JPH0941017A - Method for melting ferrous scrap - Google Patents

Method for melting ferrous scrap

Info

Publication number
JPH0941017A
JPH0941017A JP20000295A JP20000295A JPH0941017A JP H0941017 A JPH0941017 A JP H0941017A JP 20000295 A JP20000295 A JP 20000295A JP 20000295 A JP20000295 A JP 20000295A JP H0941017 A JPH0941017 A JP H0941017A
Authority
JP
Japan
Prior art keywords
oxygen
lance
cooling
cooling gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20000295A
Other languages
Japanese (ja)
Inventor
Shinya Kitamura
信也 北村
Yoji Idemoto
庸司 出本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20000295A priority Critical patent/JPH0941017A/en
Publication of JPH0941017A publication Critical patent/JPH0941017A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance a secondary combustion rate and to improve scrap melting efficiency by providing an oxygen blowing lance with cooling gas ejection holes above the ejection holes of the lance and blowing gases, such as N2 and CO2 , from these holes at the time of melting the ferrous scrap by using a top blown converter type melting furnace. SOLUTION: The top blowing lance 1 is provided with the cooling gas ejection holes 3 separately from the oxygen-contg. gas ejection holes. The cooling gas ejection holes 3 are disposed in at least one piece, more preferably 4 to 20 pieces on the peripheral surface of the range where the distance H2 from the bottom end face of the lance 1 to the center of the ejection holes attains 0.2H1 <=0.8H1 with respect to the distance H1 from the bottom end face of the top blowing lance 1 under operation to the throat of the converter. As a result, the cooling gases consisting of one kind or >=2 kinds of N2 , Ar, Co and CO2 are blown at a rate corresponding to 5 to 30% of the supplying rate (Nm<3> /h) of the oxygen-contg. gas. One or >=2 kinds of Mg, CO3 , CaCO3 or coal powder contg. >=20wt.% volatile content or >=5wt.% moisture are blown together with the cooling gases.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉄系スクラップの
溶解方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for melting iron-based scrap.

【0002】[0002]

【従来の技術】近年、資源、環境問題から、スクラップ
などの固体金属原料をリサイクル使用して、効率的に溶
融金属を製造することが技術課題となってきている。従
来、スクラップの溶解には、ほとんど電気炉が用いられ
てきたが、電気炉の場合には、スクラップの溶解・精錬
に多くの電力を消費するため、我が国のように電力価格
が著しく高い国ではコストアップして好ましくない。そ
こで、電気炉に依らずに経済的にスクラップを溶解・精
錬する方法として、高送酸能力を有する転炉の余剰生産
能力を利用して安価な炭材を用いたスクラップの溶解・
精錬方法が検討されるようになってきた。
2. Description of the Related Art In recent years, it has become a technical subject to efficiently produce molten metal by recycling solid metal raw materials such as scrap due to resource and environmental problems. Conventionally, almost all electric furnaces have been used for melting scrap, but in the case of electric furnaces, a large amount of electric power is consumed for melting and refining scrap, so in countries such as Japan where electricity prices are extremely high. It is not preferable because it increases the cost. Therefore, as a method of economically melting and refining scrap without relying on an electric furnace, it is possible to melt scrap using inexpensive carbonaceous materials by utilizing the surplus production capacity of a converter with a high acid transfer capacity.
Refining methods have come to be considered.

【0003】このような状況の中で、一般的には既存の
上底吹きの複合吹錬転炉を利用することで設備増を控え
ると共に、スクラップと一緒に炉内に装入した火種に着
火した後、上底吹き吹錬の際に炉上方から熱源として炭
材を投入しながら溶解・精錬する方法が提案されてい
る。
Under such circumstances, generally, the existing upper-bottom-blown composite blowing converter is used to suppress the increase in equipment and to ignite the seeds charged in the furnace together with scrap. After that, a method of melting and refining while charging carbonaceous material as a heat source from above the furnace at the time of top-bottom blowing is proposed.

【0004】これに対して、特開平2−141511号
公報には、溶融物をガス撹拌できる反応容器を用いて、
溶融スラグを溶鉄トン当たり350kg以上とし、かつ硫
黄含有量が0.4%以上の石炭を用いて、反応容器内に
存在する遊離の固定炭素量を溶融スラグトン当たり17
kg以上に保って、上吹き吹酸する鋼スクラップの溶解法
が開示されている。
On the other hand, in Japanese Patent Laid-Open No. 2-141511, a reaction vessel capable of gas stirring the melt is used.
The amount of free fixed carbon present in the reaction vessel was set at 17 kg per ton of molten slag by using the molten slag in an amount of 350 kg or more per ton of molten iron and the sulfur content of 0.4% or more.
It discloses a method for melting steel scrap, which is kept above kg and sprayed with acid.

