JPS63130746A - Manufacture of low-silicon medium-or low-carbon ferromanganese - Google Patents

Manufacture of low-silicon medium-or low-carbon ferromanganese

Info

Publication number
JPS63130746A
JPS63130746A JP27692186A JP27692186A JPS63130746A JP S63130746 A JPS63130746 A JP S63130746A JP 27692186 A JP27692186 A JP 27692186A JP 27692186 A JP27692186 A JP 27692186A JP S63130746 A JPS63130746 A JP S63130746A
Authority
JP
Japan
Prior art keywords
decarburization
blowing
low
blown
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27692186A
Other languages
Japanese (ja)
Other versions
JPH0629478B2 (en
Inventor
Kotaro Yamamoto
浩太郎 山本
Shuzo Ito
修三 伊東
Toshio Onoe
尾上 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27692186A priority Critical patent/JPH0629478B2/en
Publication of JPS63130746A publication Critical patent/JPS63130746A/en
Publication of JPH0629478B2 publication Critical patent/JPH0629478B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To economically manufacture products without causing deterioration in Mn yield, by carrying out decarburization and desiliconization by means of top blowing of O2 gas and bottom blowing of O2 and inert gases into high-Si high-C ferromanganese and then by carrying out decarburization while specifying the composition of bottom-blown gas and the temp. of molten metal. CONSTITUTION:The top blowing of O2 gas and the bottom blowing of O2 and inert gases are applied to molten high-C ferromanganese of >=1.5% Si content, so that decarburization and desiliconization are carried out by decarburizing until the prescribed C content is reached and also by burning Si. After this primary stage, the top blowing of O2 is stopped and the bottom blowing is continues, so that decarburization is carried out until the desired C quantity is reached by regulating the amount of bottom-blown inert gas to >=20pts.vol. based on 100pts. vol. of the amount of bottom-blown O2 gas and also by controlling the temp. of the molten metal to 1,650-1,800 deg.C. Since decarburization and desiliconization mainly composed of top blowing of O2 is exerted in the primary stage and decarburization is accomplished by the combination of bottom-blown O2 and bottom-blown inert gases in the secondary stage as mentioned above, decarburizing efficiency in the secondary stage can be improved. Accordingly, Mn oxidation is minimized and the necessity of recovering Mn by using expensive reducing agents can be obviated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、Mn歩留りに悪影響を与えることなく経済的
に目標C量並びにSi量を達成するととのできる低St
中・低炭素フェロマンガンの製造方法に関するものであ
る。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides a low St.
The present invention relates to a method for producing medium/low carbon ferromanganese.

[従来の技術] 中・低炭素フェロマンガンを製造する従来の方法は、所
謂シリサイド法と呼ばれる方法であって、Fe−Mn合
金に対するC及びStの相互溶解度を利用することによ
って目標C含有量のSt−Mn溶湯を製造しく電気炉)
、これにMn鉱石等のMn酸化物を添加してSt−Mn
中のStを酸化除去するのが常法であった。この方法は
電気炉を使用するものである為電力コストの比重が高い
という経済上の問題を内包する他、上記酸化除去によっ
て大量に副生ずる5i02を捕捉する為の塩基性酸化物
(例えばCab)を同じく大量に使用する必要があり、
スラグ量が過大になるという操業上の問題もある。しか
も該スラグ中には回収対象となるほどに多くはないけれ
どもそのまま投棄すると公害発生を惹起する程度の量の
Mnが混入しているので、スラグ処理に細心の注意を払
わなければならないという問題も抱えている。さらにM
n酸化物の添加によりSiを酸化除去するに際してはS
i量の低下目標によってはMn酸化物を相当多量に使用
しなければならないこともあり、更に生成したS i 
02を中和する為に添加する塩基性酸化物(CaO等)
の使用量も相当に多量となり副原料コストが高騰すると
いう問題があった。一方低炭素化に関してもシリサイド
法によってJIS1号品(C< 1.0%、実質0.9
%)相当の低炭素フェロマンガンを製造しようとすれば
CとSiの相互溶解度の関係からSiを21〜22%含
有する51−Mn溶湯を原料とする必要があり、さらに
より一層の低炭素例えばC量がおよそ0.5%の低炭素
フェロマンガンを製造しようとするならば、原料である
51−Mn溶湯中のSt含有量を25〜26%まで高め
ておかなければならず、Mnよりも還元されにくいSL
をこの様に多量に含有させる為に莫大な電力を必要とす
るという欠点があった。またMn酸化物によるSi酸化
除去の工程では発熱反応によって熱補給があるとは言う
ものの熱量が絶対的に不足する為、アーク加熱による熱
補給を行なう必要があり、電極からのCのピックアップ
によって製品の炭素濃度が上昇する恐れがある等、一層
の低炭素・低SLのフェロマンガンを製造することは極
めて困難であった。
[Prior Art] The conventional method for producing medium- to low-carbon ferromanganese is the so-called silicide method, in which the target C content is achieved by utilizing the mutual solubility of C and St in Fe-Mn alloy. Electric furnace for producing St-Mn molten metal)
, Mn oxide such as Mn ore is added to this to form St-Mn.
The conventional method was to remove the St contained therein by oxidation. Since this method uses an electric furnace, it has the economical problem of high electricity costs, and it also uses basic oxides (such as Cab) to capture 5i02, which is produced in large quantities by the oxidation and removal process. It is also necessary to use a large amount of
There is also an operational problem that the amount of slag becomes excessive. Moreover, although the amount of Mn contained in the slag is not large enough to be collected, it does contain enough Mn to cause pollution if dumped as is, so there is a problem in that the slag must be treated with great care. ing. Further M
When oxidizing and removing Si by adding n oxide, S
Depending on the target for reducing the amount of i, it may be necessary to use a considerably large amount of Mn oxide, and further reduce the amount of Si produced.
Basic oxide (CaO etc.) added to neutralize 02
There was a problem in that the amount used was also considerably large, and the cost of auxiliary raw materials soared. On the other hand, regarding low carbonization, the silicide method is used to achieve JIS No. 1 product (C < 1.0%, essentially 0.9
%), it is necessary to use a molten 51-Mn containing 21 to 22% Si as a raw material due to the mutual solubility of C and Si, and even more low-carbon ferromanganese, such as In order to produce low-carbon ferromanganese with a C content of approximately 0.5%, the St content in the raw material molten 51-Mn must be increased to 25-26%, which is higher than that of Mn. SL that is difficult to reduce
It has the disadvantage that it requires a huge amount of electric power to contain such a large amount of. In addition, in the process of Si oxidation removal using Mn oxide, although heat is supplied by an exothermic reaction, the amount of heat is absolutely insufficient, so it is necessary to supply heat by arc heating, and the product is produced by picking up C from the electrode. It has been extremely difficult to produce ferromanganese with even lower carbon and lower SL, as there is a risk that the carbon concentration of ferromanganese may increase.

