JPS61195909A - Method for melting iron scrap in converter - Google Patents

Method for melting iron scrap in converter

Info

Publication number
JPS61195909A
JPS61195909A JP60035218A JP3521885A JPS61195909A JP S61195909 A JPS61195909 A JP S61195909A JP 60035218 A JP60035218 A JP 60035218A JP 3521885 A JP3521885 A JP 3521885A JP S61195909 A JPS61195909 A JP S61195909A
Authority
JP
Japan
Prior art keywords
iron
scrap
melting
molten
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60035218A
Other languages
Japanese (ja)
Inventor
Hideji Takeuchi
秀次 竹内
Yasuo Kishimoto
康夫 岸本
Yoshihide Kato
嘉英 加藤
Hideo Nakamura
仲村 秀夫
Tetsuya Fujii
徹也 藤井
Yasuhiro Kakio
垣生 泰弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60035218A priority Critical patent/JPS61195909A/en
Publication of JPS61195909A publication Critical patent/JPS61195909A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • C21C5/5217Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace equipped with burners or devices for injecting gas, i.e. oxygen, or pulverulent materials into the furnace
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To obtain molten C-contg. iron by blowing simultaneously C-contg. material and gaseous O2 under combustion to the charged iron scrap from above and starting melting of the entire amt. from the iron scrap without a molten seed metal or remaining molten metal thereby heating and melting easily the iron scrap in a short period. CONSTITUTION:A flame 8 formed of gaseous O2 flow and the jet flow of a carboneous material is ejected by a lance 5 from above toward the iron scrap 7 in a reaction vessel 6. Gas or fluid mixture composed of the gas and refining agent such as quicklime is blown through a bottom blowing tuyere 9 when the scrap iron 7 is melted to form an iron bath 10 in the furnace bottom. The bath 10 is thereby stirred and the unmolten iron scrap around the same is melted down; at the same time, the temp. and components of the bath 10 are uniformly maintained. As a result, the melting from the scrap of the entire amt. down to the molten iron is possible, while a specified amt. of the molten iron is heretofore required in the stage of melting the scrap. The molten iron is thus economically and easily obtd. from coal which is the inexpensive and ample primary energy and the iron scrap.

Description

【発明の詳細な説明】 (産業上の利用分野) 屑鉄を溶解することによって製鋼用熔銑を得ることに関
してこの明細書には、熱源として単に炭素含有物質を用
いその酸化発熱反応の活用によって電力を用いずに屑鉄
から該熔銑を有利に得ることについての開発研究の成果
を以下に述べる。
Detailed Description of the Invention (Industrial Field of Application) Regarding the production of molten pig iron for steelmaking by melting scrap iron, this specification describes the use of simply a carbon-containing material as a heat source and the use of its oxidative exothermic reaction to generate electricity. The results of research and development on how to advantageously obtain molten pig iron from scrap iron without using it are described below.

一般に製鉄方法の主流は、鉄鉱石をコークスにより高炉
で還元し熔銑(炭素を4%以上含む溶鉄)を製造し、こ
れを必要に応じて不純物の除去をしたのち、転炉内で脱
炭(同時にシリコン、りんも除去)を行い、用途に応じ
た炭素を含む溶鋼まで精錬するプロセスである。
Generally, the mainstream method of steelmaking is to reduce iron ore with coke in a blast furnace to produce molten pig iron (molten iron containing 4% or more carbon), which is then decarburized in a converter after removing impurities as necessary. It is a process that removes silicon and phosphorus at the same time, and refines it to molten steel that contains carbon according to the application.

一方、大量生産に適した他の製鉄法には電気炉があり、
これは屑鉄(スクラップ)を電気エネルギーにより加熱
−溶解して溶鋼を得る方法である。
On the other hand, other iron manufacturing methods suitable for mass production include electric furnaces.
This is a method of heating and melting scrap iron using electrical energy to obtain molten steel.

この2方法とも周知技術であり、かつ広く工業的に実施
されている。
Both of these methods are well known techniques and are widely practiced industrially.