【0005】当該技術は溶融スラグ相中に存在する炭材
を、上吹き酸素で酸化燃焼(=発熱反応)させながら、
スラグ相を強撹拌してこの発生熱を溶融金属相中に伝熱
させてスクラップを溶解するものであるが、炭材と酸素
が反応して生成したCO2 はスラグ相外へ飛散する途中
で、再び炭材と接触してCOへと還元される反応、いわ
ゆるソルーションロス反応(下記式)を起こし易い。 CO2 +C=2CO−Q(吸熱反応) …………… 式 Q:熱量(J/mol )
In this technique, the carbonaceous material existing in the molten slag phase is oxidatively burned (= exothermic reaction) with top-blown oxygen,
The slag phase is strongly stirred and the generated heat is transferred to the molten metal phase to dissolve the scrap, but the CO 2 produced by the reaction of the carbonaceous material and oxygen is scattered outside the slag phase. It is easy to cause the so-called solution loss reaction (the following formula) in which the carbon material is brought into contact with the carbonaceous material again to be reduced to CO. CO 2 + C = 2CO-Q (Endothermic reaction) ………… Formula Q: Calorie (J / mol)

【0006】スクラップ単位重量の溶解に必要なエネル
ギー量を最小にして製造コストを低減する手段(=溶解
エネルギー効率を最大にする手段)は、排ガス中のCO
2 量比(=CO2 %/[CO+CO2 %])、いわゆる
2次燃焼率を上げるのが好ましい。そのためには、ソル
ーションロス反応で再生成したCOガスを、上方空間に
おいてO2 によりCO2 へ再酸化する必要がある。
The means for minimizing the amount of energy required for melting a unit weight of scrap and reducing the manufacturing cost (= the means for maximizing the melting energy efficiency) are CO in exhaust gas.
It is preferable to increase the two- quantity ratio (= CO 2 % / [CO + CO 2 %]), that is, the so-called secondary combustion rate. For that purpose, it is necessary to re-oxidize CO gas regenerated by the solution loss reaction to CO 2 by O 2 in the upper space.

【0007】この酸化反応で得られる熱の移動方向は、
排ガスの移動方向(=スラグ相や溶融金属相から溶解炉
炉頂へ向かう)と同方向になるため、スラグ相には伝熱
し難い。従って、下記式で表される着熱効率が悪く、
上方空間にある排ガスの温度を上げてしまうと同時に、
耐火物製炉壁面の温度を上げてしまって、著しい損耗を
引き起こしていた。 着熱効率=(1−排ガスと溶融金属相の温度差相当分の顕熱量/COから CO2 への燃焼による発熱量)×100 ………… 式
The direction of heat transfer obtained by this oxidation reaction is
Since it is in the same direction as the moving direction of the exhaust gas (= from the slag phase or the molten metal phase to the top of the melting furnace), it is difficult to transfer heat to the slag phase. Therefore, the heat transfer efficiency represented by the following formula is poor,
At the same time as raising the temperature of the exhaust gas in the upper space,
The temperature of the wall surface of the refractory furnace was raised, causing considerable wear. Heat transfer efficiency = (1-sensible heat amount corresponding to temperature difference between exhaust gas and molten metal phase / heat generation amount due to combustion from CO to CO 2 ) × 100

【0008】こうした耐火物製炉壁の損耗対策として、
特開昭61−67708号公報に酸素を含有するガスを
溶湯中に上底吹きできる反応容器に、溶鉄、予備還元鉱
石の粒塊状物、炭材及び酸素を供給して酸化物の還元・
溶融を行う溶融還元プロセスにおいて、スラグレベル或
いはその近傍より上部の炉壁部分を冷却する方法や、ス
ラグレベル或いはその近傍より上部の炉壁部分の冷却
を、上吹きランス(複合ランス)における酸素含有ガス
供給系とは独立した系からCO2 、N2 、炭化水素含有
流体、粉状炭材、水のミスト及び水蒸気の1種以上を前
記炉壁部分へ噴射することによって、及び/又は前記炉
壁部分の鉄皮を水冷する方法、また炉壁部分の壁面か
ら、パイプ或いは多孔質耐火物を通して噴出する方法が
開示されている。これは鉄系スクラップの溶解方法では
なく、鉱石の溶融還元方法であるが、耐火物製炉壁の損
耗対策としては応用できる。
As a countermeasure against the wear of the refractory furnace wall,
In JP-A-61-67708, molten iron, agglomerates of pre-reduced ore, carbonaceous material and oxygen are supplied to a reaction vessel capable of blowing an oxygen-containing gas into the molten metal at the top and bottom to reduce oxides.
In the smelting reduction process of melting, the method of cooling the furnace wall part above the slag level or its vicinity, and the cooling of the furnace wall part above the slag level or its vicinity are determined by the oxygen content in the upper blowing lance (composite lance). By injecting one or more of CO 2 , N 2 , hydrocarbon-containing fluid, powdered carbonaceous material, water mist and water vapor into the furnace wall portion from a system independent of the gas supply system, and / or the furnace. A method of water-cooling the iron shell of the wall portion and a method of ejecting from the wall surface of the furnace wall portion through a pipe or a porous refractory material are disclosed. This is not a method of melting iron-based scrap but a method of smelting reduction of ore, but it can be applied as a measure against wear of refractory furnace walls.

【0009】[0009]

【発明が解決しようとする課題】しかし特開昭61−6
7708号公報記載の方法のように、冷却用ガスや冷却
剤を耐火物製炉壁の一部に吹き付けると、その部分が必
要以上、或いは溶融金属相の温度以下に過剰冷却されて
しまう上、局部的に温度の不均一が発生する。特にラン
スから冷却剤を噴出する方法は、出銑・排滓時などやラ
ンス高さを変動させた時に加熱/冷却を繰り返すことに
なる。一方、耐火物製炉壁に固定した羽口から冷却剤を
噴出する方法も、操業中にスラグや溶融金属の量が増減
することによるスラグレベルの変動に対応できない。
However, Japanese Patent Laid-Open No. 61-6.
When the cooling gas or the coolant is sprayed onto a part of the refractory furnace wall as in the method described in Japanese Patent No. 7708, the part is excessively cooled to a temperature higher than necessary or below the temperature of the molten metal phase. Non-uniformity of temperature occurs locally. In particular, in the method of ejecting the coolant from the lance, heating / cooling is repeated when tapping or slag or when the lance height is changed. On the other hand, the method of ejecting the coolant from the tuyere fixed to the refractory furnace wall cannot deal with the fluctuation of the slag level due to the increase or decrease of the amount of slag or molten metal during the operation.