一層シリサイド法とは原理的に異なる製造法として、M
nスラグ中のCの溶解度がかなり低いことを利用して高
Mnスラグを還元して低炭素フェロマンガンを製造する
方法が提案されている。例えば特公昭57−36337
号公報にはMn含有スラグを水平偏心運動する容器に入
れFe−5tを加えて還元する方法が挙げられており、
この方法によればC含有量1%以下のフェロマンガンを
製造することは可能である。しかしながらこの方法では
Fe−3Lを添加する為SLが0.8〜0.9%残留し
、Siの残留が問題となる製品には使用できないという
欠点があった。また高価なFe−3iを多量に[例えば
270〜352Kg/l(製品フェロマンガン)]使用
する為副原料コストが高騰するという欠点があった。
As a manufacturing method that is fundamentally different from the single layer silicide method,
A method has been proposed for producing low-carbon ferromanganese by reducing high-Mn slag by taking advantage of the fact that the solubility of C in n-slag is quite low. For example, Tokuko Sho 57-36337
The publication describes a method in which Mn-containing slag is placed in a container that moves horizontally eccentrically and is reduced by adding Fe-5t.
According to this method, it is possible to produce ferromanganese with a C content of 1% or less. However, this method has the disadvantage that 0.8 to 0.9% of SL remains due to the addition of Fe-3L, and it cannot be used for products in which residual Si is a problem. Furthermore, since a large amount of expensive Fe-3i (for example, 270 to 352 kg/l (product ferromanganese)) is used, the cost of auxiliary raw materials increases.

[発明が解決しようとする問題点] 本発明はこうした事情に着目してなされたものであって
、Mn歩留りを悪化させることなく、Si量の低い中・
低炭素フェロマンガンを経済的に製造する方法を提供す
ることを目的とするものである。
[Problems to be Solved by the Invention] The present invention has been made with attention to these circumstances, and it is possible to solve the problem in medium- and low-Si content without deteriorating the Mn yield.
The object of the present invention is to provide a method for economically producing low carbon ferromanganese.

[問題点を解決する為の手段] しかして上記目的を達成した本発明方法は、St含有量
が1.5%以上の高炭素フェロマンガン溶湯を対象とし
酸素ガスの上吹きと酸素および不活性ガスの底吹きによ
って所定炭素量まで脱炭すると共にシリコンをも燃焼さ
せて脱炭・脱珪する第一工程と酸素ガスの底吹きと不活
性ガスの底吹きを併用し底吹酸素ガス量ioo容量部に
対する不活性ガス底吹量を20容量部以上とすると共に
溶湯温度を1650〜taoo℃に制御しつつ所望の炭
素量まで脱炭する第二工程からなる点に要旨を有するも
のである。尚本発明方法は脱炭を進行させる過程で比較
的高炭素領域の中炭素フェロマンガン(例えばC濃度:
3.0〜2.5%)を経て中炭素フェロマンガン(例え
ばC濃度=1.9〜1.6%)に到達(第2工程)する
方法と、同じく高炭素フェロマンガンから出発し、一般
的な中濃度の炭素領域(例えばC濃度:2.5〜1.9
%)を経て低炭素フェロマンガン(例えばC濃度: 0
.95〜0.70%)に到達(第2工程)する方法を包
含している。
[Means for Solving the Problems] The method of the present invention, which has achieved the above object, targets a high carbon ferromanganese molten metal with a St content of 1.5% or more, and uses top blowing of oxygen gas and oxygen and inert gas. The first step is to decarburize to a predetermined amount of carbon by bottom blowing gas, and also burn silicon to decarburize and desiliconize it, and the bottom blow of oxygen gas and bottom blowing of inert gas are combined to produce a bottom blowing oxygen gas amount of ioo. The gist of this method is that it consists of a second step in which the bottom blowing amount of inert gas is 20 parts by volume or more, and the temperature of the molten metal is controlled at 1650 to 100° C., while decarburizing to a desired carbon content. In addition, in the process of progressing decarburization, the method of the present invention uses medium carbon ferromanganese in a relatively high carbon region (e.g. C concentration:
3.0 to 2.5%) to reach medium carbon ferromanganese (e.g. C concentration = 1.9 to 1.6%) (second step), and also starting from high carbon ferromanganese and medium carbon concentration region (e.g. C concentration: 2.5-1.9
%) to low carbon ferromanganese (e.g. C concentration: 0
.. 95 to 0.70%) (second step).

