JPH068447B2 - Method for melting iron-containing cold material - Google Patents

Method for melting iron-containing cold material

Info

Publication number
JPH068447B2
JPH068447B2 JP30026388A JP30026388A JPH068447B2 JP H068447 B2 JPH068447 B2 JP H068447B2 JP 30026388 A JP30026388 A JP 30026388A JP 30026388 A JP30026388 A JP 30026388A JP H068447 B2 JPH068447 B2 JP H068447B2
Authority
JP
Japan
Prior art keywords
oxygen
iron
melting
molten iron
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30026388A
Other languages
Japanese (ja)
Other versions
JPH01283312A (en
Inventor
一誠 梅沢
達朗 桑原
哲矢 大原
綴 縫部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30026388A priority Critical patent/JPH068447B2/en
Publication of JPH01283312A publication Critical patent/JPH01283312A/en
Publication of JPH068447B2 publication Critical patent/JPH068447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は含鉄冷材の溶解方法に関するものである。TECHNICAL FIELD The present invention relates to a method for melting an iron-containing cold material.

(従来の技術) 特開昭60-174812号公報で、種湯の存在する転炉内に含
鉄冷材、炭材、酸素を供給し、含鉄冷材を溶解し高炭素
溶融鉄を得る第1工程と、上記高炭素溶融鉄を原料とし
て別の転炉で酸素吹錬し所要の温度、成分の溶鋼を得る
第2工程よりなる転炉製鋼方法は知られている。
(Prior Art) In Japanese Patent Laid-Open No. 60-174812, iron-containing cold material, carbonaceous material, and oxygen are supplied into a converter in which seed hot water is present, and the iron-containing cold material is melted to obtain high carbon molten iron. A converter steelmaking method comprising a step and a second step in which the above-mentioned high carbon molten iron as a raw material is blown with oxygen in another converter to obtain molten steel having a required temperature and composition is known.

上記第1工程の上記溶融鉄の温度は、溶解過程の耐火物
溶損を抑制する上で1450℃以下が好ましく、含鉄冷
材溶解完了時の溶融鉄の温度が1450℃以下の場合、
第2工程での熱源確保の点から〔C〕は3.0%以上、
好ましくは3.5%以上を必要とする。
The temperature of the molten iron in the first step is preferably 1450 ° C. or lower in order to suppress melting loss of refractory in the melting process, and when the temperature of the molten iron at the completion of melting of the iron-containing cold material is 1450 ° C. or lower,
From the viewpoint of securing a heat source in the second step, [C] is 3.0% or more,
Preferably 3.5% or more is required.

上記転炉製鋼方法における第1工程として採用できる含
鉄冷材の溶解方法が、特公昭56-8085号公報で知られて
いる。同公報に開示されている含鉄冷材の溶解方法は、
第1図に示すように上吹酸素ランス14を有すると共に
炉底に第2図,第3図に示す如き構造の三重管ノズル
を有する転炉15を用い、溶銑等の溶融鉄16の存在す
る上記転炉15内にスクラップ,海綿鉄,ペレット,固
形銑鉄,鉄鉱石等の含鉄冷材17を供給し、第2図,第
3図の三重管ノズルの内管2より窒素ガス等の非酸化
性ガスで石炭粉,コークス粉等の炭材を、中管3より酸
素を、外管4よりLPG等の冷却用非酸化性ガスを吹き
込み、炭材を浴中に溶解させ浴中炭素を1次燃焼(C+
(1/2)O2→CO)させると共に上記上吹酸素ランス14より
酸素を供給し、上記一酸化炭素を2次燃焼(CO+(1/2)O2
→CO2)させて浴に熱を供給し含鉄冷材を溶解して溶融銑
を得るものである。
A method for melting an iron-containing cold material that can be used as the first step in the converter steelmaking method is known from Japanese Patent Publication No. Sho 56-8085. The method of melting the iron-containing cold material disclosed in the publication is:
As shown in FIG. 1, a triple pipe nozzle 1 having an upper blown oxygen lance 14 and having a structure as shown in FIGS.
2, the iron-containing cold material 17 such as scrap, sponge iron, pellets, solid pig iron, iron ore, etc. is fed into the converter 15 in which the molten iron 16 such as molten pig iron is present. Non-oxidizing gas such as nitrogen gas from the inner tube 2 of the triple tube nozzle 1 of FIG. 3 is used for carbonaceous materials such as coal powder, coke powder, etc., middle tube 3 for oxygen, and outer tube 4 for non-oxidizing cooling such as LPG. Injecting a volatile gas to dissolve the carbonaceous material in the bath and burn the carbon in the bath to the primary combustion (C +
(1/2) O 2 → CO) and oxygen is supplied from the above-mentioned blown oxygen lance 14, and the above carbon monoxide is secondarily burned (CO + (1/2) O 2
→ CO 2 ) and heat is supplied to the bath to melt the iron-containing cold material and obtain molten pig iron.

なお、第2図,第3図において、7は内管2の外周に等
間隔で内管軸方向に延設した突起部で、その外面は中管
3内面と接触して間隙5を形成している。8は中管3の
外周に等間隔で中管軸方向に延設した突起部で、その外
面は外管4内面と接触して間隙6を形成している。9は
炉体鉄皮、10は炉体内張耐火物である。
In FIGS. 2 and 3, reference numeral 7 denotes a protrusion extending on the outer circumference of the inner pipe 2 at equal intervals in the axial direction of the inner pipe, and the outer surface thereof contacts the inner surface of the middle pipe 3 to form a gap 5. ing. Reference numeral 8 is a protrusion extending on the outer periphery of the middle tube 3 at equal intervals in the middle tube axial direction, and the outer surface thereof contacts the inner surface of the outer tube 4 to form a gap 6. Reference numeral 9 is a furnace shell, and 10 is a refractory material inside the furnace.

上記含鉄冷材の溶解方法において、2次燃焼は重要であ
り、含鉄冷材例えばスチールスクラップの溶解方法にお
ける炭材原単位,酸素原単位は、第4図に示す如く2次
燃焼率で決り、2次燃焼率が高ければ高い程少ない炭
材,炭素原単位で含鉄冷材を溶解することができる。
Secondary combustion is important in the above-described method for melting iron-containing cold material, and the basic unit of carbonaceous material and the basic unit of oxygen in the method for melting iron-containing cold material such as steel scrap are determined by the secondary combustion rate as shown in FIG. The higher the secondary combustion rate, the less the carbonaceous material and the iron-containing cold material can be melted with the carbon consumption rate.