【0010】炉壁の損耗の度合いは、主に高温に曝され
る時間に比例するが、上記のような局部的温度不均一や
加熱/冷却の繰り返しなどがあると、応力・歪みが生成
して損耗を増幅する。従って、耐火物製炉壁の特定部分
に冷却剤を吹き付けて冷却する方法は、スクラップの溶
解のように、炉内のスラグや溶融金属の量が増減した
り、ランス高さを変動させる場合に対しては、根本的な
解決策とは言えない。本発明は、かかる問題を解決し、
耐火物製炉壁の温度を均一に冷却し、局部的に加熱/冷
却を繰り返すこともなく、確実に耐火物壁面の寿命を延
長し得る鉄系スクラップの溶解方法の提供を目的とす
る。
The degree of wear of the furnace wall is mainly proportional to the time of exposure to a high temperature, but if the above-mentioned local temperature nonuniformity or repeated heating / cooling occurs, stress / strain is generated. Amplify wear and tear. Therefore, the method of cooling by cooling a specific part of the refractory furnace wall is to increase the amount of slag and molten metal in the furnace, such as scrap melting, or to change the lance height. On the other hand, it is not a fundamental solution. The present invention solves such a problem,
An object of the present invention is to provide a method for melting iron-based scrap that can reliably extend the life of the refractory wall surface by uniformly cooling the temperature of the refractory material furnace wall and without locally repeating heating / cooling.

【0011】[0011]

【課題を解決するための手段】本発明者は、耐火物製炉
壁の特定部分に、直接冷却剤を吹き付ける方法ではな
く、むしろ上方空間に冷却用剤を吹き込んで上方空間に
存在する排ガス全体を冷却し、炉壁の均一冷却を可能と
し、加熱/冷却の繰り返しを回避して、耐火物製炉壁の
損耗を顕著に抑制し得る方法として、以下の条件で上吹
きランスから冷却剤を吹き込む方法が最も効果的である
ことを見いだした。本発明はこの知見に基づきなされた
ものである。その要旨とするところは以下の通りであ
る。
DISCLOSURE OF THE INVENTION The inventor of the present invention does not directly spray a cooling agent to a specific portion of a refractory furnace wall, but rather blows a cooling agent into the upper space to exhaust the entire exhaust gas existing in the upper space. As a method that enables uniform cooling of the furnace wall, avoids repeated heating / cooling, and significantly suppresses wear of the refractory furnace wall, the coolant from the upper blowing lance is used under the following conditions. We have found that the blowing method is the most effective. The present invention is based on this finding. The summary is as follows.

【0012】(1) 酸素による炭材の酸化熱を利用し
て鉄系スクラップを上底吹き転炉型の溶解炉内で溶解さ
せる方法において、使用する酸素含有ガス供給用の上吹
きランスに、酸素含有ガス噴出孔とは別の冷却用ガス噴
出孔を、ランス下端面から冷却用ガス噴出孔中心までの
距離(H2 )が、操業中の該上吹きランス下端面と転炉
炉口断面との距離(H1 )に対して、0.2H1 ≦H2
≦0.8H1 になる範囲に少なくとも1つ設け、該冷却
用ガス噴出孔からN2 、Ar、CO、CO2 の1種また
は2種以上の冷却用ガスを前記溶解炉内に吹き込むこと
を特徴とする鉄系スクラップの溶解方法。
(1) In a method of melting iron-based scrap in a melting furnace of a top-bottom blowing converter type by utilizing the heat of oxidation of carbonaceous material by oxygen, a top-blowing lance for supplying an oxygen-containing gas is used, A cooling gas ejection hole separate from the oxygen-containing gas ejection hole is provided such that the distance (H 2 ) from the lower end surface of the lance to the center of the cooling gas ejection hole is the lower end surface of the upper blowing lance in operation and the cross section of the converter furnace opening. 0.2H 1 ≦ H 2 with respect to the distance (H 1 ) from
At least one cooling gas is provided in a range of ≦ 0.8H 1 , and one or more cooling gases of N 2 , Ar, CO, and CO 2 are blown into the melting furnace through the cooling gas ejection holes. A characteristic method for melting iron-based scrap.

【0013】(2) 酸素含有ガス供給用上吹きランス
から吹き込む冷却用ガスの供給速度(Nm3 /h)を、酸
素含有ガスの供給速度(Nm3 /h)の5〜30%相当と
することを特徴とする(1)記載の鉄系スクラップの溶
解方法。 (3) 酸素含有ガス供給用上吹きランスに設ける冷却
用ガス噴出孔を、該上吹きランスの周面に4〜20個設
けることを特徴とする(1)または(2)記載の鉄系ス
クラップの溶解方法。
[0013] (2) the feed rate of the cooling gas blown from an oxygen-containing gas blown onto a feed lance (Nm 3 / h), and 5-30% equivalent feed rate of oxygen-containing gas (Nm 3 / h) (1) The method for melting iron-based scrap as described above. (3) The iron-based scrap according to (1) or (2), characterized in that 4 to 20 cooling gas ejection holes are provided on the upper blowing lance for supplying the oxygen-containing gas, on the peripheral surface of the upper blowing lance. Dissolution method.