[作用] 本発明は安価な高炭素フェロマンガン殊にStを1.5
%以上含有する言わば高Si高炭素フェロマンガンを原
料とし、Mnの酸化消耗を抑制しつつ酸化吹錬の手法を
合理的に活用して脱炭及び脱Siを進行させるものであ
る。即ち本発明においては上・底吹き機能を備えた反応
容器内に高Si高炭素フェロマンガン溶湯を投入し、炭
素の活量が高く脱炭が比較的容易な領域では不活性ガス
底吹きにより攪拌しながら酸素ガスを上・底吹きによっ
て十分に供給し脱炭を進行させると共にSLを酸化して
脱Stを行ない、炭素の活量が低下して脱炭反応が溶湯
中の炭素拡散速度に律せられる領域では、酸素上吹きを
止め酸素ガスおよび不活性ガスを所定の比率で底吹きし
て目標C含有量まで脱炭を進行させている。尚製鋼分野
の脱Stでは、脱炭に先立って予備膜Stを行なうのが
一般的であるが、本発明では炭素活量が高い第一工程に
おいて十分量の酸素を供給して脱炭と同時に脱Siを行
なうので予備膜St操作を行なわなくとも良く、安価で
はあるがSiが高い高炭素フェロマンガンを原料として
経済的に処理を遂行することができる。
[Function] The present invention uses inexpensive high carbon ferromanganese, especially with a St of 1.5.
% or more of high-Si, high-carbon ferromanganese is used as a raw material, and decarburization and Si removal are promoted by rationally utilizing an oxidation blowing method while suppressing oxidative consumption of Mn. That is, in the present invention, a high-Si, high-carbon ferromanganese molten metal is charged into a reaction vessel equipped with top and bottom blowing functions, and in regions where carbon activity is high and decarburization is relatively easy, stirring is performed by inert gas bottom blowing. At the same time, sufficient oxygen gas is supplied by top and bottom blowing to advance decarburization and oxidize SL to remove St. As a result, the carbon activity decreases and the decarburization reaction becomes controlled by the carbon diffusion rate in the molten metal. In the area where the target C content is reached, the top blowing of oxygen is stopped and the bottom blowing of oxygen gas and inert gas is carried out at a predetermined ratio to advance decarburization to the target C content. In de-St in the steelmaking field, it is common to perform a preparatory film St before decarburization, but in the present invention, a sufficient amount of oxygen is supplied in the first step where carbon activity is high, and decarburization is simultaneously performed. Since Si is removed, there is no need to perform the preliminary film St operation, and the process can be carried out economically using high-carbon ferromanganese, which is inexpensive but has a high Si content, as a raw material.

以下本発明を更に詳述する。The present invention will be explained in more detail below.

高炭素フェロマンガンを酸素吹錬によって脱炭しようと
する場合の酸化反応を熱力学的に考察してみると、低温
ではMnの酸化が優先し、高温ではCの酸化が優先する
という傾向が認められる。
When we consider thermodynamically the oxidation reaction when high carbon ferromanganese is decarburized by oxygen blowing, we find that the oxidation of Mn takes priority at low temperatures, and the oxidation of C takes priority at high temperatures. It will be done.

またCの活量が高いぼどCの酸化が優先する傾向も認め
られる。尚Stはかなり酸化され易い為に温度の如何に
かかわらずMnの酸化に優先して進行する。従ってここ
では主としてCとMnの酸化について考える。一方Cの
酸化によって発生し溶湯の表面に存在するcoの影響を
、例えばp c。
There is also a tendency for oxidation of C to take precedence in cases where C has a high activity. Incidentally, since St is quite easily oxidized, the oxidation proceeds prior to the oxidation of Mn regardless of the temperature. Therefore, we will mainly consider the oxidation of C and Mn here. On the other hand, the influence of Co generated by the oxidation of C and existing on the surface of the molten metal can be considered, for example, by PC.