上記特公昭56-8085号公報によると、上記酸素上吹ラン
ス14の高さを湯面上2m以上とし、上吹酸素を湯面上
2m以上の高さからフリージェットで供給すると共に底
吹酸素比率を20〜80%(上吹酸素比率を80〜20
%)とすることにより、高い2次燃焼率を得るとされ、
底吹酸素比率20%未満ではスラグがホーミングし、湯
面上のフリージェットを形成する空間が減少して高い2
次燃焼率を得ることができないとされている。
According to Japanese Patent Publication No. 56-8085, the height of the oxygen top blowing lance 14 is set to 2 m or more above the molten metal surface, and the top blowing oxygen is supplied by a free jet from a height of 2 m or more above the molten metal surface while bottom blowing oxygen is supplied. The ratio is 20 to 80% (the upper blowing oxygen ratio is 80 to 20).
%), It is said that a high secondary combustion rate will be obtained.
If the bottom blown oxygen ratio is less than 20%, the slag will home and the space for forming free jets on the surface of the molten metal will decrease, which is high.
It is said that the secondary combustion rate cannot be obtained.

上記底吹酸素比率は、設備的にも操業コスト的にも重要
であり、底吹酸素比率が低い程、底吹設備も簡単(ノズ
ル本数の減少)となり底吹設備費も安く、底吹酸素量に
応じたLPG等の冷却用非酸化性ガス、非溶解時の酸素
ノズル閉塞防止のために供給するN2やAr等の保護ガスも
底吹酸素比率が小さくなる程少なくなり操業コストも低
下する。
The above-mentioned bottom blown oxygen ratio is important both in terms of equipment and operating costs. The lower the bottom blown oxygen ratio, the easier the bottom blown equipment (the number of nozzles is reduced), the lower the bottom blown equipment cost, and the bottom blown oxygen. The non-oxidizing gas for cooling such as LPG and the protective gas such as N 2 and Ar which are supplied to prevent the oxygen nozzle from clogging when it is not dissolved will decrease as the bottom blowing oxygen ratio decreases and the operating cost will decrease. To do.

また一般的に炉底耐火物は浴の撹拌力が大きい程、溶損
しやすくなるので炉底耐火物溶損防止のためにも底吹酸
素比率は低い方が望ましい。
Further, in general, the higher the stirring power of the bath, the easier the furnace bottom refractory is to melt, so it is desirable that the bottom blown oxygen ratio is low in order to prevent furnace bottom refractory melt damage.

(発明が解決しようとする課題) 本発明は、前記従来法よりも低い底吹酸素比率で従来法
と同等の2次燃焼率を確保し、従来法と同等の炭材,酸
素原単位で含鉄冷材を溶解し、かつ従来法に比べて底吹
設備費,冷却用非酸化性ガス,保護ガス使用量,炉底耐
火物損耗速度を低減することができる含鉄冷材の溶解方
法を提供するものである。
(Problems to be Solved by the Invention) The present invention secures a secondary combustion rate equivalent to that of the conventional method with a lower bottom blowing oxygen ratio than that of the above-mentioned conventional method, and a carbonaceous material and oxygen-containing unit equivalent to those of the conventional method are used. Disclosed is a method for melting iron-containing cold material, which is capable of melting the cold material and reducing the bottom blowing equipment cost, non-oxidizing gas for cooling, the amount of protective gas used, and the rate of refractory wear of the furnace bottom, as compared with the conventional method. It is a thing.

(課題を解決するための手段) 本発明の要旨は、次の通りである。(Means for Solving the Problems) The gist of the present invention is as follows.

上吹酸素ランスを有すると共に炉底に三重管ノズルを有
する転炉を用い、溶融鉄の存在する上記転炉内に含鉄冷
材を供給し、上記三重管ノズルの内管より非酸化性ガス
と共に炭材、中管より酸素を、外管より冷却用非酸化性
ガスを吹き込むと共に上記上吹酸素ランスより酸素を供
給し含鉄冷材を溶解し溶融鉄を得る含鉄冷材の溶解方法
において、上記溶解過程における上記溶融鉄の温度を1
450℃以下、〔C〕を3%以上に維持し、上記底吹酸
素比率を上底吹全酸素量の10%以上,20%未満とす
ると共に上記底吹酸素が捩じれを付与されて三重管ノズ
ルを離れ、おして溶融鉄浴中に入るようにすることを特
徴とする含鉄冷材の溶解方法。
Using a converter having an upper blown oxygen lance and a triple tube nozzle at the bottom of the furnace, an iron-containing cold material is supplied into the converter in which molten iron is present, and a non-oxidizing gas is supplied from the inner tube of the triple tube nozzle. Carbon material, oxygen from the middle tube, while blowing a non-oxidizing gas for cooling from the outer tube and supplying oxygen from the above-mentioned blowing oxygen lance to melt the iron-containing cold material to obtain molten iron, in the method for melting the iron-containing cold material, The temperature of the molten iron in the melting process is 1
Maintaining [C] at 3% or higher at 450 ° C. or lower, making the bottom blown oxygen ratio 10% or more and less than 20% of the total amount of upper bottom blown oxygen, and imparting a twist to the bottom blown oxygen, the triple pipe A method for melting an iron-containing cold material, characterized in that the molten iron is put into a molten iron bath after leaving the nozzle.

以下、本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明者等は、第2図,第3図に示す三重管ノズル
炉底に有し、第1図に示す如く上吹酸素ランス14を有
する転炉15内の、1380〜1400℃〔C〕3.0〜3.5
%の溶融鉄70t中に30tのスクラップ、造滓材とし
て生石灰1.5tを装入して、〔C〕3.7%以上、温
度1400〜1450℃の溶融鉄約100tを製造する
に当たり、底吹酸素比率を15〜30%(上吹酸素比率
70〜85%)に変更(ノズル1本当たりの酸素供給速
度を底吹酸素比率5%に固定して、ノズルの炉底設置本
数を変更)して溶解期間の2次燃焼率を排ガス分析によ
り測定した。
The inventors of the present invention have a triple tube nozzle 1 shown in FIGS. 2 and 3 at the bottom of the furnace, and a converter 15 having an upward blowing oxygen lance 14 as shown in FIG. C] 3.0 to 3.5
% Of 70% of molten iron, 30 t of scrap, and 1.5 t of quick lime as a slag material are charged to produce about 100 t of molten iron at [C] 3.7% or more and a temperature of 1400 to 1450 ° C. Change the blown oxygen ratio to 15 to 30% (upper blown oxygen ratio 70 to 85%) (fix the oxygen supply rate per nozzle to 5% to the bottom blown oxygen ratio and change the number of nozzles installed on the furnace bottom) Then, the secondary combustion rate during the melting period was measured by exhaust gas analysis.