【0014】(4) 酸素含有ガス供給用上吹きランス
に設ける冷却用ガス噴出孔の噴出孔角度を、該噴出孔中
心軸と水平面とのなす角度が上方45度〜下方45度の
範囲内であることを特徴とする(1)〜(3)のいずれ
かに記載の鉄系スクラップの溶解方法。 (5) 冷却用ガス噴出孔から冷却用ガスとともに、炭
酸マグネシウム、炭酸カルシウム、あるいは、揮発分を
20wt%以上または水分を5wt%以上含む石炭粉のいず
れか1種または2種以上を吹き込むことを特徴とする
(1)〜(4)のいずれかに記載の鉄系スクラップの溶
解方法。
(4) The angle of the cooling gas ejection hole provided in the upper blowing lance for supplying the oxygen-containing gas is such that the angle formed by the central axis of the ejection hole and the horizontal plane is from 45 degrees upward to 45 degrees downward. The method for melting iron-based scrap according to any one of (1) to (3), characterized in that it is present. (5) One or more of magnesium carbonate, calcium carbonate, or coal powder containing 20 wt% or more of volatile matter or 5 wt% or more of water is blown together with the cooling gas from the cooling gas ejection holes. The method for melting iron-based scrap according to any one of (1) to (4), which is characterized.

【0015】[0015]

【発明の実施の形態】本発明の実施態様を示す模式図で
ある図1、2により、本発明の実施の形態を説明する。
第1の条件は、冷却用ガスの吹込み位置と量である。す
なわち冷却ガスの噴出孔3は、ランス先端下面と転炉炉
口断面との間の距離H1 に対して、ランス先端下面から
0.2H1 ≦H2 ≦0.8H1 なる位置に設けるのが良
い。1はランスを示す。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to FIGS. 1 and 2 which are schematic views showing an embodiment of the present invention.
The first condition is the blowing position and amount of the cooling gas. That is, the cooling gas ejection hole 3 is provided at a position 0.2H 1 ≤H 2 ≤0.8H 1 from the lower surface of the lance tip with respect to the distance H 1 between the lower surface of the lance tip and the cross section of the converter throat. Is good. 1 indicates lance.

【0016】その理由を、実験により得た「排ガス温度
とガス吹込み位置との関係」を示した図2により説明す
る。すなわち、ランス先端から0.2H1 よりも低い位
置の場合には、吹き込んだ冷却用ガスの一部が、ランス
主孔2から吹き付けられている酸素噴流に巻き込まれて
スラグ相や溶融金属相に当たるため、排ガスのみならず
スラグ相や溶融金属相までも冷却してしまって、単位時
間当たりのスクラップ溶解量が低下してしまうという本
質的問題が生じる。
The reason for this will be explained with reference to FIG. 2 showing the "relationship between exhaust gas temperature and gas injection position" obtained by experiments. That is, at a position lower than 0.2H 1 from the tip of the lance, part of the blown cooling gas is caught in the oxygen jet blown from the lance main hole 2 and hits the slag phase or the molten metal phase. Therefore, not only the exhaust gas but also the slag phase and the molten metal phase are cooled, which causes an essential problem that the amount of scrap melted per unit time is reduced.

【0017】更に、酸素含有ガスのジェットが溶融金属
相と衝突して形成される部分(以下火点と称する)の温
度をも冷やしてしまい、溶融鉄を酸化し易くなって鉄の
歩留が低下するという問題もある。
Further, the temperature of the portion formed by the jet of the oxygen-containing gas colliding with the molten metal phase (hereinafter referred to as the fire point) is also cooled, the molten iron is easily oxidized, and the yield of iron is increased. There is also the problem of lowering.

【0018】一方、0.8H1 よりも高い位置の場合に
は、火点から溶解炉炉口に高速で移動する排ガスの流動
に乗って、冷却用ガスの大部分が溶解炉から散逸してし
まって、排ガスと共に炉上部にある排ガス処理設備によ
り吸引されるために、上方空間ガスを冷却する効果が大
幅に低下する。
On the other hand, in the case of a position higher than 0.8H 1 , most of the cooling gas is dissipated from the melting furnace due to the flow of the exhaust gas moving from the fire point to the furnace opening of the melting furnace at high speed. Therefore, since the exhaust gas is sucked together with the exhaust gas by the exhaust gas treatment facility at the upper part of the furnace, the effect of cooling the upper space gas is significantly reduced.

【0019】冷却用ガスの量は、酸素供給速度の5〜3
0%が適正である。冷却用ガスを吹き込まない場合、溶
解炉内の排ガス空間温度は例えば1700〜2300℃
に達するが、溶融金属相の温度は例えば1600℃であ
り、100〜700℃の差がある。
The amount of the cooling gas is 5 to 3 of the oxygen supply rate.
0% is appropriate. When the cooling gas is not blown, the exhaust gas space temperature in the melting furnace is, for example, 1700 to 2300 ° C.
However, the temperature of the molten metal phase is, for example, 1600 ° C., and there is a difference of 100 to 700 ° C.