(coの分圧)という観点から見ると、低温であっても
p coが低ければCの酸化が優先するという傾向も認
められる。尚温度に関連して述べると、高温側になるほ
どMnの蒸発ロスが顕著になるという傾向がある。これ
らの傾向を総括すると、高St高炭素フェロマンガンの
脱炭吹錬は、低温側で実施した方が安全であり、低温吹
錬におけるC酸化の低迷はP eoの低減によって解消
する方が有利であるという指針が得られる。
From the viewpoint of (partial pressure of co), there is also a tendency that oxidation of C takes precedence if p co is low even at low temperatures. Regarding temperature, there is a tendency that the higher the temperature, the more significant the evaporation loss of Mn becomes. Summarizing these trends, it is safer to perform decarburization blowing of high St, high carbon ferromanganese at low temperatures, and it is advantageous to eliminate the stagnation of C oxidation in low temperature blowing by reducing Peo. You can get a guideline that .

ところで原料となる高St高炭素フェロマンガンの温度
は、還元電気炉やシャフト炉で製造する場合はこれらか
らの出湯温度、或は誘導炉やアーク炉による再溶解で製
造する場合は溶は落ち温度によって夫々窓められるが、
いずれにしても必要以上の高温はMnの蒸発ロスを招く
ので可及的に低温であることが望ましく、一般的には1
300〜1400℃程度で行なわれることになる。従っ
て吹錬の初期には溶湯温度が低く、また炭素の活量も高
いのでこの点では前記指針に沿っているという利点があ
る。しかし低温吹錬におけるMnの酸化反応は必ずしも
十分低いという訳ではなく、本発明第1工程では酸素ガ
スの上下吹きを併用することとしているので、初期の吹
錬ではCの酸化とMnの酸化がいずれも顕著に進行する
。勿論Stの酸化も進行する。そしてこれらの酸化反応
による発熱は溶湯温度の上昇をもたらし、それに従って
脱炭酸素効率も60〜90%に上昇する。
By the way, the temperature of the high St, high carbon ferromanganese used as a raw material is the temperature at which the molten metal comes out when manufactured in a reduction electric furnace or shaft furnace, or the temperature at which the molten metal falls when manufactured by remelting in an induction furnace or arc furnace. Although each can be seen by
In any case, higher temperatures than necessary will result in evaporation loss of Mn, so it is desirable to keep the temperature as low as possible, and generally 1
It will be carried out at about 300 to 1400°C. Therefore, in the early stage of blowing, the molten metal temperature is low and the carbon activity is high, so in this respect there is an advantage that the above guideline is met. However, the oxidation reaction of Mn in low-temperature blowing is not necessarily sufficiently low, and since the first step of the present invention uses both upper and lower blowing of oxygen gas, the oxidation of C and the oxidation of Mn occur in the initial blowing. Both cases progress markedly. Of course, the oxidation of St also progresses. The heat generated by these oxidation reactions causes the temperature of the molten metal to rise, and the oxygen decarburization efficiency increases accordingly to 60 to 90%.

こうして脱炭反応が進行し、フェロマンガン中のC濃度
が2%前後まで下ってくる(Cの活量が低下してくる)
と、溶湯温度が高温であるにもかかわらず脱炭酸素効率
が低下しはじめ、相対的にMnの酸化反応が顕著に進行
する。
In this way, the decarburization reaction progresses, and the C concentration in ferromanganese drops to around 2% (the activity of C decreases).
Then, even though the molten metal temperature is high, the decarburization oxygen efficiency begins to decrease, and the oxidation reaction of Mn progresses relatively significantly.

従って本発明ではこの段階で酸素の上吹きを中止し、そ
れ以上の脱炭は底吹酸素に主役を荷なわせることとする
。即ちCの活量が低下した状態での脱炭はCの拡散律速
で進行するので第2工程では酸素の底吹きと不活性ガス
の底吹きによる穏やかな脱炭を行なわせることとし、脱
炭の進行に応じて酸素比率(酸素ガス量/不活性ガス量
)を低下させる。最後には不活性ガスの単独底吹きでし
めくくることもある。酸素比率が低下した分は不活性ガ
ス吹込量の相対的増大又は絶対的増大によって不活性ガ
ス比率の増大となって現われ、脱炭酸素効率が比較的高
レベルに保持されるので、Mn酸化の少ない状態で脱炭
が促進され、目標とする炭素レベルまで吹錬を続行する
。尚本発明で使用される不活性ガスとしては一般にAr
やN2が汎用されるが、底吹ノズルの保護という観点か
らは炭化水素系ガスの使用も可能であり、もとよりその
種類は本発明を制限するものではない。又酸素底吹籾と
不活性ガス底吹きは、単管ノズルを介して行なっても良
いが、2重管以上の複層ノズルを使用し、内管から酸素
ガスを、外管から不活性ガスを夫々吹込む様に構成して
おけば、ノズルの熱損防止という意味で好結果が得られ
る。
Therefore, in the present invention, the top blowing of oxygen is stopped at this stage, and the main role for further decarburization is caused by the bottom blowing oxygen. In other words, decarburization in a state where the activity of C is reduced progresses at a rate controlled by diffusion of C, so in the second step, gentle decarburization is performed by bottom blowing of oxygen and bottom blowing of inert gas. The oxygen ratio (oxygen gas amount/inert gas amount) is decreased as the process progresses. The process may end with a single bottom blow of inert gas. The decrease in the oxygen ratio appears as an increase in the inert gas ratio due to a relative or absolute increase in the amount of inert gas blown in, and the decarburization oxygen efficiency is maintained at a relatively high level, resulting in a reduction in Mn oxidation. Decarburization is promoted in low carbon conditions, and blowing continues to reach the target carbon level. The inert gas used in the present invention is generally Ar.
and N2 are commonly used, but from the viewpoint of protecting the bottom blowing nozzle, hydrocarbon gases can also be used, and the type thereof does not limit the present invention. Oxygen bottom blowing and inert gas bottom blowing may be performed through a single pipe nozzle, but a multilayer nozzle with double or more pipes is used to blow oxygen gas from the inner pipe and inert gas from the outer pipe. If the configuration is such that the nozzles are blown into each other, good results can be obtained in terms of preventing heat loss to the nozzle.