なお送酸速度は13000〜20000Nm3/hrであり、
炭材としては微粉の無煙炭を酸素単位容積当たり1.4
Kg/Nm3の設定速度で吹き込んだ。この時の目標2次燃焼
率は30%であり、上吹酸素ランス14のランス高さを
調節して目標値に制御した。2次燃焼率が目標値に達し
ない場合には浴中〔C〕が低下するので、その補償のた
め設定値より炭材吹込速度を高めて溶融鉄中の〔C〕を
3.0〜3.5%に維持した。また溶融鉄の温度はスク
ラップ装入と同時に低下し、溶解が進むにつれて上昇
し、最終的に1400〜1450℃に昇温して溶解を終
えた。2次燃焼率の変化の例を第5図に示す。酸素底吹
比率30%のケースでは、全期間にわたって2次燃焼率
は30%前後を安定して維持するが、20%になるとそ
の変動が大きく、15%では特に溶解期間の前半におい
て2次燃焼率は目標値まで上昇しなかった。酸素底吹比
率30%のような高2次燃焼率が安定して得られた場合を
○印、やや不安定な場合を△印、高2次燃焼率が得られ
なかった場合を×印として上記試験結果を図示すると、
第7図の破線のようになった。
The acid transfer rate is 13000 to 20000 Nm 3 / hr,
As the carbonaceous material, finely powdered anthracite is 1.4 per unit volume of oxygen.
Blows at a set speed of Kg / Nm 3 . The target secondary combustion rate at this time was 30%, and the lance height of the upper blowing oxygen lance 14 was adjusted to control the target value. When the secondary combustion rate does not reach the target value, the [C] in the bath decreases, so to compensate for this, the carbonaceous material blowing speed is increased above the set value to increase the [C] in the molten iron to 3.0-3. It was maintained at 0.5%. The temperature of the molten iron decreased at the same time as the charging of scrap, increased as the melting progressed, and finally increased to 1400 to 1450 ° C to complete the melting. Fig. 5 shows an example of changes in the secondary combustion rate. In the case of the oxygen bottom blowing ratio of 30%, the secondary combustion rate remains stable at around 30% over the entire period, but at 20%, the fluctuation is large, and at 15%, the secondary combustion occurs especially in the first half of the melting period. The rate did not rise to the target value. When a high secondary combustion rate such as an oxygen bottom blowing ratio of 30% is obtained stably, it is indicated by ○, when it is slightly unstable, it is indicated by △, and when it is not obtained, it is indicated by ×. Graphically showing the above test results,
It became like the broken line in FIG.

底吹酸素比率20%未満では高2次燃焼率が得られない
原因を調査した結果、炭材が底吹きされて鉄浴中を浮上
する間に鉄浴中に溶解しきれず浴面上に浮上し、これが
排ガスと共に炉内に上昇し、例えば第(1)式の反応に従
って燃焼したCO2がCOに還元され吸熱反応を起こし、2
次燃焼率(CO2/(CO+CO2))が低下することがわかった。
As a result of investigating the reason why a high secondary combustion rate cannot be obtained when the bottom blowing oxygen ratio is less than 20%, the carbonaceous material is not completely dissolved in the iron bath while floating in the iron bath and floats on the bath surface. Then, this rises in the furnace together with the exhaust gas, and for example, CO 2 burned according to the reaction of the equation (1) is reduced to CO and an endothermic reaction occurs,
It was found that the secondary combustion rate (CO 2 / (CO + CO 2 )) decreases.

CO2+<C>炭材=2CO (1) このように底吹酸素比率20%未満では炭材を鉄浴中で
完全溶解させることができず2次燃焼率が低下すること
がわかったので、本発明者等は底吹酸素比率20%未満
で炭材を完全に溶解させる方法について鋭意検討し、底
吹酸素が捩じれを付与されて三重管ノズルを離れ、そし
て温度1450℃以下、〔C〕3.0%以上の溶融鉄浴中に
入るようにしたものである。
CO 2 + <C> Carbonaceous material = 2CO (1) Since it was found that the carbonaceous material could not be completely dissolved in the iron bath and the secondary combustion rate decreased when the bottom blowing oxygen ratio was less than 20%. The present inventors have diligently studied a method of completely dissolving carbonaceous material at a bottom blowing oxygen ratio of less than 20%. The bottom blowing oxygen is twisted to leave the triple pipe nozzle, and the temperature is 1450 ° C. or lower, [C ] It is made to enter into a molten iron bath of 3.0% or more.

第9図,第10図は、底吹酸素が捩じれを付与されて三
重管ノズルを離れ、そして溶融鉄浴中に入るようにした
三重管ノズルの一実施例を示したものであり、この三重
管ノズル13は、第2図,第3図に示した従来の三重管ノ
ズル1の内管2の外周に等間隔で内管軸方向に設けら
れ、その外面が中管3の内面に接触する突起部7を内管
軸方向に螺旋状にすることにより、ノズルの内管2と中
管3の間隙5に螺旋状案内要素12を設けて、内管2と
中管3の隙間5から溶融鉄浴中に吹き込む酸素に捩じれ
を与えるようにしたものである。
9 and 10 show an embodiment of a triple tube nozzle in which bottom blown oxygen is twisted to leave the triple tube nozzle and enter the molten iron bath. The tube nozzles 13 are provided in the outer circumference of the inner tube 2 of the conventional triple tube nozzle 1 shown in FIGS. 2 and 3 at equal intervals in the axial direction of the inner tube, and the outer surface thereof contacts the inner surface of the middle tube 3. By spirally forming the protruding portion 7 in the axial direction of the inner pipe, the spiral guide element 12 is provided in the gap 5 between the inner pipe 2 and the middle pipe 3 of the nozzle, and melts from the gap 5 between the inner pipe 2 and the middle pipe 3. It is designed to give a twist to the oxygen blown into the iron bath.