【0020】一方、耐火物の損耗を調査した実験で、例
えばマグネシア−カーボン系で1620℃から急激に損
耗が激しくなることを確認しており、冷却用ガス吹き込
みにより1620℃以下にする必要がある。そのために
は排ガス量(=酸素供給速度)の体積比5%で、 1700℃ × 0.05 = 85℃ 1700℃ − 85℃ = 1615℃ が最小の冷却用ガス流量である。
On the other hand, in an experiment investigating the wear of refractory materials, it has been confirmed that the wear rapidly increases from 1620 ° C. in a magnesia-carbon system, for example, and it is necessary to lower the temperature to 1620 ° C. or less by blowing cooling gas. . For that purpose, the minimum cooling gas flow rate is 1700 ° C. × 0.05 = 85 ° C. 1700 ° C.-85 ° C. = 1615 ° C. at a volume ratio of 5% of the exhaust gas amount (= oxygen supply rate).

【0021】5%よりも少ない場合には、冷却用ガスが
奪い去る顕熱量が少ないため、排ガス温度を充分低下で
きない。一方最大は、 2300℃ × 0.30 = 690℃ 2300℃ − 660℃ = 1610℃ であり、30%程度の流量が必要である。
If it is less than 5%, the amount of sensible heat taken away by the cooling gas is small, and the exhaust gas temperature cannot be lowered sufficiently. On the other hand, the maximum is 2300 ° C. × 0.30 = 690 ° C. 2300 ° C.−660 ° C. = 1610 ° C., which requires a flow rate of about 30%.

【0022】30%よりも多い場合には、排ガス温度の
みならず、溶融金属相やスラグ相の温度までも低下させ
てしまって、単位時間当たりのスクラップ溶解量が低下
するという本質的な支障を来す。ガス種としては、排ガ
ス中のCOに対して非酸化性であれば良いが、ガスコス
トから見るとN2 、Ar、CO、CO2 の1種または2
種以上の混合ガスが良い。
When it is more than 30%, not only the temperature of the exhaust gas but also the temperatures of the molten metal phase and the slag phase are lowered, and the essential amount of scrap melted per unit time is lowered. Come on. The gas species may be non-oxidizing with respect to CO in the exhaust gas, but from the gas cost perspective, one or two of N 2 , Ar, CO, and CO 2 may be used.
A mixed gas of at least one kind is preferable.

【0023】第2の条件は噴出孔の数であり、上吹きラ
ンスの水平断面(=通常は円形をなす)の円周上に4〜
20個設けることが必要である。ランス周囲空間の排ガ
スを冷却するためには最低4方向に分岐して吹き込まな
ければ、排ガス温度にムラが生じて、炉内の反応が不均
一になる。
The second condition is the number of ejection holes, which is 4 to 4 on the circumference of the horizontal cross section (= usually circular) of the upper blowing lance.
It is necessary to provide 20 pieces. In order to cool the exhaust gas in the space around the lance, if it is not branched and blown in at least four directions, the temperature of the exhaust gas becomes uneven, and the reaction in the furnace becomes uneven.

【0024】また、現行のランス直径、例えば100〜
300mmφに設置可能な範囲の300mmφの噴出孔径を
考えると、冷却用ガスの供給量(=酸素含有ガスの供給
速度10000〜30000 Nm3 /hの5〜30%)から考える
と、4個よりも少ない場合には1つの孔から出る冷却用
ガスの噴出初期速度が音速(=約300m/秒)より大
きくなるため、向かい合った耐火物製壁面にまで至り、
耐火物製炉壁を局所的かつ過剰に冷却してしまう。
Also, the current lance diameter, for example, 100 to
Considering the ejection hole diameter of 300 mmφ that can be installed in 300 mmφ, considering the supply amount of cooling gas (= 5 to 30% of oxygen-containing gas supply rate 10000 to 30000 Nm 3 / h), it is more than 4 If the number is small, the initial velocity of the cooling gas ejected from one hole will be higher than the sonic velocity (= about 300 m / sec), leading to the facing refractory wall.
The refractory furnace wall is locally and excessively cooled.

【0025】一方、20個よりも多い場合には、ランス
直径一定の場合、隣接する冷却用ガスの噴出孔の間隔が
小さくなるため、隣接するガスジェットが互いに合体し
1個の大きなガス流となって、溶解炉内のガス流れ(=
火点から溶解炉口に向かう流れ)を乱すことになる上、
耐火物製炉壁を局所的に過剰冷却してしまう。
On the other hand, when the number is more than 20, the gap between the adjacent ejection holes for the cooling gas becomes small when the lance diameter is constant, so that the adjacent gas jets coalesce with each other to form one large gas flow. Then, the gas flow in the melting furnace (=
Flow from the fire point to the melting furnace mouth) will be disturbed and
The refractory furnace wall is locally overcooled.