ところで脱炭の第2工程における不活性ガスの底吹量は
、底吹き酸素ガス100容量部に対して20容量部以上
とする必要があり、20容量部未満であると攪拌効果の
不十分によって脱炭酸素効率の増大が望めず、その結果
として脱炭の進行が抑制され、結果的にMnの酸化ロス
が増大する。
By the way, the amount of bottom-blown inert gas in the second step of decarburization must be at least 20 parts by volume per 100 parts by volume of bottom-blown oxygen gas, and if it is less than 20 parts by volume, the stirring effect will be insufficient. An increase in the decarburization oxygen efficiency cannot be expected, and as a result, the progress of decarburization is suppressed, and as a result, the oxidation loss of Mn increases.

従ってより好ましい量は50容量部以上である。Therefore, a more preferable amount is 50 parts by volume or more.

しかし不活性ガス量が過剰になると溶湯温度を低下させ
、前述の如<Mnの酸化が促進される。
However, when the amount of inert gas becomes excessive, the temperature of the molten metal is lowered, and the oxidation of <Mn as described above is promoted.

従って好ましい上限は400容量部であり、更に好まし
い上限は200容量部である。上記は本発明を総括して
述べる場合であって、目的とするフェロマンガン中の目
標C量に応じて増減することが望まれる。例えば中炭素
フェロマンガン(たとえばC濃度:1.9〜1.6%)
を目標とする場合は、第1工程における目標C濃度をた
とえば3.0〜2.5%とし、第2工程における不活性
ガスの底吹量を20〜100容量部(対酸素底吹量10
0容量部)に制御し、一方低炭素フエロマンガン(たと
えばC濃度: 0.95〜0.70%)を目標とする場
合は第1工程における目標C?!4度をたとえば2.5
〜1.9%とし、第2工程における不活性ガスの吹込量
を50〜200容量部(同)に制御することが例示され
る。
Therefore, a preferable upper limit is 400 parts by volume, and a more preferable upper limit is 200 parts by volume. The above is a general description of the present invention, and it is desired that the amount be increased or decreased depending on the target amount of C in the ferromanganese. For example, medium carbon ferromanganese (for example, C concentration: 1.9 to 1.6%)
If the target C concentration is 3.0 to 2.5%, the target C concentration in the first step is, for example, 3.0 to 2.5%, and the bottom blowing amount of inert gas in the second step is 20 to 100 parts by volume (with respect to oxygen bottom blowing amount 10
On the other hand, when aiming at low carbon ferromanganese (for example, C concentration: 0.95 to 0.70%), the target C? ! For example, 4 degrees is 2.5
-1.9%, and controlling the amount of inert gas blown in the second step to 50 to 200 parts by volume (same).

次に該第2工程に招ける溶湯温度の制御を説明する。本
発明は目標C濃度を2段階に分けて吹き下げる様に制御
しており、第1工程においては中間目標として掲げる所
定量の炭素濃度まで一気に脱炭しているので、第2工程
において更に所望の炭素濃度まで吹下げる為の負荷が軽
減されている。従フて第2工程では溶湯温度を必要以上
に高める必要はなく、1800℃以下で十分である。
Next, control of the temperature of the molten metal leading to the second step will be explained. In the present invention, the target C concentration is controlled to be blown down in two stages, and in the first step, the carbon concentration is decarburized all at once to a predetermined amount of carbon concentration, which is set as an intermediate target. The load to blow down to the carbon concentration is reduced. Therefore, in the second step, there is no need to increase the temperature of the molten metal more than necessary, and a temperature of 1800° C. or lower is sufficient.

1800℃を超えるとMnの蒸発が盛んになるので回避
しなければならない。但し低温になり過きると、前述の
如<Mnの酸化が進行し易くなるのでできる限り高温側
、具体的には1650℃以上にして脱炭酸素効率の維持
を図り、脱炭の進行に寄与せしめるべきである。
If the temperature exceeds 1800°C, the evaporation of Mn will increase, so it must be avoided. However, if the temperature becomes too low, the oxidation of Mn will easily proceed as described above, so the temperature should be kept as high as possible, specifically 1650°C or higher, to maintain decarburization oxygen efficiency and contribute to the progress of decarburization. Should.