上記螺旋状案内要素12の捩れ角度α(垂直方向の傾き
角度)は、角度αが大きくなりすぎると圧損が大きくな
り角度αが小さくなりすぎると酸素の分散領域が小さく
なるので、10〜40゜とするのが望ましい。
The twist angle α (inclination angle in the vertical direction) of the spiral guide element 12 is 10 to 40 ° because if the angle α becomes too large, the pressure loss becomes large, and if the angle α becomes too small, the oxygen dispersion region becomes small. Is desirable.

第9図,第10図に示す三重管ノズル13を炉底に有
し、第1図に示す如く上吹酸素ランス14を有する転炉
15内の、1390〜1420℃、〔C〕3.2〜3.6%の溶
融鉄70t中にスクラップ30t、造滓材として生石灰
1.5tを挿入し、1400〜1450℃、〔C〕3.7%以上
の溶融鉄約100tを製造するに当たり、底吹酸素比率
を5〜20%(上吹酸素比率95〜80%)に変更(ノ
ズル1本当たりの酸素供給速度を底吹酸素比率5%に固
定して、ノズルの炉底設置本数を変更)して、溶解期間
の2次燃焼率の挙動を調査した。なお送酸速度は13000
〜20000Nm3/hrであり、炭材としては微粉の無煙炭を酸
素単位容積当たり1.4kg/Nm3の設定速度で吹き込ん
だ。この時の目標2次燃焼率は30%であり、上吹酸素
ランス14のランス高さを調節して目標値に制御した。
2次燃焼率が目標値に達しない場合には浴中〔C〕が低
下するので、その補償のため設定値より炭材吹込速度を
高めて溶融鉄中の〔C〕を3.0〜3.5%に維持し
た。また溶融鉄の温度はスクラップ装入と同時に低下
し、溶解が進むにつれて上昇し、最終的に1400〜1450℃
に昇温して溶解を終えた。2次燃焼率の変化の例を第6
図に、また第7図に実線で2次燃焼率の安定性評価と底
吹酸素比率の関係を示す。
1390 to 1420 ° C., [C] 3.2 in a converter 15 having a triple tube nozzle 13 shown in FIGS. 9 and 10 at the bottom of the furnace and an upper blowing oxygen lance 14 as shown in FIG. 1. 30t of scrap and 70t of molten iron of 3.6% and 1.5t of quick lime as a slag material are inserted to produce about 100t of molten iron of 1400-1450 ° C [C] 3.7% or more. Change the blown oxygen ratio to 5-20% (top blown oxygen ratio 95-80%) (fix the oxygen supply rate per nozzle to 5% for bottom blown oxygen and change the number of nozzles installed on the furnace bottom) Then, the behavior of the secondary combustion rate during the melting period was investigated. The acid transfer rate is 13000
It was up to 20000 Nm 3 / hr, and as the carbonaceous material, fine powder of anthracite was blown at a set rate of 1.4 kg / Nm 3 per unit volume of oxygen. The target secondary combustion rate at this time was 30%, and the lance height of the upper blowing oxygen lance 14 was adjusted to control the target value.
When the secondary combustion rate does not reach the target value, the [C] in the bath decreases, so to compensate for this, the carbonaceous material blowing speed is increased above the set value to increase the [C] in the molten iron to 3.0-3. It was maintained at 0.5%. The temperature of molten iron decreases at the same time as the charging of scrap, and rises as the melting progresses, and finally 1400-1450 ° C.
The temperature was raised to 0 to complete the dissolution. Sixth example of change in secondary combustion rate
In the figure and in FIG. 7, the solid line shows the relationship between the stability evaluation of the secondary combustion rate and the bottom blown oxygen ratio.

第6図と第5図を比較すれば明らかなように第9図,第
10図の三重管ノズル13(以下、スパイラル三重管ノ
ズルという)を使用する底吹酸素比率15%(10%)
の2次燃焼率は第2図,第3図の三重管ノズル(以
下、ストレート三重管ノズルという)を使用する底吹酸
素比率30%(20%)の2次燃焼率と略同等のパター
ンとなっている。
As is clear from comparing FIG. 6 and FIG. 5, the bottom blown oxygen ratio using the triple tube nozzle 13 of FIGS. 9 and 10 (hereinafter referred to as spiral triple tube nozzle) is 15% (10%).
The secondary combustion rate of the pattern is almost the same as the secondary combustion rate of the bottom blown oxygen ratio of 30% (20%) using the triple tube nozzle 1 (hereinafter referred to as a straight triple tube nozzle) of FIGS. 2 and 3. Has become.

第6図に溶解中に溶融鉄の〔C〕を3.0%未満にした
場合の2次燃焼率の推移を破線で併記したが、〔C〕が
3.0%未満になった時点(溶解時間10分の時点)で
溶融スラグのホーミング現象が炉口より認められ2次燃
焼率が急激に低下し、数分後(5分後)スロッピングに
より操業を中止した。その時の溶融鉄の〔C〕は2.7
%に低下していた。
In Fig. 6, the transition of the secondary combustion rate when molten iron [C] is less than 3.0% during melting is also shown by a broken line. When [C] becomes less than 3.0% ( At the melting time of 10 minutes), the homing phenomenon of the molten slag was recognized from the furnace mouth, and the secondary combustion rate drastically decreased, and after several minutes (5 minutes), the operation was stopped by sloping. The molten iron [C] at that time was 2.7.
It had fallen to%.

第8図は前記底吹酸素比率5〜30%における溶融鉄の
〔C〕濃度とスロピング発生頻度との関係を示したもの
であり、溶融鉄〔C〕が3.0%未満でスロッピングが
発生し、その発生頻度が溶融鉄の〔C〕の低下に従って
増加する。溶解過程において溶融鉄の〔C〕が3.0%
を切るとスラグホーミングを起こすのは、〔C〕が3.
0%を切るとスラグ中のFeOが増加し、これがスラグ−
メタル界面での(FeO)+〔C〕=Fe+COの反応によりCO
気胞を多数発生させると共にホーミングを起こし易い性
状となるためと考えられる。またスラグがホーミングす
ると2次燃焼率が低下するのは、酸素上吹きランスから
供給された酸素によってフリージェットが形成される
が、特公昭56−8085号公報でいわれているようにホーミ
ングによって溶融鉄浴面上のフリージェットを形成する
空間が減少するためと考えられる。
FIG. 8 shows the relationship between the [C] concentration of molten iron and the sloping occurrence frequency at the bottom blown oxygen ratio of 5 to 30%, and when the molten iron [C] is less than 3.0%, sloping occurs. Occurs, and the frequency of occurrence increases as the [C] of molten iron decreases. 3.0% of molten iron [C] in the melting process
[C] causes slag homing when turned off.
When it falls below 0%, FeO in slag increases, which is slag-
CO due to the reaction of (FeO) + [C] = Fe + CO at the metal interface
This is considered to be due to the fact that many air cells are generated and homing is likely to occur. Further, when the slag is homing, the secondary combustion rate lowers because the free jet is formed by the oxygen supplied from the oxygen top blowing lance, but the molten iron is formed by the homing as described in Japanese Patent Publication No. 56-8085. This is probably because the space for forming free jets on the bath surface is reduced.