【0026】第3の条件は冷却用ガスの水平面との噴出
角度である。噴出流の中心軸が水平面に対し上方45度
よりも上向きの場合には、排ガスの上昇流に同伴されて
短時間で炉外へ持ち去られてしまって、冷却効果が小さ
い。また下方45度よりも下向きの場合には、冷却用ガ
スの一部がランス主孔から吹き付けられている酸素噴流
に巻き込まれて、スラグ相や溶融金属相に当たるため、
スラグ相や溶融金属相までも冷却してしまう。
The third condition is the jetting angle of the cooling gas with respect to the horizontal plane. When the central axis of the jet flow is upward above 45 degrees with respect to the horizontal plane, it is entrained in the upward flow of the exhaust gas and taken out of the furnace in a short time, and the cooling effect is small. Further, in the case of downward from 45 degrees, a part of the cooling gas is caught in the oxygen jet blown from the lance main hole and hits the slag phase or the molten metal phase,
Even the slag phase and molten metal phase are cooled.

【0027】また水平面内におけるガスの噴出角度は、
ランス本体の中心軸と冷却用ガス噴出孔とを結ぶ方向を
基本とするが、耐火物製炉壁と噴出孔との距離をできる
だけ確保して、ガス噴出流の減衰を促すために、水平面
内において角度を持たせるのが好ましい。
The gas ejection angle in the horizontal plane is
The direction of connecting the central axis of the lance body and the cooling gas ejection hole is basically used, but in order to secure the distance between the refractory furnace wall and the ejection hole as much as possible and to accelerate the damping of the gas ejection flow, It is preferable to have an angle at.

【0028】しかし噴出孔中心軸におけるランス外周上
の接線と、噴出孔中心軸におけるランス外周円の半径と
のなす角度が、15度未満、あるいは165度超では、
ランス外周面を冷却してしまって、ランス外周面に温度
ムラを形成し、ランス本体の寿命を短くしてしまうため
避けるのが好ましい。
However, if the angle formed by the tangent line on the outer circumference of the lance at the central axis of the ejection hole and the radius of the outer circumference of the lance at the central axis of the ejection hole is less than 15 degrees or more than 165 degrees,
It is preferable to avoid cooling the outer surface of the lance to form temperature unevenness on the outer surface of the lance and shorten the life of the lance body.

【0029】さらに、排ガスの冷却を効率的にするため
に、冷却用ガスと共に、炭酸マグネシウム、炭酸カルシ
ウム、あるいは、揮発分を20wt%以上または水分を5
wt%以上含む石炭粉の1種または2種以上を吹き込むの
が良い。
Further, in order to efficiently cool the exhaust gas, magnesium carbonate, calcium carbonate, or volatile matter of 20 wt% or more or water content of 5 with the cooling gas.
It is advisable to blow one or more coal powders containing at least wt%.

【0030】この方法によれば、冷却用ガスの顕熱によ
る排ガスの冷却に加えて、炭酸マグネシウム、炭酸カル
シウムの場合には分解による吸熱(分解熱)、また石炭
の場合には石炭によるCO2 の還元熱や水分の蒸発熱、
揮発分の分解熱に相当する熱を排ガスから奪う効果が加
算される。ここで石炭の揮発分が20wt%よりも少ない
場合や水分が5wt%よりも少ない場合には、これらの分
解熱(=潜熱)が充分に大きくないため、排ガスの冷却
効果が小さいので避けるべきである。
According to this method, in addition to cooling the exhaust gas by sensible heat of the cooling gas, in the case of magnesium carbonate and calcium carbonate, endothermic heat of decomposition (decomposition heat), and in the case of coal, CO 2 by coal Heat of reduction and evaporation of water,
The effect of removing heat corresponding to the heat of decomposition of volatiles from the exhaust gas is added. If the volatile content of coal is less than 20 wt% or the water content is less than 5 wt%, the heat of decomposition (= latent heat) of these is not large enough and the cooling effect of exhaust gas is small, so it should be avoided. is there.

【0031】[0031]

【実施例】実施例には溶鉄8トン規模の上底吹き転炉を
用いた。底吹きガスは酸素と羽口冷却用窒素ガスの混合
ガスを用い、上吹きランスより酸素含有濃度99%のガ
スを供給した。上吹きランスは図1に示した形状とし、
冷却用ガス噴出孔の位置、数、角度を変化させた。
EXAMPLE An upper-bottom blown converter of molten iron 8 ton scale was used in the examples. As the bottom blowing gas, a mixed gas of oxygen and nitrogen gas for tuyere cooling was used, and a gas having an oxygen content concentration of 99% was supplied from a top blowing lance. The top blowing lance has the shape shown in FIG.
The position, number and angle of the cooling gas ejection holes were changed.

【0032】実験では初めに約3トンの溶銑と約1トン
のスラグ、200kgの炭材を入れた状態で、酸素を上吹
きしつつ炭材を連続的に添加して昇温し、温度が135
0℃程度になった時点でスクラップを投入し、さらに、
酸素を上吹きしつつ炭材を連続的に添加してスクラップ
を溶解した。炭材は上吹き酸素による燃焼分よりも過剰
に添加し、スラグ中に常時炭材が存在するようにした。
炭材としては、コークス、無煙炭を用い、酸素供給速度
Fは1500Nm3 /h、ランス先端と転炉炉口断面との
間の距離Hは約3mとした。排ガス温度は2色温度計に
より測定し、転炉耐火物損耗状況は試験後の炉内観察で
評価した。
In the experiment, with about 3 tons of hot metal, about 1 ton of slag, and 200 kg of carbonaceous material initially added, the carbonaceous material was continuously added while the oxygen was blown upward to raise the temperature. 135
When the temperature reaches about 0 ° C, scrap is added, and
The carbonaceous material was continuously added while the oxygen was blown upward to melt the scrap. The carbonaceous material was added in excess of the amount burned by top-blown oxygen so that the carbonaceous material was always present in the slag.
Coke and anthracite were used as the carbonaceous material, the oxygen supply rate F was 1500 Nm 3 / h, and the distance H between the tip of the lance and the cross section of the converter furnace mouth was about 3 m. The exhaust gas temperature was measured with a two-color thermometer, and the state of wear of the converter refractory was evaluated by observing the inside of the furnace after the test.