上記説明における第1工程から第2工程への切り換えポ
イントは、C濃度が所定値になることを一応の基準とし
たが、第1工程の吹錬中に脱炭酸素効率の推移をチェッ
クしておき、ある値以下(例えば40〜25%)になれ
ば第2工程への制御に切り替えるという風に制御するこ
とも本発明の技術的範囲に含まれる。
In the above explanation, the point of switching from the first step to the second step is that the C concentration reaches a predetermined value, but the change in decarburization oxygen efficiency during blowing in the first step is checked. It is also within the technical scope of the present invention to perform control in such a manner that the temperature is increased, and when the value falls below a certain value (for example, 40 to 25%), the control is switched to the second step.

以上の様に第1工程は上吹酸素を中心とする脱炭及び脱
Siを行ない、第2工程では底吹酸素と底吹不活性ガス
の協力による脱炭操業を行なう方法を採用したので、第
2工程における脱炭酸素効率を40〜50%のレベル(
破線)に維持することも可能であり、従来の様に1段で
最終目標濃度まで脱炭していた場合(脱炭酸素効率=5
〜15%)に比べて効率の良い脱炭を行なうことができ
る。従ってMnの酸化も少なく、高価な還元剤を用いて
Mnの回収を行なうといった不経済且つ繁雑な手間をか
ける必要がない。但し最終的な成分調整を目的として合
金元素を添加することまで排除するものではない。
As mentioned above, in the first step, decarburization and Si removal are performed mainly using top-blown oxygen, and in the second step, a method is adopted in which decarburization is performed using the cooperation of bottom-blown oxygen and bottom-blown inert gas. The decarburization oxygen efficiency in the second step was set at a level of 40-50% (
It is also possible to maintain the decarburization to the final target concentration in one stage as in the past (decarburization oxygen efficiency = 5).
decarburization can be carried out more efficiently than the conventional method (~15%). Therefore, there is little oxidation of Mn, and there is no need to take the uneconomical and complicated effort of recovering Mn using an expensive reducing agent. However, this does not exclude the addition of alloying elements for the purpose of final component adjustment.

以上述べた様に本発明では、炭素濃度の推移または脱炭
酸素効率の変化を見合わせながら2段階に分けて効率的
な脱炭を行なうので、Mnの酸化ロスを可及的に抑制さ
れる。しかしながら吹錬工程中のMn酸化ロスは、これ
を完全に防ぎ得る訳ではない。また吹錬温度の調節用と
して冷却剤(一般に中・低炭素フェロマンガン玲塊)を
投入する場合があるが、該冷却剤中のMn量が少なけれ
ば吹錬終了時のMn含有量も当然低くなるし、吹錬終了
後のMn酸化物量はかなり多くなる場合もある。そこで
本発明では還元剤を投入(一般的には酸素吹錬後である
方が好ましい)してスラグ中のMn酸化物を還元し溶湯
中のMn量を増大させることもできる。尚上記還元剤と
しては、フェロシリコン、金属Si、シリコンマンガン
、金属Ca、金属A1等を非限定的に例示することがで
きるが、一般的にはフェロシリコンが多用される。ここ
でMnスラグな還元するためにフェロシリコン等を用い
ると、時として過剰のStが残留する場合があるが、前
述の様にStは酸化され易いので還元処理後のサンプル
を分析し、上吹き及び/又は底吹ぎにより必要量の酸素
を供給すれば簡単に脱Stすることがで籾、所望の低S
i中・低炭素フェロマンガンを製造することができる。
As described above, in the present invention, efficient decarburization is performed in two stages while considering changes in carbon concentration or changes in decarburization oxygen efficiency, so that oxidation loss of Mn can be suppressed as much as possible. However, Mn oxidation loss during the blowing process cannot be completely prevented. In addition, a coolant (generally medium/low carbon ferromanganese ingot) may be added to adjust the blowing temperature, but if the amount of Mn in the coolant is small, the Mn content at the end of blowing will naturally be low. In some cases, the amount of Mn oxide after blowing is quite large. Therefore, in the present invention, it is also possible to introduce a reducing agent (generally preferably after oxygen blowing) to reduce Mn oxides in the slag and increase the amount of Mn in the molten metal. The reducing agent may include, without limitation, ferrosilicon, metal Si, silicon manganese, metal Ca, metal A1, etc., but ferrosilicon is generally often used. If ferrosilicon or the like is used to reduce the Mn slag, excess St may sometimes remain, but as mentioned above, St is easily oxidized, so the sample after the reduction treatment is analyzed and By supplying the necessary amount of oxygen through bottom blowing and/or bottom blowing, it is possible to easily remove St and produce the desired low S content.
i Medium to low carbon ferromanganese can be produced.