第5図〜第8図から明らかなように底吹酸素比率20%
未満、10%以上では、底吹酸素が捩じれを付与されて
三重管ノズル13を離れ、そして溶融鉄浴中に入るよう
にすること、溶融鉄中の〔C〕を3.0%以上に維持す
ることによって、スラグホーミングもなく溶解期間に亙
って従来法と同程度の高位でかつ安定した2次燃焼率が
得られる。
As is clear from FIGS. 5 to 8, the bottom blown oxygen ratio is 20%.
If less than 10%, the bottom blown oxygen is twisted to leave the triple tube nozzle 13 and enter the molten iron bath, and [C] in the molten iron is maintained at 3.0% or more. By doing so, the secondary combustion rate as high as that of the conventional method and stable over the melting period can be obtained without slag homing.

このように本発明では酸素底吹比率20%未満、10%
以上の低底吹酸素比率であっても、溶解初期の2次燃焼
率の低下及び不安定挙動が解消され、従来法と同程度の
高位でかつ安定した2次燃焼率が得られるメカニズム
は、次のように考えられる。
Thus, in the present invention, the oxygen bottom blowing ratio is less than 20% and 10%.
Even with the above low bottom blown oxygen ratio, the mechanism that the secondary combustion rate at the initial stage of melting and the unstable behavior are eliminated, and the secondary combustion rate is as high and stable as the conventional method, is obtained. It can be considered as follows.

底吹酸素が捩じれを付与されて三重管ノズル13を離
れ、そして溶融鉄浴中に入るようにしたので、第11図
の模式図に示す如く従来の底吹酸素が捩じれを付与され
ることなく離れる三重管ノズルに比べ底吹酸素ガスの
浴中への分散領域18が広くなる。炭材が浴中に迅速溶解
する条件は、温度が高く、まわりの〔C〕が低い方が望
ましい。酸素の分散領域が広がることによって炭材の浮
上中の溶解領域が広がる上にこの領域は酸素により脱炭
され、温度が上がり、まわりの溶融鉄に比べより低炭素
高温領域を形成するので炭材が速やかに溶解する条件を
与える。更に内管2より溶融鉄浴中に入る炭材も上記捩
じれ流に同伴され、溶融鉄浴中に均一に幅広く分散され
炭材の溶解が促進され、炭材の浴面上への浮上が防止さ
れるためであると考えられる。
Since the bottom-blown oxygen is twisted to leave the triple tube nozzle 13 and enter the molten iron bath, the conventional bottom-blown oxygen is not twisted as shown in the schematic diagram of FIG. As compared with the triple tube nozzle 1 which is separated from the triple tube nozzle 1 , the area 18 for dispersing the bottom-blown oxygen gas in the bath becomes wider. It is desirable that the temperature of the carbonaceous material rapidly dissolves in the bath and that the surrounding [C] be low. As the dispersed area of oxygen expands, the melting area of the carbonaceous material during floating increases, and this area is decarburized by oxygen and the temperature rises, forming a lower carbon high temperature area than the surrounding molten iron. Gives the condition that dissolves quickly. Further, the carbonaceous material that enters the molten iron bath from the inner pipe 2 is also entrained in the above-mentioned twisting flow, and is uniformly and widely dispersed in the molten iron bath to promote the melting of the carbonaceous material and prevent the carbonaceous material from floating on the bath surface. It is thought that this is because it is done.

一方従来の三重管ノズルの場合には分散領域19が狭
いので酸素の量を増やす必要があり底吹酸素比率20%
以上必要となると考えられる。
On the other hand, in the case of the conventional triple tube nozzle 1 , since the dispersion region 19 is narrow, it is necessary to increase the amount of oxygen, and the bottom blowing oxygen ratio is 20%.
The above is considered necessary.

また溶解過程において溶融鉄の〔C〕を3.0%以上に
維持するようにしたので、溶解過程においてスラグ20
のホーミングが防止され、特公昭56−8085号公報でいわ
れているように溶融鉄浴面上のフリージェット21を形
成する空間が十分確保されるためであると考えられる。
Further, since the [C] of the molten iron is maintained at 3.0% or more in the melting process, the slag 20 is added in the melting process.
It is thought that this is because homing is prevented and a sufficient space for forming the free jet 21 on the molten iron bath surface is secured as described in Japanese Patent Publication No. 56-8085.

例えばスパイラル三重管ノズルを使用する底吹酸素比率
15%(10%)の本発明法によれば、ストレート三重
管ノズルを使用する底吹酸素比率30%(20%)の従
来法と同等の2次燃焼率パターンを得ることができるの
で、上記本発明法は低底吹酸素比率であっても上記従来
法と同等の酸素、炭材原単位で含鉄冷材を溶解すること
ができ、前記の如く例えば底吹酸素比率5%を確保する
三重管ノズルを使用する場合、従来法では6本(4本)
のノズルが必要とされるが、本発明法では、必要なノズ
ル本数は3本(2本)となり、底含設備費を半減でき
る。
For example, according to the method of the present invention having a bottom-blown oxygen ratio of 15% (10%) using a spiral triple-tube nozzle, the same method as the conventional method having a bottom-blown oxygen ratio of 30% (20%) using a straight triple-tube nozzle is used. Since the subsequent combustion rate pattern can be obtained, the method of the present invention can dissolve the iron-containing cold material with the same oxygen and carbonaceous material unit as the above-mentioned conventional method even with a low bottom blowing oxygen ratio. For example, when using a triple tube nozzle that secures a bottom blown oxygen ratio of 5%, 6 (4) are used in the conventional method.
No. of nozzles is required, but in the method of the present invention, the number of nozzles required is three (two), and the equipment cost including the bottom can be reduced by half.