【0033】表1〜5は、冷却用ガスとして窒素を用
い、粉体は吹き込まなかった場合の試験結果である。こ
こで、吹き込み角度は水平の場合が「0」、上向きの場
合を「+」、下向きの場合を「−」として表示した。
Tables 1 to 5 show the test results when nitrogen was used as the cooling gas and the powder was not blown. Here, the blowing angle is displayed as "0" when horizontal, "+" when upward, and "-" when downward.

【0034】試験番号1〜11に示した本発明に基づく
実験では、試験番号12〜15に示した比較例に比べ
て、スクラップ溶解量に影響を与えず排ガス温度のみを
効率的に低下させ、耐火物損耗を低く抑制できている。
試験番号16〜19はガス噴出孔の数と角度が不適正の
場合であるが、試験番号1、5〜11に比べるとやや問
題が生じているものの、実用的には充分に使える水準で
ある。
In the experiments based on the present invention shown in test Nos. 1 to 11, as compared with the comparative examples shown in test Nos. 12 to 15, only the exhaust gas temperature was efficiently reduced without affecting the scrap melting amount. Wear of refractories can be suppressed to a low level.
Test numbers 16 to 19 are cases in which the number and angle of the gas ejection holes are not appropriate, but there are some problems compared with test numbers 1 to 5 to 11, but they are at a level that can be practically used sufficiently. .

【0035】試験番号20〜24は試験番号1と同一条
件でガス種類を変化させたものであるが、窒素、Ar、
CO、CO2 の1種または2種以上のガスであれば有意
差は認められない。試験番号25〜27は試験番号1と
同一条件で窒素ガスに炭酸マグネシウム、炭酸カルシウ
ムを混合させたものであるが、一層の排ガス温度の低下
が見られる。試験番号28〜31は試験番号1と同一条
件で窒素ガスに石炭を混合させたものであるが、揮発分
を20%以上または水分を5%以上含む石炭粉の場合に
は、試験番号1より一層の排ガス温度の低下が見られ
る。
Test Nos. 20 to 24 are those in which the kind of gas was changed under the same conditions as Test No. 1, but nitrogen, Ar,
No significant difference is observed with one or more gases of CO and CO 2 . Test Nos. 25 to 27 are those in which nitrogen gas was mixed with magnesium carbonate and calcium carbonate under the same conditions as in Test No. 1, but the exhaust gas temperature was further lowered. Test Nos. 28 to 31 are obtained by mixing coal with nitrogen gas under the same conditions as Test No. 1, but in the case of coal powder containing 20% or more of volatile matter or 5% or more of moisture, from Test No. 1 A further decrease in exhaust gas temperature is seen.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【発明の効果】本発明を用いることにより、耐火物の著
しい損耗を引き起こすという問題点なしに、効率的なス
クラップ溶解が可能となる。
EFFECTS OF THE INVENTION The present invention enables efficient scrap melting without the problem of causing significant wear of refractories.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の上吹きランスの説明図。FIG. 1 is an explanatory view of a top blowing lance of the present invention.

【図2】排ガス温度と冷却用ガス供給孔の位置との関係
を示した実験結果の図表。
FIG. 2 is a chart of experimental results showing a relationship between exhaust gas temperature and positions of cooling gas supply holes.

【符号の説明】[Explanation of symbols]

1:ランス 2:酸素供給用主孔 3:冷却用ガス供給孔 H:ランス先端と転炉炉口断面との間の距離 1: Lance 2: Main hole for oxygen supply 3: Cooling gas supply hole H: Distance between tip of lance and cross section of converter throat