かようなスクラップの溶解に際して、高価な電気エネル
ギーの使用を廃することが必要とされる。
In melting such scrap, it is necessary to eliminate the use of expensive electrical energy.

(従来の技術) 特開昭56−58916号、同第56−33415号公
報などには、微粉炭を転炉の炉底羽口の一部から吹込み
、他の羽口からは酸素ガスを供給して、スクラップを溶
解する方法が開示されている。この方法は電力を安価な
石炭エネルギーに置換できる点で優れた技術であるが、
炉底羽口から微粉炭を吹き込むには溶鉄が一定量存在せ
ねばならない。したがって「種湯」と通称される、第1
回目操業の開始時に必要な溶鉄、あるいは「残し湯」と
呼ばれる前回溶解時の溶鉄を、スクラップと併用する変
則的方法を採らざるを得ない。またこの場合微粉炭を吹
込む前に炉底羽口から天然ガス、プロパンガス等を酸素
と同時に供給し、得られる高温ガスにより予めスクラッ
プを予熱し一部を溶解させる必要もあった。
(Prior art) Japanese Patent Laid-Open Nos. 56-58916 and 56-33415 disclose a method in which pulverized coal is injected from a part of the bottom tuyere of a converter, and oxygen gas is injected from the other tuyeres. A method of dispensing and melting scrap is disclosed. This method is an excellent technology in that it can replace electricity with cheap coal energy, but
In order to inject pulverized coal through the bottom tuyere, a certain amount of molten iron must be present. Therefore, the first bath is commonly known as “Taneyu”.
The company has no choice but to adopt an irregular method of using the molten iron needed at the start of the next operation, or the molten iron from the previous melting called ``remaining hot water'', in combination with scrap. In this case, it was also necessary to supply natural gas, propane gas, etc. from the bottom tuyere at the same time as oxygen before injecting the pulverized coal, and to preheat the scrap with the resulting high-temperature gas to partially melt it.

また他の例として、鉄浴中に炭素含有物質と酸素を同時
に供給、発生するCOガスを鉄浴上で更に酸素ガスによ
りC島ガスにまで燃焼させ、得られた高温ガスを鉄浴上
方に積まれたスクラップ中を通すことで予熱をし、この
予熱スクラップを上記鉄浴中へ添加することでスクラッ
プ溶解をする方法も公表されている(鉄と鋼、 70 
(1984)、5885゜この方法でも、操業開始には
上述の種湯が必要であり、やはり実際的ではない。
As another example, a carbon-containing substance and oxygen are simultaneously supplied into an iron bath, the generated CO gas is further combusted to C island gas on the iron bath, and the resulting high-temperature gas is sent above the iron bath. A method has also been published in which scrap is melted by passing it through a pile of scrap to preheat it and adding the preheated scrap to the above-mentioned iron bath (Tetsu to Hagane, 70).
(1984), 5885° This method also requires the above-mentioned seed water to start operation, and is still not practical.

(発明が解決しようとする問題点) 以上のように、従来の技術では転炉状の容器内で炭素含
有物を燃焼させスクラップを加熱・溶解するには、初期
に一定量の溶鉄が必要であった。
(Problems to be solved by the invention) As described above, in the conventional technology, a certain amount of molten iron is initially required to burn carbon-containing materials and heat and melt scrap in a converter-like container. there were.

したがって電気炉や高炉のない場合には、実質上前述の
方法は実施できない。また電気炉や高炉があっても種湯
を確保しつつ溶鉄を製造する操業を行わざるを得ず、こ
れは生産能率の低下、余分な熱損失、余分な鉄損失を招
くので経済的なプロセスではない。更に、残し湯は比較
的短時間内に使用しないと凝固するので、操業スケジュ
ール管理を過度に行わなければならない。また工程が複
雑となり安定操業には不利である。
Therefore, in the absence of an electric furnace or blast furnace, the above-described method cannot be practically implemented. Furthermore, even with electric furnaces and blast furnaces, operations must be carried out to produce molten iron while securing seed water, which is an economical process because it reduces production efficiency, causes excessive heat loss, and excessive iron loss. isn't it. Furthermore, the remaining hot water will solidify if not used within a relatively short period of time, requiring excessive management of operational schedules. Moreover, the process becomes complicated, which is disadvantageous for stable operation.