このように必要ノズル本数が半減するので、冷却用非酸
化性ガス、保護ガスの使用量も半減することができる。
Since the number of required nozzles is halved in this way, the amounts of non-oxidizing gas for cooling and protective gas used can also be halved.

本発明法は従来法よりも底吹酸素比率が低いので、本発
明法によれば更に炉底耐火物の溶損速度も従来法よりも
低減することができる。
Since the method of the present invention has a lower bottom blowing oxygen ratio than the conventional method, the method of the present invention can further reduce the melting rate of the furnace bottom refractory as compared with the conventional method.

(実施例) 前ヒートの種湯(〔C〕=3.5%、温度1350℃)70
tが存在する転炉(上吹酸素ランス及び3個のスパイラ
ル三重管ノズル〔螺旋状案内要素の捩れ角度30゜〕を
装備)に鋼スクラップ30t、造滓剤として生石灰1.
5tを装入して鋼スクラップ溶解を実施した。
(Example) Seed water of pre-heat ([C] = 3.5%, temperature 1350 ° C.) 70
30 t of steel scrap and quick lime as a slag forming agent in a converter (equipped with a top-blown oxygen lance and three spiral triple-tube nozzles (twisting angle of spiral guide element: 30 °)) where t exists.
Steel scrap was melted by charging 5t.

その際、3個の3重管ノズルの内管より微粉の無煙炭を
N2ガスをキャリヤーガスとして酸素単位容積当り平均
1.4kg/Nm3(設定値)で吹き込み、又内管と中管の
間より全酸素量の15%の酸素を捩れを与えて吹込み、
更に中管と外管との間よりLPGを底吹酸素量の約10vol
%吹込んだ。尚、全通酸速度は16,000Nm3/hrである。
At that time, from the inner pipes of the three triple pipe nozzles
Blowing N 2 gas as a carrier gas at an average of 1.4 kg / Nm 3 (set value) per unit volume of oxygen, and blowing 15% of the total oxygen amount by twisting between the inner tube and the middle tube,
Furthermore, LPG is blown from between the middle pipe and the outer pipe to the bottom blown oxygen amount of about 10 vol.
% Blown. The total acid flow rate is 16,000 Nm 3 / hr.

このときの目標2次燃焼率は30%であり、上吹酸素ラ
ンスのランス高さを調節して目標値に制御した。
The target secondary combustion rate at this time was 30%, and the lance height of the upper blowing oxygen lance was adjusted to control the target value.

2次燃焼率が目標値に達しない場合には浴中〔C〕が低
下するのでその補償のため設定値より無煙炭吹込速度を
高めて溶融鉄中の〔C〕を3.0〜3.5%に維持し
た。溶解の後半は炭材吹込速度を高めて3.8%に加炭
した。
If the secondary combustion rate does not reach the target value, the [C] in the bath decreases, so to compensate for this, the anthracite blowing rate is increased above the set value to increase the [C] in the molten iron to 3.0 to 3.5. Maintained at%. In the latter half of the melting, the carbonaceous material blowing rate was increased to 3.8%.

また溶融鉄の温度は鋼スクラップ装入と同時に低下し、
溶解が進むにつれて上昇し、最終的に1400℃に昇温して
溶解を終えた。
Also, the temperature of the molten iron decreases at the same time as the steel scrap charging,
The temperature increased as the dissolution progressed, and finally the temperature was raised to 1400 ° C to complete the dissolution.

第12図に溶解過程の2次燃焼率、炭材吹込速度、ラン
ス高さの推移を示す。
Fig. 12 shows the transitions of the secondary combustion rate, carbonaceous material injection speed, and lance height during the melting process.

(比較例) 前ヒートの種湯(〔C〕=3.4%、温度1380℃)70
tが存在する転炉(上吹酸即ランス及び3個のストレー
ト三重管ノズルを装備)に鋼スクラップ30t、造滓剤
として生石灰1.5を装入して溶解を実施した。
(Comparative example) Preheated seed water ([C] = 3.4%, temperature 1380 ° C.) 70
30 t of steel scrap and 1.5 of quick lime as a slag-making agent were charged into a converter (equipped with an immediate lance of acid and three straight triple-tube nozzles) where t was present to carry out melting.

その際、3個のストレート三重管ノズルの内管より微粉
の無煙炭をN2ガスをキャリヤーガスとして酸素単位容積
当り平均1.4kg/Nm3で吹き込み、又内管と中管の間
より全酸素量の15%の酸素をストレートに吹き込み、
更に中管と外管との間よりLPGを底吹酸素量の約10vol
%吹き込んだ。尚、全通酸速度は16,000Nm3/hrである。
At that time, fine powder of anthracite was blown from the inner pipes of the three straight triple pipe nozzles with N 2 gas as a carrier gas at an average of 1.4 kg / Nm 3 per unit volume of oxygen, and the total oxygen was fed between the inner pipe and the middle pipe. Blow straight 15% of the amount of oxygen,
Furthermore, LPG is blown from between the middle pipe and the outer pipe to the bottom blown oxygen amount of about 10 vol.
% Blown in. The total acid flow rate is 16,000 Nm 3 / hr.

このときの目標2次燃焼率は30%であり、上吹酸素ラ
ンスのランス高さを調節して目標値に制御した。
The target secondary combustion rate at this time was 30%, and the lance height of the upper blowing oxygen lance was adjusted to control the target value.

2次燃焼率が目標値に達しない場合には浴中〔C〕が低
下するので、その補償のため設定値より炭材吹込速度を
高めて溶融鉄中の〔C〕を3.0〜3.5%に維持し
た。
When the secondary combustion rate does not reach the target value, the [C] in the bath decreases, so to compensate for this, the carbonaceous material blowing speed is increased above the set value to increase the [C] in the molten iron to 3.0-3. It was maintained at 0.5%.

溶解の後半は炭材吹込速度を高めて3.8%に加炭し
た。また溶融鉄の温度は鋼スクラップ装入と同時に低下
し、溶解が進むにつれて上昇し、最終的に1410℃に昇温
して溶解を終えた。
In the latter half of the melting, the carbonaceous material blowing rate was increased to 3.8%. The temperature of molten iron decreased at the same time as the charging of steel scrap, increased as the melting progressed, and finally increased to 1410 ° C to complete the melting.