[実施例] 実施例I Mgo−c系レンガを内張すした内径600mmの反応
容器の容器底部中央に設置した2重管ノズルより、内外
管合計0.5Nm3/分のArを吹ぎながら高炭素フェ
ロマンガン溶湯(第1表参照)500 Kgを装入した
。装入後の溶湯温度は1400℃であった。その後底吹
きノズル外管よりArを0.2Nm3/分、内管より酸
素0.3Nm3/分の速度で吹き込むと同時に、容器の
上部に設置した水冷ランスより酸素を1.3Nm3/分
の速度で吹籾込み25分間吹錬を行なった。その後上吹
き酸素を停止して底吹き吹錬のみを12分間続けた。吹
錬終了時の溶湯の成分組成及び温度は第1表に示す通り
でありMn含有量の高い低St中炭素フェロマンガンを
製造することができた。また鋳造したメタルは325K
gであり、歩留は72%であった。
[Example] Example I A double tube nozzle installed at the center of the bottom of a reaction vessel with an inner diameter of 600 mm lined with Mgo-C bricks was used to blow Ar at a total rate of 0.5 Nm3/min into the inner and outer tubes while high-carbon 500 kg of ferromanganese molten metal (see Table 1) was charged. The temperature of the molten metal after charging was 1400°C. Afterwards, Ar is blown at a rate of 0.2 Nm3/min from the outer tube of the bottom blowing nozzle, and oxygen is blown at a rate of 0.3 Nm3/min from the inner tube, and at the same time, oxygen is blown at a rate of 1.3 Nm3/min from the water cooling lance installed at the top of the container. Blowing was carried out for 25 minutes including blowing the rice. Thereafter, the top blowing oxygen was stopped and only the bottom blowing was continued for 12 minutes. The composition and temperature of the molten metal at the end of blowing were as shown in Table 1, and it was possible to produce a low-St medium carbon ferromanganese with a high Mn content. The cast metal is 325K.
g, and the yield was 72%.

実施例2 実施例1と同様の反応容器をもちいて脱炭n錬を行なう
にあたり、底吹き2重管ノズルより0.48m3/分の
Arを吹きながら第1表に示した高炭素フェロマンガン
溶湯500Kgを容器内に装入した。装入後の溶湯温度
は1340℃であった。
Example 2 In performing decarburization n-refining using the same reaction vessel as in Example 1, the high carbon ferromanganese molten metal shown in Table 1 was blown with Ar of 0.48 m3/min from a bottom blowing double tube nozzle. 500Kg was charged into the container. The temperature of the molten metal after charging was 1340°C.

その後底吹きノズルの外管よりArを0.25Nm37
分、内管より酸素を0.5Nm3/分の速度で吹き込む
とともに容器上部に設置した水冷ランスより酸素を1.
5Nm37分の速度で吹き込み26分間吹錬を続行した
。この間にMn鉱石45Kg、生石灰22.5にgを投
入した。その後上吹き酸素を停止し、酸素0.5Nm3
/分で22分間継続して吹錬を終了した。
After that, 0.25Nm37 of Ar was applied from the outer tube of the bottom blowing nozzle.
At the same time, oxygen was blown into the inner tube at a rate of 0.5 Nm3/min, and at the same time oxygen was blown in at a rate of 1.5 Nm3/min from the water-cooled lance installed at the top of the container.
Blowing was continued for 26 minutes by blowing at a rate of 5 Nm for 37 minutes. During this time, 45 kg of Mn ore and 22.5 g of quicklime were added. After that, the top blowing oxygen was stopped and the oxygen was 0.5Nm3.
The blowing continued for 22 minutes at a rate of 1/min.

この間にMn鉱石15Kg、生石灰7.5にgを分割投
入した。吹錬終了後底吹きノズルよりArのみを内外管
合計0.4Nm37分で吹ぎ込みながら蛍石15Kg、
フェロシリコン60 Kg、生石灰91Kgを分割投入
し、出湯前サンプルを採取し分析したところ[S i 
] =0.7%であったため上吹き停止後の底吹き条件
で8分間前吹錬し、除滓後出湯、鋳造した。鋳造終了時
のメタル成分は第1表に示すとおりであり、またMn含
有量の高い低炭素フェロマンガンが得られた。鋳造した
メタルは472KgでMn歩留は97.5%であった。
During this time, 15 kg of Mn ore and 7.5 g of quicklime were added in divided amounts. After blowing, 15 kg of fluorite was blown into the inner and outer tubes with Ar only at a total of 0.4 Nm for 37 minutes from the bottom blowing nozzle.
When 60 kg of ferrosilicon and 91 kg of quicklime were added in portions, samples were taken and analyzed before tapping [S i
] = 0.7%, so pre-blowing was carried out for 8 minutes under bottom blowing conditions after top blowing was stopped, and after sludge removal, the melt was tapped and cast. The metal components at the end of casting were as shown in Table 1, and low carbon ferromanganese with a high Mn content was obtained. The weight of the cast metal was 472 kg, and the Mn yield was 97.5%.

尚添加物の成分は第2表に併記した。The ingredients of the additives are also listed in Table 2.

