, higher temperatures than necessary will result in evaporation loss of Mn, so it is desirable to keep the temperature as low as possible, and generally the temperature is about 1300 to 1400°C. Therefore, at the beginning of blowing, the temperature of the molten metal is low and the activity of C is high, so in this respect there is an advantage that the above guideline is met.
However, the oxidation reaction of Mn in low-temperature blowing is not necessarily sufficiently low, and in the first step of the present invention, upper and lower blowing of oxygen gas is used together, so in the initial blowing, oxidation of C and oxidation of Mn are performed. progresses significantly in both cases. The heat generated by these oxidation reactions causes the temperature of the molten metal to rise, and the oxygen decarburization efficiency increases accordingly to 60 to 90%. As the decarburization reaction progresses and the C concentration in ferromanganese falls to around 2%, the decarburization oxygen efficiency begins to decrease despite the high temperature of the molten metal, and the oxidation reaction of Mn becomes relatively slow. progresses noticeably. Therefore, in the present invention, the top blowing of oxygen is stopped at this stage, and the main role of the further decarburization is caused by the bottom blowing oxygen. In other words, decarburization in a state where the activity of C is reduced progresses at a rate controlled by diffusion of C, so in the second step, gentle decarburization is performed by bottom blowing of oxygen and bottom blowing of inert gas. The oxygen ratio (oxygen gas amount/inert gas amount) is decreased as the process progresses. The process may end with a single bottom blow of inert gas. The decrease in the oxygen ratio appears as a relative or absolute increase in the amount of inert gas blown into the inert gas ratio, and the decarburization oxygen efficiency is maintained at a relatively high level.
Decarburization is promoted in a state with little Mn oxidation, and blowing continues to the target carbon level. It goes without saying that adding Mn oxide during the second step can also contribute to the progress of decarburization. In addition, the inert gas used in the present invention generally includes Ar and N2 .
is commonly used, but if the purpose is to protect the bottom blowing nozzle, it is also possible to use hydrocarbon gas, and the type thereof does not limit the present invention.
Oxygen bottom blowing and inert gas bottom blowing may be performed through a single tube nozzle, but a double layer nozzle or more may be used to supply oxygen gas from the inner tube and inert gas from the outer tube. If the nozzle is configured to be injected intermittently, good results can be obtained in terms of preventing heat loss to the nozzle. As described above, in the present invention, efficient decarburization is performed in two stages while taking into account changes in carbon concentration or decarburization oxygen efficiency, so that oxidation loss of Mn can be suppressed as much as possible. However, Mn oxidation loss during the blowing process cannot be completely prevented. In addition, a coolant (generally medium/low carbon ferromanganese cold blocks) is sometimes added to adjust the blowing temperature, but if the amount of Mn in the coolant is small, the Mn content at the end of blowing will naturally be low. death,
On the other hand, in the present invention, where the addition of Mn oxide is an essential requirement as described above, the amount of Mn oxide after blowing is quite large. Therefore, in the present invention, a reducing agent is introduced (generally preferably after oxygen blowing) to reduce Mn oxides in the slag and increase the amount of Mn in the molten metal. In addition, examples of the above-mentioned reducing agent include ferrosilicon, metal Si, silicomanganese, gold-plated Ca, metal Al, etc., without limitation. It is recommended that Mn oxide be added during the progress of blowing, but if there is little Mn oxide during decarburization, it may be added after blowing is completed. The important points of the present invention have been explained above, and next, suitable conditions for carrying out the present invention will be explained. First, the amount of bottom-blown inert gas in the second step of decarburization is preferably 20 parts by volume or more per 100 parts by volume of bottom-blown oxygen gas, and if it is less than 20 parts by volume, the stirring effect may be insufficient. Therefore, the increase in decarburization oxygen efficiency is reduced, and as a result, the progress of decarburization is suppressed, and as a result, the oxidation loss of Mn increases. Therefore, a more preferable amount is 50 parts by volume or more. However, when the amount of inert gas becomes excessive, the temperature of the molten metal is lowered, and the oxidation of Mn is promoted as described above. Therefore, a preferable upper limit is 400 parts by volume, and a more preferable upper limit is 200 parts by volume. The above is a general description of the present invention, and it is desired that the amount be increased or decreased depending on the target amount of C in the ferromanganese. For example, when targeting medium carbon ferromanganese (for example, C concentration: 1.9 to 1.7%), the target C concentration in the first step is, for example, 3.0 to 2.5%,