以上の問題点を解決して種湯または残し湯なしに全量ス
クラップから開始して短時間で簡便に溶鉄を得る方法を
与えることがこの発明の目的である。
It is an object of the present invention to solve the above problems and provide a method for easily obtaining molten iron in a short time by starting from the entire amount of scrap without using seed hot water or left over hot metal.

(問題点を解決するための手段) この発明は、屑鉄を装入し、炭素含有物質と酸素ガスを
同時に屑鉄の上方から燃焼下に吹付けることにより、該
屑鉄を加熱・溶解し、炭素含有溶鉄を得ることを特徴と
する屑鉄の溶解方法ならびに反応容器内に屑鉄を装入し
、炭素含有物質と酸素ガスを同時に屑鉄の上方から燃焼
下に吹付けることにより該屑鉄を加熱・溶解し、”実質
的に熔銑を用いずに炭素含有溶鉄を得ることを特徴とす
る屑鉄の溶解方法である。なお、実施態様は、反応容器
として、底壁と側壁との少なくとも一方に羽目を有する
ものを用いること、反応容器が上底吹き転炉であること
がのぞましい。
(Means for Solving the Problems) The present invention heats and melts the scrap iron by charging scrap iron and simultaneously spraying a carbon-containing substance and oxygen gas from above the scrap metal while burning it. A method for melting scrap iron characterized by obtaining molten iron, charging scrap iron into a reaction vessel, heating and melting the scrap iron by simultaneously spraying a carbon-containing substance and oxygen gas from above the scrap iron under combustion, ``This is a scrap iron melting method characterized by obtaining carbon-containing molten iron substantially without using molten pig iron.In addition, in an embodiment, the reaction vessel has a wall on at least one of the bottom wall and the side wall. It is preferable that the reaction vessel be a top-bottom blowing converter.

発明者らは、反応容器内に装入したスクラップへの熱の
供給方法を種々検討した結果、後述するバーナー状のラ
ンスを用いて炭素含有物質、特に微粉炭あるいは微粉コ
ークス(以下、炭材という)を酸素ガスと同時にかつ、
燃焼させながらスクラップの上方から供給し、加熱・溶
解するのが最適であることを見出した。
As a result of investigating various methods of supplying heat to scrap charged into a reaction vessel, the inventors discovered that carbon-containing materials, particularly pulverized coal or pulverized coke (hereinafter referred to as carbon material), were ) at the same time as oxygen gas and
We have found that it is optimal to feed scrap from above while burning it, and heat and melt it.

この方法によれば、種湯あるいは残し湯は不要であり、
どのような工場でも時間的制約なしにスクラップから溶
鉄を製造することができる。
According to this method, there is no need for seed water or leftover water;
Any factory can produce molten iron from scrap without time constraints.

また、添加する炭材の供給速度や酸素ガスとの供給比を
制御することにより、溶は落ちた熔銑中に炭材を浸入さ
せて溶鉄中炭素濃度を高めることができる。溶鉄中炭素
濃度が高くなることにより、溶鉄の融点が低くなるので
周囲のスクラップの溶解を促進する。このような操業方
法により、電気炉で電気エネルギーの加熱によってスク
ラップを溶解するより早く炭素含有溶鉄を得ることがで
きる。
Moreover, by controlling the supply rate of the carbonaceous material to be added and the supply ratio with oxygen gas, the carbonaceous material can be allowed to infiltrate into the fallen molten pig iron, thereby increasing the carbon concentration in the molten iron. As the carbon concentration in the molten iron increases, the melting point of the molten iron decreases, promoting the melting of surrounding scrap. With such an operating method, carbon-containing molten iron can be obtained more quickly than by melting scrap by heating with electrical energy in an electric furnace.

この発明を実施する反応容器として、その容器の底壁又
は溶鉄浴面下の側壁部の少なくとも一方に羽口を有する
容器が有利である。
As a reaction vessel for carrying out this invention, it is advantageous to have a tuyere on at least one of the bottom wall or the side wall below the surface of the molten iron bath.