第   1   表 (重量%) 第   2   表 [発明の効果] 本発明は上記の様に構成されているので、脱炭の進行を
効果的に制御することができ、且つSi濃度を制御でき
るので従来のシリサイド法や他の酸素脱炭法より経済的
に低Si中・低炭素フェロマンガンを製造できる様にな
った。
Table 1 (wt%) Table 2 [Effects of the invention] Since the present invention is configured as described above, it is possible to effectively control the progress of decarburization and control the Si concentration. It has become possible to produce low-Si medium and low-carbon ferromanganese more economically than the silicide method or other oxygen decarburization methods.

Claims (1)

【特許請求の範囲】[Claims] Si含有量が1.5%以上の高炭素フェロマンガン溶湯
を対象とし酸素ガスの上吹きと酸素および不活性ガスの
底吹きによって所定炭素量まで脱炭すると共にシリコン
をも燃焼させて脱炭・脱珪する第一工程と酸素ガスの底
吹きと不活性ガスの底吹きを併用し底吹酸素ガス量10
0容量部に対する不活性ガス底吹量を20容量部以上と
すると共に溶湯温度を1650〜1800℃に制御しつ
つ所望の炭素量まで脱炭する第二工程からなることを特
徴とする低シリコン中・低炭素フェロマンガンの製造方
法。
Targeting high-carbon ferromanganese molten metal with a Si content of 1.5% or more, it decarburizes to a specified carbon content by top blowing oxygen gas and bottom blowing oxygen and inert gas, and also burns silicon to decarburize. The first step of desiliconization is combined with bottom blowing of oxygen gas and bottom blowing of inert gas, and the amount of bottom blowing oxygen gas is 10.
A low-silicon medium characterized by comprising a second step of decarburizing to a desired carbon content while controlling the molten metal temperature to 1,650 to 1,800° C. and controlling the bottom blowing amount of inert gas to 0 parts by volume to 20 parts by volume or more.・Production method of low carbon ferromanganese.
JP27692186A 1986-11-20 1986-11-20 Method for producing low silicon medium / low carbon ferromanganese Expired - Lifetime JPH0629478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27692186A JPH0629478B2 (en) 1986-11-20 1986-11-20 Method for producing low silicon medium / low carbon ferromanganese

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27692186A JPH0629478B2 (en) 1986-11-20 1986-11-20 Method for producing low silicon medium / low carbon ferromanganese

Publications (2)

Publication Number Publication Date
JPS63130746A true JPS63130746A (en) 1988-06-02
JPH0629478B2 JPH0629478B2 (en) 1994-04-20

Family

ID=17576250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27692186A Expired - Lifetime JPH0629478B2 (en) 1986-11-20 1986-11-20 Method for producing low silicon medium / low carbon ferromanganese

Country Status (1)

Country Link
JP (1) JPH0629478B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316437A (en) * 1988-06-14 1989-12-21 Kawasaki Steel Corp Manufacture of medium-low carbon ferromanganese
JP2013253736A (en) * 2012-06-07 2013-12-19 Shinagawa Refractories Co Ltd Refractory for ferromanganese manufacturing furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316437A (en) * 1988-06-14 1989-12-21 Kawasaki Steel Corp Manufacture of medium-low carbon ferromanganese
JP2013253736A (en) * 2012-06-07 2013-12-19 Shinagawa Refractories Co Ltd Refractory for ferromanganese manufacturing furnace

Also Published As

Publication number Publication date
JPH0629478B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
JPH044388B2 (en)
JP3606170B2 (en) Method for producing low nitrogen-containing chromium steel
JPH10130714A (en) Production of steel for wire rod excellent in wire drawability and cleanliness
JP3333795B2 (en) Method for denitrification of molten metal and method for denitrification and decarburization
KR20030040541A (en) Method for producing stainless steels, in particular high-grade steels containing chromium and chromium-nickel
JPH0558050B2 (en)
JPS63130746A (en) Manufacture of low-silicon medium-or low-carbon ferromanganese
EP0688877B1 (en) Process for producing low-carbon chromium-containing steel
JPH09165615A (en) Denitrifying method for molten metal
WO2020152945A1 (en) Method for producing low-carbon ferromanganese
JPH0557349B2 (en)
KR100191010B1 (en) Oxygen refining method of low carbon steel
JP2553204B2 (en) Tuyere protection method for bottom-blown and top-blown converters
JPS6056051A (en) Production of medium- and low-carbon ferromanganese
JP5544818B2 (en) Melting method of high chromium steel
JPS62230950A (en) Manufacture of medium-or low-carbon ferromanganese
JP7036993B2 (en) Method for producing low carbon ferromanganese
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JPH02166256A (en) Method for refining medium-or low-carbon ferromanganese
JP3870546B2 (en) Method for decarburizing and refining molten ferromanganese
JPH07173515A (en) Decarburization refining method of stainless steel
JPS6010087B2 (en) steel smelting method
JPS63130745A (en) Manufacture of medium-or low-carbon ferromanganese
JPS62230952A (en) Manufacture of medium-or low-carbon ferromanganese
JPH093517A (en) Method for decarburization-refining stainless steel by blowing oxygen