第13図に溶解過程の2次燃焼率、炭材吹込速度、ラン
ス高さの推移を示す。
Fig. 13 shows changes in the secondary combustion rate, carbonaceous material injection speed, and lance height during the melting process.

(従来例) 前ヒートの種湯(〔C〕=3.5%、温度1370℃)70
tが存在する転炉(上吹酸素ランス及び6個のストレー
ト三重管ノズルを装備)に鋼スクラップ30t、造滓剤
として生石灰1.5tを装入して鋼スクラップを溶解し
た。
(Conventional example) Preheated seed water ([C] = 3.5%, temperature 1370 ° C) 70
30 t of steel scrap and 1.5 t of quick lime as a slag-making agent were charged into a converter (equipped with a top-blown oxygen lance and 6 straight triple tube nozzles) where t was present to melt the steel scrap.

その際、6個のストレート3重管ノズルの内管より微粉
の無煙炭をN2ガスをキャリヤーガスとして酸素単位容積
当り平均1.4kg/Nm3で吹き込み、又内管と中管の間
より全酸素量の30%の酸素をストレートに吹き込み、
更に中管と外管との間よりLPGを底吹酸素量の約10vol
%吹込んだ。尚、全通酸速度は16,000Nm3/hrである。
At that time, fine anthracite coal was blown from the inner tubes of the six straight triple tube nozzles with N 2 gas as a carrier gas at an average of 1.4 kg / Nm 3 per unit volume of oxygen, and the total amount of gas was fed between the inner tube and the middle tube. Blow straight 30% of the oxygen amount,
Furthermore, LPG is blown from between the middle pipe and the outer pipe to the bottom blown oxygen amount of about 10 vol.
% Blown. The total acid flow rate is 16,000 Nm 3 / hr.

このときの目標2次燃焼率は30%であり、上吹酸素ラ
ンスのランス高さを調節して目標値に制御した。
The target secondary combustion rate at this time was 30%, and the lance height of the upper blowing oxygen lance was adjusted to control the target value.

2次燃焼率が目標値に達しない場合には浴中〔C〕が低
下するので、その補償のため設定値より炭材吹込速度を
高めて溶融鉄中の〔C〕を3.0〜3.5%に維持し
た。溶解の後半は炭材吹込速度を高めて3.9%に加炭
した。
When the secondary combustion rate does not reach the target value, the [C] in the bath decreases, so to compensate for this, the carbonaceous material blowing speed is increased above the set value to increase the [C] in the molten iron to 3.0-3. It was maintained at 0.5%. In the latter half of melting, the carbonaceous material blowing rate was increased to carburize to 3.9%.

また溶解鉄の温度は、鋼スクラップ装入と同時に低下
し、溶解が進むにつれて上昇し、最終的に1400℃の昇温
して溶解を終えた。
The temperature of molten iron decreased at the same time as the charging of steel scrap, increased as the melting progressed, and finally increased the temperature to 1400 ° C to complete the melting.

第14図に溶解過程の2次燃焼率、炭材吹込速度、上吹
ランス高さの推移を示す。
FIG. 14 shows changes in the secondary combustion rate, carbonaceous material injection speed, and top blowing lance height during the melting process.

前記実施例、比較例、従来例における平均2次燃焼率、
炭材原単位、酸素原単位、LPG原単位、炉底耐火物損耗
速度を下表に示す。
Average secondary combustion rates in the above-mentioned examples, comparative examples, and conventional examples,
The following table shows the carbon material consumption rate, oxygen consumption rate, LPG consumption rate, and furnace bottom refractory wear rate.

(発明の効果) 以上詳述したように、本発明法によれば従来法よりも低
い底吹酸素比率で従来法と同等の2次燃焼率を確保し、
従来法と同等の炭材、酸素原単位で含鉄冷材を溶解し、
かつ従来法に比べて底含設備費、冷却用非酸化性ガス、
保護ガス使用量、炉底耐火物損耗速度を低減することが
できる。
(Effects of the Invention) As described in detail above, according to the method of the present invention, a secondary combustion rate equivalent to that of the conventional method is ensured with a lower bottom blowing oxygen ratio than that of the conventional method.
The iron-containing cold material is melted with the same carbon material and oxygen consumption rate as the conventional method,
And, compared with the conventional method, the equipment cost including bottom, non-oxidizing gas for cooling,
It is possible to reduce the amount of protective gas used and the rate of wear of refractory bottoms.

【図面の簡単な説明】[Brief description of drawings]