工業的に実施する場合、既存の反応容器で本発明に最適
なのは上底吹き転炉であり、転炉本体に何ら改造を加え
なくともこの発明の実施は可能である。
When implemented industrially, the best existing reaction vessel for the present invention is a top-bottom blowing converter, and the present invention can be implemented without any modification to the converter body.

この発明を実施するのに必要なバーナー状ランスの1例
を第1図に示す。図中1は炭材の流路であり、配管内で
の燃焼や爆発を回避するために通常は非酸化性気体で炭
材を搬送する。ただし空気を一部あるいは全部用いても
問題はない。
An example of a burner-like lance necessary to carry out the invention is shown in FIG. In the figure, reference numeral 1 indicates a flow path for carbonaceous materials, and the carbonaceous materials are normally conveyed using non-oxidizing gas to avoid combustion or explosion within the piping. However, there is no problem even if some or all of the air is used.

2は酸素ガスの流路であり、先端部のノズル3で吹出し
方向を炭材の噴出流に衝突するように向け、炭材の燃焼
性を高める。
Reference numeral 2 denotes an oxygen gas flow path, and a nozzle 3 at the tip directs the blowing direction so as to collide with the jet stream of the carbonaceous material to improve the combustibility of the carbonaceous material.

酸素気流と炭材噴出流各々の中心線の交角(同図中θ)
は、微粉炭中の揮発分割合や噴出速度によって最適値が
異なるが、30°〜75°の範囲で適合する。
Intersection angle between the center lines of the oxygen air flow and the carbonaceous jet flow (θ in the figure)
Although the optimum value differs depending on the volatile content ratio in the pulverized coal and the ejection speed, it is suitable within the range of 30° to 75°.

また酸素流路と炭材流路との配置は(a)図に限らず、
例えば(b)図のように酸素ガスを内側に配して、外側
の炭材噴出流に向けて衝突する構造としてもよい。また
(c)図のように、酸素ガスの噴出孔をスリット状にせ
ず、通常転炉用ランスのようにラバールノズル(末広ノ
ズル)にしてもよい。
In addition, the arrangement of the oxygen flow path and the carbon material flow path is not limited to that shown in Figure (a).
For example, a structure may be adopted in which oxygen gas is arranged inside and collides with the carbonaceous jet stream on the outside, as shown in FIG. Moreover, as shown in FIG. 3(c), the oxygen gas ejection hole may not be formed into a slit shape, but may be formed into a Laval nozzle (wide-spread nozzle) like a lance for a normal converter.

(作 用) 第2図は、上述のランス5を反応容器6内のスクラップ
7に対して設置する際の位置関係を示し、同図のように
スクラップの上方から下向きに火炎8が噴出することが
必要である。
(Function) Figure 2 shows the positional relationship when the above-mentioned lance 5 is installed with respect to the scrap 7 in the reaction vessel 6, and the flame 8 is ejected downward from above the scrap as shown in the figure. is necessary.

なおランス5の向きが傾斜していると火炎が炉壁耐火物
に当たり、耐火物の溶損や穴あきを起こす。したがって
ランスは実質的に垂直に下降させる必要があり、たとえ
傾斜したとしても火炎はスクラップにのみ当たるように
位置することが必要となる。
Note that if the direction of the lance 5 is tilted, the flame will hit the furnace wall refractories, causing melting and perforation of the refractories. The lance therefore needs to be lowered substantially vertically, and even if tilted, it needs to be positioned so that the flame only hits the scrap.

同図中9は底吹き羽口である。スクラップが溶解し炉底
に鉄浴10が出来ると、この鉄浴に攪拌を与え、周囲の
未溶解スクラップを溶かし落とすと同時に、鉄浴の温度
・成分を均一に保つために羽口から気体あるいは気体と
生石灰などの精錬剤の混合流体を吹込む。
9 in the figure is a bottom blowing tuyere. When the scrap is melted and an iron bath 10 is formed at the bottom of the furnace, this iron bath is stirred and unmelted scraps around it are melted off. Blow in a mixed fluid of gas and a refining agent such as quicklime.