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 酸素による炭材の酸化熱を利用して鉄系
スクラップを上底吹き転炉型の溶解炉内で溶解させる方
法において、使用する酸素含有ガス供給用の上吹きラン
スに、酸素含有ガス噴出孔とは別の冷却用ガス噴出孔
を、ランス下端面から冷却用ガス噴出孔中心までの距離
(H2 )が、操業中の該上吹きランス下端面と転炉炉口
断面との距離(H1 )に対して、0.2H1 ≦H2
0.8H1になる範囲に少なくとも1つ設け、該冷却用
ガス噴出孔からN2 、Ar、CO、CO2 の1種または
2種以上の冷却用ガスを前記溶解炉内に吹き込むことを
特徴とする鉄系スクラップの溶解方法。
1. A method of melting iron-based scrap in a melting furnace of a top-bottom blowing converter type by utilizing the heat of oxidation of carbonaceous material by oxygen, wherein oxygen is added to a top-blowing lance for supplying an oxygen-containing gas to be used. The distance (H 2 ) from the lower end surface of the lance to the center of the cooling gas ejection hole is different from that of the upper blowing lance during operation and the cross section of the converter furnace opening. With respect to the distance (H 1 ) of 0.2H 1 ≦ H 2
At least one cooling gas is provided in a range of 0.8H 1 , and one or more cooling gases of N 2 , Ar, CO, and CO 2 are blown into the melting furnace through the cooling gas ejection holes. Method for melting iron-based scrap.
【請求項2】 酸素含有ガス供給用上吹きランスから吹
き込む冷却用ガスの供給速度(Nm3 /h)を、酸素含有
ガスの供給速度(Nm3 /h)の5〜30%相当とするこ
とを特徴とする請求項1記載の鉄系スクラップの溶解方
法。
The feed rate of 2. A cooling gas blown from an oxygen-containing blown on gas supply lance (Nm 3 / h), be 5-30% equivalent feed rate of oxygen-containing gas (Nm 3 / h) The method for melting iron-based scrap according to claim 1, wherein:
【請求項3】 酸素含有ガス供給用上吹きランスに設け
る冷却用ガス噴出孔を、該上吹きランスの周面に4〜2
0個設けることを特徴とする請求項1または2記載の鉄
系スクラップの溶解方法。
3. A cooling gas ejection hole provided in an upper blowing lance for supplying an oxygen-containing gas is provided with 4 to 2 on a peripheral surface of the upper blowing lance.
The method for melting iron-based scrap according to claim 1 or 2, characterized in that zero pieces are provided.
【請求項4】 酸素含有ガス供給用上吹きランスに設け
る冷却用ガス噴出孔の噴出孔角度を、該噴出孔中心軸と
水平面とのなす角度が上方45度〜下方45度の範囲内
であることを特徴とする請求項1〜3のいずれかに記載
の鉄系スクラップの溶解方法。
4. The angle of the ejection hole of the cooling gas ejection hole provided in the upper blowing lance for supplying oxygen-containing gas is such that the angle between the ejection hole central axis and the horizontal plane is in the range of 45 degrees upward to 45 degrees downward. The method for melting iron-based scrap according to any one of claims 1 to 3, characterized in that:
【請求項5】 冷却用ガス噴出孔から冷却用ガスととも
に、炭酸マグネシウム、炭酸カルシウム、あるいは、揮
発分を20wt%以上または水分を5wt%以上含む石炭粉
のいずれか1種または2種以上を吹き込むことを特徴と
する請求項1〜4のいずれかに記載の鉄系スクラップの
溶解方法。
5. Magnesium carbonate, calcium carbonate, or one or more kinds of coal powder containing volatile matter of 20 wt% or more or water content of 5 wt% or more is blown together with the cooling gas from the cooling gas ejection hole. The method for melting iron-based scrap according to any one of claims 1 to 4, wherein:
JP20000295A 1995-08-04 1995-08-04 Method for melting ferrous scrap Withdrawn JPH0941017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20000295A JPH0941017A (en) 1995-08-04 1995-08-04 Method for melting ferrous scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20000295A JPH0941017A (en) 1995-08-04 1995-08-04 Method for melting ferrous scrap

Publications (1)

Publication Number Publication Date
JPH0941017A true JPH0941017A (en) 1997-02-10

Family

ID=16417169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20000295A Withdrawn JPH0941017A (en) 1995-08-04 1995-08-04 Method for melting ferrous scrap

Country Status (1)

Country Link
JP (1) JPH0941017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179574A (en) * 2016-03-31 2017-10-05 大陽日酸株式会社 Melting-refining furnace for cold iron source and operating method for the melting-refining furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179574A (en) * 2016-03-31 2017-10-05 大陽日酸株式会社 Melting-refining furnace for cold iron source and operating method for the melting-refining furnace
US11053559B2 (en) 2016-03-31 2021-07-06 Taiyo Nippon Sanso Corporation Melting and refining furnace for cold iron source and method of operating melting and refining furnace

Similar Documents

Publication Publication Date Title
US4827486A (en) Process for increasing the energy input in electric arc furnaces
US5000784A (en) Method for smelting reduction of iron ore
EP0693561B1 (en) Electric arc furnace post-combustion method
AU734802B2 (en) Process of melting fine grained, direct reduced iron in an electric arc furnace
JPH07216426A (en) Converter iron manufacture
US5407461A (en) Method for protecting the refractory lining in the gas space of a metallurgical reaction vessel
JP2007002305A (en) Method for smelting molten pig iron using cupola
JP5033302B2 (en) Direct smelting method and equipment
JPH0941017A (en) Method for melting ferrous scrap
JPH0723494B2 (en) Method and apparatus for refining molten metal
JP3752051B2 (en) Scrap melting method and scrap melting lance
JP2000337776A (en) Method for improving secondary combustion rate and heating efficiency of melting furnace, or the like
JP4120161B2 (en) Operation method of iron bath smelting reduction furnace
JP3286114B2 (en) Method for producing high carbon molten iron from scrap iron
JPH08291311A (en) Steel scrap melting method excellent in heat conductive efficiency
JP2725466B2 (en) Smelting reduction steelmaking method
JPH11293314A (en) Smelting reduction of iron raw material and smelting reduction furnace
JPH06102808B2 (en) Melt reduction method
JPS62116712A (en) Melting and smelting vessel having splash lance
JPH03140405A (en) Smelting reduction method of metal
JP4103503B2 (en) Hot phosphorus dephosphorization method
JPH07207325A (en) Method for melting scrap using carbonaceous material as fuel
JPH01191719A (en) Method for operating smelting reduction furnace
JPH0413404B2 (en)
JPH09157725A (en) Method for melting ferrous scrap

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105