第1図は含鉄冷材の溶解方法の説明図、第2図,第3図
は従来法で使用する三重管ノズル(ストレート三重管ノ
ズル)の構造の説明図、第4図は含鉄冷材の溶解方法に
おける2次燃焼率と炭材、酸素原単位の関係の説明図、
第5図は従来法の2次燃焼率の推移例の説明図、第6図
は本発明法の2次燃焼率の推移例の説明図、第7図は本
発明法及び従来法における底吹酸素比率と2次燃焼率の
安定性との関係の説明図、第8図は溶融鉄の〔C〕濃度
とスロッピング発生頻度との関係の説明図、第9図,第
10図は本発明法で使用する三重管ノズルの一実施例の
説明図、第11図は底吹酸素比率が20%未満、10%
以上の低底吹酸素比率であっても従来法と同程度の高位
でかつ安定した2次燃焼率が得られる推定メカニズムの
説明図である。第12図、第13図、第14図は実施
例、比較例、従来例における溶解過程の2次燃焼率、炭
材吹込速度、上吹ランス高さの推移図である。 …三重管ノズル(ストレート三重管ノズル)、2…内
管、3…中管、4…外管、5…間隙、6…間隙、7…突
起部、8…突起部、9…炉体鉄皮、10…炉体内張耐火
物、12…螺旋状案内要素、13…三重管ノズル(スパ
イラル三重管ノズル)、14…酸素上吹ランス、15…
転炉、16…溶融鉄、17…含鉄冷材、18…分散領
域、19…分散領域、20…スラグ、21…フリージェ
ット。
FIG. 1 is an explanatory view of a melting method of iron-containing cold material, FIGS. 2 and 3 are explanatory views of a structure of a triple pipe nozzle (straight triple pipe nozzle) used in a conventional method, and FIG. Explanatory diagram of the relationship between secondary combustion rate, carbonaceous material, and oxygen consumption rate in the melting method,
FIG. 5 is an explanatory diagram of a transition example of the secondary combustion rate of the conventional method, FIG. 6 is an explanatory diagram of an transition example of the secondary combustion rate of the present invention method, and FIG. 7 is a bottom blow in the present invention method and the conventional method. FIG. 8 is an explanatory view of the relationship between the oxygen ratio and the stability of the secondary combustion rate, FIG. 8 is an explanatory view of the relationship between the [C] concentration of molten iron and the sloping occurrence frequency, and FIGS. 9 and 10 are the present invention. Fig. 11 is an explanatory view of an example of a triple pipe nozzle used in the method, and Fig. 11 shows a bottom blown oxygen ratio of less than 20% and 10%.
It is explanatory drawing of the presumed mechanism by which the secondary combustion rate which is as high and stable as the conventional method is obtained even if the above-mentioned low bottom blown oxygen ratio. FIG. 12, FIG. 13, and FIG. 14 are transition charts of the secondary combustion rate, the carbonaceous material injection speed, and the top blowing lance height in the melting process in Examples, Comparative Examples, and Conventional Examples. 1 ... Triple tube nozzle (straight triple tube nozzle), 2 ... Inner tube, 3 ... Medium tube, 4 ... Outer tube, 5 ... Gap, 6 ... Gap, 7 ... Projection part, 8 ... Projection part, 9 ... Furnace iron Leather, 10 ... Refractory in the furnace, 12 ... Helical guide element, 13 ... Triple tube nozzle (spiral triple tube nozzle), 14 ... Oxygen top blowing lance, 15 ...
Converter, 16 ... Molten iron, 17 ... Iron-containing cold material, 18 ... Dispersion region, 19 ... Dispersion region, 20 ... Slag, 21 ... Free jet.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】上吹酸素ランスを有すると共に炉底に三重
管ノズルを有する転炉を用い、溶融鉄の存在する上記転
炉内に含鉄冷材を供給し、上記三重管ノズルの内管より
非酸化性ガスと共に炭材を、中管より酸素を、外管より
冷却用非酸化性ガスを吹き込むと共に上記上吹酸素ラン
スより酸素を供給し含鉄冷材を溶解し溶融鉄を得る含鉄
冷材の溶解方法において、上記溶解過程における上記溶
融鉄の温度を1450℃以下、〔C〕を3%以上に維持
し、上記底吹酸素比率を上底吹全酸素量の10%以上、
20%未満とすると共に上記底吹酸素が捩じれを付与さ
れて三重管ノズルを離れ、そして溶融鉄浴中に入るよう
にすることを特徴する含鉄冷材の溶解方法。
1. A converter having a top-blown oxygen lance and a triple-tube nozzle at the bottom of the furnace is used to supply iron-containing cold material into the converter in which molten iron is present. Carbon-containing material with non-oxidizing gas, oxygen from the middle tube, non-oxidizing gas for cooling from the outer tube, and oxygen from the above-mentioned oxygen blowing lance to melt the iron-containing cold material to obtain molten iron. In the melting method, the temperature of the molten iron in the melting process is maintained at 1450 ° C. or lower, [C] is maintained at 3% or higher, and the bottom blown oxygen ratio is 10% or more of the upper bottom blown total oxygen amount.
A method for melting an iron-containing cold material, characterized in that it is less than 20% and the bottom-blown oxygen is twisted to leave the triple-tube nozzle and enter the molten iron bath.
JP30026388A 1988-01-29 1988-11-28 Method for melting iron-containing cold material Expired - Lifetime JPH068447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30026388A JPH068447B2 (en) 1988-01-29 1988-11-28 Method for melting iron-containing cold material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1739888 1988-01-29
JP63-17398 1988-01-29
JP30026388A JPH068447B2 (en) 1988-01-29 1988-11-28 Method for melting iron-containing cold material

Publications (2)

Publication Number Publication Date
JPH01283312A JPH01283312A (en) 1989-11-14
JPH068447B2 true JPH068447B2 (en) 1994-02-02

Family

ID=26353905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30026388A Expired - Lifetime JPH068447B2 (en) 1988-01-29 1988-11-28 Method for melting iron-containing cold material

Country Status (1)

Country Link
JP (1) JPH068447B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9402478B2 (en) 2011-07-15 2016-08-02 Itoki Corporation Rocking chair and spring unit used therein

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8845779B2 (en) 2008-09-16 2014-09-30 Istc Co., Ltd. Process for producing molten iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9402478B2 (en) 2011-07-15 2016-08-02 Itoki Corporation Rocking chair and spring unit used therein

Also Published As

Publication number Publication date
JPH01283312A (en) 1989-11-14

Similar Documents

Publication Publication Date Title
US4936908A (en) Method for smelting and reducing iron ores
US5000784A (en) Method for smelting reduction of iron ore
JP4745731B2 (en) Method of melting hot metal with cupola
EP0605535A4 (en) Process for production of iron.
US4329171A (en) Steel making method
JP5033302B2 (en) Direct smelting method and equipment
US4302244A (en) Steel conversion method
JP5365678B2 (en) Powder blowing lance with burner function, molten iron refining method and molten metal smelting reduction method using the powder blowing lance
JPH068447B2 (en) Method for melting iron-containing cold material
US4497656A (en) Steel making method
US6352574B1 (en) Process for direct production of cast iron from fine iron ore and fine coal
JPH0723494B2 (en) Method and apparatus for refining molten metal
JP3752051B2 (en) Scrap melting method and scrap melting lance
JP2638861B2 (en) Melt reduction method
JP3286114B2 (en) Method for producing high carbon molten iron from scrap iron
JP2983087B2 (en) Operation method of smelting reduction
JPH0471965B2 (en)
JP3509128B2 (en) Operating method of converter type smelting reduction furnace and oxygen blowing lance
JPH01252710A (en) Method for operating iron bath type smelting reduction furnace
JPS61195909A (en) Method for melting iron scrap in converter
JPH01195211A (en) Method for melting and reducing iron oxide
JPS6338506A (en) Adding method for powdery carbon material into smelting reduction furnace
JPH06172839A (en) Operation of converter type smelting reduction furnace
JPH0941017A (en) Method for melting ferrous scrap
JPH02213407A (en) Production of molten iron

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080202

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 15

EXPY Cancellation because of completion of term