The bottom blowing amount of inert gas in the second step is 20 to 100.
part by volume (bottom blowing amount relative to oxygen: 100 parts by volume), while low carbon ferromanganese (for example, C concentration: 0.95
0.70%), the target C concentration in the first step is set to 2.5 to 1.9%, and the amount of inert gas blown in the second step is controlled to 50 to 200 parts by volume (same). be done. Next, control of the molten metal temperature in the second step will be explained. In the present invention, the target C concentration is controlled to be blown down in two stages, and in the first step, the carbon concentration is decarburized all at once to a predetermined amount of carbon concentration, which is set as an intermediate target. The load to blow down to the carbon concentration is reduced.
Therefore, in the second step, there is no need to raise the temperature of the molten metal more than necessary, and a temperature of 1800°C is sufficient. If the temperature exceeds 1800°C, the evaporation of Mn will increase and must be avoided. However, if the temperature becomes too low, the oxidation of Mn will easily progress as mentioned above, so it is necessary to maintain the decarburization oxygen efficiency by keeping it as high as possible, specifically at 165°C or higher, to contribute to the progress of decarburization. is recommended. The point of switching from the first step to the second step in the above explanation is based on the fact that the C concentration reaches a predetermined value. It is also within the technical scope of the present invention to perform control in such a manner that the temperature is increased, and when the value falls below a certain value (for example, 40 to 25%), the control is switched to the second step. As mentioned above, in the first step, decarburization is carried out mainly using top-blown oxygen, and in the second step, a method is adopted in which decarburization is carried out by the cooperation of bottom-blown oxygen and bottom-blown inert gas, and Mn oxide is decarburized. Since the structure was designed to create conditions suitable for decarburization through input, it is possible to maintain the decarburization oxygen efficiency in the second step at a level of 40 to 50% (dashed line), as shown in Figure 1. This means that decarburization is more efficient than the conventional case where decarburization is carried out to the final target concentration in one stage (the final stage shown by the solid line in Figure 1, decarburization oxygen efficiency: 5 to 15%). I can do it. [Example] Example 1 High-carbon ferromanganese was blown from a double tube nozzle installed at the center of the bottom of a reaction vessel lined with MgO-C bricks with an inner diameter of 600 mm while blowing Ar at a total rate of 0.4 Nm 3 /min. 450 kg of molten metal (see Table 1) was charged. The temperature of the molten metal after charging was 1325°C.
After that, Ar was applied at 0.25Nm 3 /min from the bottom blowing nozzle outer tube.
Blowing was carried out for 22 minutes by blowing oxygen at a rate of 0.5 Nm 3 /min from the inner pipe and at the same time blowing oxygen at a rate of 1.5 Nm 3 /min from a water-cooled lance installed at the top of the container. After that, the top blowing oxygen was stopped and only the bottom blowing was continued for 19 minutes. During this time, 60 kg of Mn ore and 30 kg of quicklime were added little by little. After blowing, 25 kg of ferrosilicon and 25 kg of quicklime were decomposed and introduced while blowing Ar (0.4 Nm 3 /min) from the bottom, and finally, the slag was removed.
The metal was cast using hot water. The ingredients of the additives are also listed in Table 2. The composition and temperature of the molten metal at the end of Ar rinsing were as shown in Table 1, and low carbon ferromanganese with a high Mn content could be produced. The weight of the cast metal was 369 kg, and the yield was 75.1%. Example 2 When performing decarburization scouring using the same reaction vessel as in Example 1, a bottom blowing double pipe nozzle was used.
While blowing Ar at 0.4 Nm 3 /min, 500 kg of the high carbon ferromanganese molten metal shown in Table 1 was charged into the container. The temperature of the molten metal after charging was 1350°C. After that, Ar was blown at a rate of 0.25Nm 3 /min from the outer pipe of the bottom blowing nozzle, and oxygen was blown at a rate of 0.5Nm 3 /min from the inner pipe.At the same time, oxygen was blown from the water-cooled lance installed at the top of the container.
Blowing was continued at a rate of 1.5 Nm 3 /min for 26 minutes. During this period, 40 kg of Mn ore and 20 kg of quicklime were added. After that, stop the top blowing oxygen and 0.5N oxygen.
The blowing was continued for 22 minutes at m 3 /min. During this time, 20kg of Mn ore and 10kg of quicklime were added in portions. After blowing, 15 kg of fluorite, 55.5 kg of ferrosilicon, and 84 kg of quicklime were added in portions while blowing only Ar into the inner and outer tubes at a total rate of 0.4 Nm 3 /min using a bottom blowing nozzle, and after removing the sludge, the tube was cast and cast. The metal composition at the end of casting was as shown in Table 1, and low carbon ferromanganese with a high Mn content was obtained. The metal that was cast was 474 kg and the yield was 89.4%. The ingredients of the additives are also listed in Table 2.