底吹きガスの種類と量は次のようにしてきめられる。ま
ず酸素ガスを用いれば羽口冷却用の炭化水素ガスあるい
は灯油を燃焼して高温ガスを発生させ、スクラップの下
方からも溶解が開始するので溶解時間を短くすることが
できる。反面、炉底耐火物や羽口の溶損が比較的大きい
欠点がある。
The type and amount of bottom-blown gas are determined as follows. First, if oxygen gas is used, hydrocarbon gas or kerosene for cooling the tuyere is burned to generate high-temperature gas, and melting starts from below the scrap, so the melting time can be shortened. On the other hand, there is a disadvantage that the bottom refractory and tuyere are subject to relatively large melting loss.

少量の不活性ガスを用いれば、溶解時間は多少長くなる
が、炉底や羽口の寿命は長くなり総合的には経済的であ
る。
If a small amount of inert gas is used, the melting time will be somewhat longer, but the life of the furnace bottom and tuyeres will be longer, and it will be more economical overall.

酸素ガスを炉底羽口から供給するのは高生産性が目的で
あるので、供給速度は最終的に製造される溶鉄1 ’t
on当たり0.2 Nm’/sin特にI N+s3/
win以上が望ましい。
The purpose of supplying oxygen gas from the bottom tuyere is to achieve high productivity, so the supply rate is 1't for the final molten iron produced.
0.2 Nm'/sin per on, especially I N+s3/
A win or higher is desirable.

一方、不活性ガスの場合には攪拌力を得るために必要最
少限で十分であり、1 ton当たりI Nm’/a+
in以下特に0.2 Nm″/win以下が望ましい。
On the other hand, in the case of inert gas, the minimum necessary amount is sufficient to obtain stirring power, and I Nm'/a+ per 1 ton.
in or less, particularly preferably 0.2 Nm″/win or less.

以上の羽口は必ずしも炉底にある必要はなく、例えばA
OD炉のように側壁の下部に設置されてもよい。このよ
うな底吹きガスと量を選択するかは、反応容器の既存設
備や目的とする生産性によって異なる。
The above tuyeres do not necessarily have to be at the bottom of the hearth, for example A
It may be installed at the bottom of the side wall like an OD furnace. The selection of such bottom-blown gas and its amount depends on the existing equipment of the reaction vessel and the desired productivity.

一般的に言えば、不活性ガスの流量範囲を大きくとれる
羽口を設け、溶は落ちた溶鉄量の増加にあわせて底吹き
量を最低量から約0.2 Nm!/5in−tまで漸次
増加させることが望ましい。
Generally speaking, by installing a tuyere that can widen the flow rate range of inert gas, the amount of bottom blowing can be increased from the minimum amount to approximately 0.2 Nm as the amount of molten iron that falls increases! It is desirable to gradually increase the thickness up to /5 in-t.

以上述べたようにこの発明を実施する上で周知の技術で
ある上底吹き転炉は有利な反応容器であり、以下の実施
例に示すように高効率にスクラップ溶解ができる。
As described above, the top-bottom blowing converter, which is a well-known technique, is an advantageous reaction vessel for carrying out the present invention, and as shown in the following examples, scrap can be melted with high efficiency.

なお、上述のバーナー機能を有する上吹きランスを用い
ると炭材の燃焼による加熱と同時に、炭材を溶は落ちた
溶鉄へ浸入させ加炭することも可能であり、通常は炭素
含有溶鉄が得られる。
Furthermore, when using the above-mentioned top blowing lance with the burner function, it is possible to heat the carbonaceous material by burning it, and at the same time, it is also possible to infiltrate the fallen molten iron and carburize the carbonaceous material. It will be done.

以上、この発明について、実質的に熔銑を用いなくても
炭素含を溶鉄を得ることができることを示したが、当然
のことながら、熔銑を併用して屑鉄を加熱・溶解を行う
場合にも適合するのは明白である。
As mentioned above, it has been shown that it is possible to obtain carbon-containing molten iron with this invention substantially without using molten pig iron. However, as a matter of course, when molten iron is used in combination to heat and melt scrap iron, It is obvious that this also applies.