【表】【table】

【表】 [発明の効果] 本発明は上記の様に構成されているので、脱炭
の進行を効果的に制御することができ、従来のシ
リサイド法や他の酸素脱炭法より経済的に中・低
炭素フエロマンガンを製造できる様になつた。
[Table] [Effects of the Invention] Since the present invention is configured as described above, it is possible to effectively control the progress of decarburization, and it is more economical than the conventional silicide method or other oxygen decarburization methods. It has become possible to produce medium and low carbon ferromanganese.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は上底吹きによる脱炭酸素効率の変化を
示す図である。
FIG. 1 is a diagram showing changes in decarburization oxygen efficiency due to top-bottom blowing.

Claims (1)

【特許請求の範囲】[Claims] 1 高炭素フエロマンガン溶湯を対象とし、酸素
ガスの上吹きと酸素および不活性ガスの底吹きに
よつて所定炭素量まで脱炭する第1工程と、酸素
ガスの底吹きと不活性ガスの底吹きを併用して所
望の炭素量まで脱炭する第2工程からなり、前記
第1工程および第2工程の実施途中および/また
は第2工程の終了後にMn酸化物及び還元剤を添
加することによつて溶湯中のMn量を調節するこ
とを特徴とする中・低炭素フエロマンガンの製造
方法。
1 The first step is to decarburize high-carbon ferromanganese molten metal to a predetermined carbon content by top blowing with oxygen gas and bottom blowing with oxygen and inert gas, and bottom blowing with oxygen gas and bottom blowing with inert gas. The process consists of a second step of decarburizing to a desired carbon content by using a combination of A method for producing medium/low carbon ferromanganese, characterized by adjusting the amount of Mn in the molten metal.
JP7533186A 1986-03-31 1986-03-31 Manufacture of medium-or low-carbon ferromanganese Granted JPS62230953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7533186A JPS62230953A (en) 1986-03-31 1986-03-31 Manufacture of medium-or low-carbon ferromanganese

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7533186A JPS62230953A (en) 1986-03-31 1986-03-31 Manufacture of medium-or low-carbon ferromanganese

Publications (2)

Publication Number Publication Date
JPS62230953A JPS62230953A (en) 1987-10-09
JPH0558050B2 true JPH0558050B2 (en) 1993-08-25

Family

ID=13573168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7533186A Granted JPS62230953A (en) 1986-03-31 1986-03-31 Manufacture of medium-or low-carbon ferromanganese

Country Status (1)

Country Link
JP (1) JPS62230953A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63206446A (en) * 1987-02-24 1988-08-25 Japan Metals & Chem Co Ltd Production of middle-and low-carbon ferromanganese
JPH0617537B2 (en) * 1988-06-14 1994-03-09 川崎製鉄株式会社 Method for producing medium and low carbon ferromanganese
JPH0621318B2 (en) * 1988-12-21 1994-03-23 川崎製鉄株式会社 Melting method of medium / low carbon ferromanganese
GB0209365D0 (en) 2002-04-24 2002-06-05 Boc Group Plc Injection of solids into liquids
GB0213376D0 (en) * 2002-06-11 2002-07-24 Boc Group Plc Refining ferroalloys

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497521A (en) * 1978-01-17 1979-08-01 Creusot Loire Refining of ferromanganese
JPS6056051A (en) * 1983-09-06 1985-04-01 Japan Metals & Chem Co Ltd Production of medium- and low-carbon ferromanganese

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497521A (en) * 1978-01-17 1979-08-01 Creusot Loire Refining of ferromanganese
JPS6056051A (en) * 1983-09-06 1985-04-01 Japan Metals & Chem Co Ltd Production of medium- and low-carbon ferromanganese

Also Published As

Publication number Publication date
JPS62230953A (en) 1987-10-09

Similar Documents

Publication Publication Date Title
JPH11158526A (en) Production of high p slag
JPH0558050B2 (en)
JPH044388B2 (en)
JP3606170B2 (en) Method for producing low nitrogen-containing chromium steel
JP3333795B2 (en) Method for denitrification of molten metal and method for denitrification and decarburization
JPH09165615A (en) Denitrifying method for molten metal
JPS6213405B2 (en)
WO2020152945A1 (en) Method for producing low-carbon ferromanganese
JPH0557349B2 (en)
JPS63130746A (en) Manufacture of low-silicon medium-or low-carbon ferromanganese
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JP7036993B2 (en) Method for producing low carbon ferromanganese
JPH02166256A (en) Method for refining medium-or low-carbon ferromanganese
JP7447878B2 (en) Method for decarburizing molten Cr and method for producing Cr-containing steel
JPS6056051A (en) Production of medium- and low-carbon ferromanganese
JP3870546B2 (en) Method for decarburizing and refining molten ferromanganese
JP2553204B2 (en) Tuyere protection method for bottom-blown and top-blown converters
JPH01312020A (en) Method for dephosphorizing molten iron by heating
JPH07173515A (en) Decarburization refining method of stainless steel
JPS62230950A (en) Manufacture of medium-or low-carbon ferromanganese
JPH093517A (en) Method for decarburization-refining stainless steel by blowing oxygen
JPH07216429A (en) Production of stainless crude molten steel using decarburized slag
JPH01316437A (en) Manufacture of medium-low carbon ferromanganese
JPS63130745A (en) Manufacture of medium-or low-carbon ferromanganese
JPH024938A (en) Manufacture of medium-carbon and low-carbon ferromanganese