(実施例) 実施■1 反応容器として、酸素ガスを底吹きできる転炉と炭材燃
焼バーナーの機能をもっランスを組合せた5トン規模の
設備を用いたこの発明の実施例を以下に示す。
(Example) Implementation 1 The following is an example of the present invention using, as a reaction vessel, a 5-ton scale facility that combines a converter capable of bottom-blowing oxygen gas and a lance having the function of a carbonaceous combustion burner.

第3図は設備の骨組みを示し、図中5は上述の上吹きラ
ンス、11は上底吹き転炉、9は底吹き羽口、7は装入
されたスクラップ、12は炭材(微粉炭)を貯蔵し気体
搬送するためのディスペンサーである。9の底吹き羽目
からは、酸素と冷却用のプロパンを供給できるようにし
た。
Figure 3 shows the framework of the equipment, in which 5 is the above-mentioned top blowing lance, 11 is a top and bottom blowing converter, 9 is a bottom blowing tuyere, 7 is charged scrap, and 12 is carbon material (pulverized coal). ) is a dispenser for storing and transporting gas. Oxygen and propane for cooling can be supplied from the bottom blowhole at No. 9.

操業手順を以下に示す。まず、炉内を十分に予熱し、炉
内温度を約900℃としたのち、スクラップを約4トン
装入した。
The operating procedure is shown below. First, the inside of the furnace was sufficiently preheated to bring the temperature inside the furnace to about 900° C., and then about 4 tons of scrap was charged.

このスクラップは製鉄所内で発生した熱延鋼板のトリミ
ング屑、スラブの切断片などを用いたが、特にスクラッ
プの銘柄・種類は限定されない。
The scrap used was trimming scraps of hot-rolled steel sheets, cut pieces of slabs, etc. generated in the steelworks, but the brand and type of scrap are not particularly limited.

次に炉を垂直にし、炉底羽口から酸素を5N■’/wi
nおよび羽口冷却用のプロパンガスを0.2 Nm!/
sin供給した。同時に、炉の上方から前述のバーナー
機能を有するランスを下降し、微粉炭を35 kg/s
in酸素を17Nm’/win供給し、ランスのノズル
出口で燃焼させ、火炎をスクラップに当たる位置で固定
した。
Next, set the furnace vertically and introduce oxygen from the bottom tuyeres at 5N/wi.
n and 0.2 Nm of propane gas for tuyere cooling! /
sin was supplied. At the same time, the lance with the burner function described above is lowered from above the furnace, and the pulverized coal is delivered at 35 kg/s.
Oxygen was supplied at 17 Nm'/win and burned at the nozzle outlet of the lance, and the flame was fixed at a position hitting the scrap.

この状態で30分間保持後、炉上からスクラップを1.
5トン追加し、さらに15分保持した後炉を傾動して炉
内のスクラップが全量溶解していることを確認した。表
1に以上の操業で使用した主副原料の重量を12ヒート
の平均値で示す。
After holding this state for 30 minutes, remove the scrap from the top of the furnace.
After adding 5 tons and holding the furnace for another 15 minutes, the furnace was tilted and it was confirmed that all the scrap in the furnace had been melted. Table 1 shows the weight of the main and auxiliary raw materials used in the above operation as an average value of 12 heats.

表1 表中の生石灰は、微粉炭中の灰分がAl2O2,S10
□を主成分としたスクラップ中のシリコンが酸化されて
Singとなるので、塩基性耐火物の保護の目的で添加
した。操業後の溶鉄成分と温度を表2に示す。
Table 1 The quicklime in the table has an ash content of Al2O2, S10 in the pulverized coal.
Since the silicon in the scrap whose main component is □ is oxidized to Sing, Sing was added for the purpose of protecting the basic refractory. Table 2 shows the molten iron components and temperatures after operation.

Si、MnやPは主としてスクラップに起薗する。Si, Mn and P are mainly produced as scrap.

一方、Sはスクラップからと微粉炭がら大量に溶鉄中に
入る。添加する生石灰の量を調整し、スラグ塩基度を2
以上にした場合に低いSs度が得られた。しかし物質収
支をとると、不明の3分がかなり多く、気相中へ逸散し
たものと考えられる。
On the other hand, a large amount of S enters the molten iron from scrap and pulverized coal. Adjust the amount of quicklime to add to reduce the basicity of the slag to 2.
A low degree of Ss was obtained when the above was used. However, when calculating the mass balance, the unaccounted for 3 minutes was quite large, and it is thought that it was dissipated into the gas phase.

使用した転炉が小さかったことや、バッチ操業のために
炉体耐火物全体に蓄熱されていなかったのでスクラップ
溶解に必要な熱量に対し相当以上の微粉炭、酸素を必要
とした。
Because the converter used was small and because it was a batch operation, heat was not stored in the entire refractory of the furnace body, so pulverized coal and oxygen were required in excess of the amount of heat required for scrap melting.

叉■■1 前例と全く同様にしてスクラップ溶解を行ったが、相違
点は底吹き羽口を変更した。すなわち実施例1では酸素
と羽口冷却用ガスを吹き込む2重管構造の羽目であった
が、これを単管羽口とし、N2またはArガスを溶鉄1
 ton当たり0.008〜0.15 Nn+”/si
n供給できるようにした。
叉■■1 Scrap melting was carried out in exactly the same manner as in the previous example, but the difference was that the bottom blowing tuyere was changed. In other words, in Example 1, the double-pipe structure was used to blow oxygen and tuyere cooling gas, but this was replaced with a single-pipe tuyere, and N2 or Ar gas was injected into the molten iron.
0.008 to 0.15 Nn+”/si per ton
n supply.

このために、羽口本数3本羽口の単管内径3IIIwφ
とし、ガス元圧を8〜50kg/cm”−Gまで変更で
きるようにした。
For this purpose, the number of tuyeres is 3. The inner diameter of the single tube of the tuyere is 3IIIwφ.
The gas source pressure can be changed from 8 to 50 kg/cm''-G.

操作手順を以下に記す。予熱した炉内にスクラップ約4
トンを装入し、底吹きガスを全羽口で0.05 N+s
!/win流しながら炉を直立させ、微粉炭燃焼バーナ
ーの機能を有する上吹きランスを下降して燃焼炎を発生
させ、スクラップ上方から加熱溶解を開始した。底吹き
ガス量は20分後に0.10 N+++、3/lll1
nに増量した。35分後に0.25Nm”/sinに増
量すると同時に、炉上から約1.5トンのスクラップを
追加投入した。
The operating procedure is described below. Approximately 4 scraps in the preheated furnace
0.05 N+s at all tuyeres with bottom blowing gas.
! The furnace was stood upright while flowing /win, and a top blowing lance functioning as a pulverized coal combustion burner was lowered to generate a combustion flame, and heating and melting was started from above the scrap. The bottom blowing gas amount is 0.10 N+++, 3/lll1 after 20 minutes.
The amount was increased to n. After 35 minutes, the amount was increased to 0.25 Nm''/sin, and at the same time, approximately 1.5 tons of scrap was added from above the furnace.

そのままさらに20分間溶解を続けたが、この間に底吹
きガスは0.25から0.75 N+s’/minまで
漸次増加させた。炉を倒してスクラップ全量が溶解して
いることを確認し、測温とサンプリングを行った。なお
溶解中には前例と同様に生石灰を炉上より所定量添加し
た。表3はこの操業6ヒートの平均の主副原料使用量で
ある。
Melting was continued for another 20 minutes, during which time the bottom blowing gas was gradually increased from 0.25 to 0.75 N+s'/min. After turning the furnace over and confirming that all the scrap had melted, temperature measurements and sampling were performed. During the melting, a predetermined amount of quicklime was added from above the furnace as in the previous example. Table 3 shows the average amount of main and auxiliary raw materials used in the six heats of this operation.

表3 ]−・ 底吹きガスに酸素を用いないこの例の場合には、底吹き
羽目や炉底の溶損が少なく、また羽目冷却用の炭化水素
が不要であるなどの利点があり、多少溶解時間は長くな
るが、通常の転炉の小改造で実施できることからこの発
明を実施する最適の方法である。
Table 3] - In this example, where oxygen is not used for the bottom blowing gas, there are advantages such as less erosion of the bottom blowing slats and the bottom of the furnace, and no need for hydrocarbons for cooling the siding. Although the melting time is longer, this method is the most suitable method for implementing the present invention because it can be implemented with a small modification of an ordinary converter.

(発明の効果) この発明によって、従来はスクラップ溶解時に一定量の
溶鉄が必要であったのに対し、全量スクラップがら溶鉄
まで溶解することができるようになった。これは、微粉
炭燃焼バーナーの機能を有する上吹きランスにより熱源
をスクラップの上方から供給するというこの発明の技術
によって初めて達成できるようになった。
(Effects of the Invention) With this invention, whereas conventionally a fixed amount of molten iron was required when melting scrap, it has become possible to melt the entire amount of scrap to molten iron. This became possible for the first time with the technology of the present invention, in which the heat source is supplied from above the scrap using a top blowing lance that has the function of a pulverized coal combustion burner.

この発明により、安価で゛かつ豊富な1次エネルギーの
石炭と産業構造上必ず発生する屑鉄とから溶鉄を経済的
にかつ容易に得られるようになった。石油に大きく依存
する電気エネルギー削減および老廃物の再利用が工業的
に可能となったことは、この発明が社会的にも意義が太
きいことを示している。
This invention has made it possible to economically and easily obtain molten iron from coal, which is a cheap and abundant primary energy source, and scrap iron, which is inevitably generated due to industrial structures. The fact that it has become possible industrially to reduce electrical energy, which relies heavily on petroleum, and to reuse waste materials, shows that this invention has great social significance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施に適合する微粉炭燃焼バーナー
の機能を有する上吹きランスの端面図と断面図、 第2図は、上吹きランスとスクラップの位置関係を示す
転炉の断面図、 第3図は、上底吹き転炉で本発明を実施した操業事例の
説明図である。 1・・・炭材の流路    2・・・酸素の流路3・・
・ランス先端の吹出しノズル 4・・・冷却水流路 5・・・微粉炭燃焼機能を有するランス6・・・反応容
器     7・・・スクラップ(屑鉄)8・・・燃焼
炎      9・・・底吹き羽口10・・・溶は落ち
た溶鉄  11上底吹き転炉12・・・微粉炭貯蔵供給
用ディスペンサー13・・・羽口冷却用プロパンガス流
路しく
Fig. 1 is an end view and a sectional view of a top blowing lance having the function of a pulverized coal combustion burner that is suitable for carrying out the present invention. Fig. 2 is a sectional view of a converter showing the positional relationship between the top blowing lance and scrap. , FIG. 3 is an explanatory diagram of an example of operation in which the present invention was implemented in a top-bottom blowing converter. 1...Charcoal material flow path 2...Oxygen flow path 3...
・Blowout nozzle at the tip of the lance 4... Cooling water flow path 5... Lance with pulverized coal combustion function 6... Reaction vessel 7... Scrap (scrap iron) 8... Combustion flame 9... Bottom blowing Tuyere 10... Molten iron that has fallen 11 Top and bottom blowing converter 12... Dispenser for storing and supplying pulverized coal 13... Propane gas flow path for tuyere cooling

Claims (1)

【特許請求の範囲】 1、反応容器内に屑鉄を装入し、炭素含有物質と酸素ガ
スを同時に屑鉄の上方から燃焼下に吹付けることにより
該屑鉄を加熱・溶解し、炭素含有溶鉄を得ることを特徴
とする屑鉄の溶解方法。 2、反応容器として、底壁と側壁との少なくとも一方に
羽口を有するものを用いる1記載の方法。 3、反応容器が上底吹き転炉である1記載の方法。 4、反応容器内に屑鉄を装入し、炭素含有物質と酸素ガ
スを同時に屑鉄の上方から燃焼下に吹付けることにより
該屑鉄を加熱・溶解し、実質的に熔銑を用いずに炭素含
有溶鉄を得ることを特徴とする屑鉄の溶解方法。
[Claims] 1. Scrap iron is charged into a reaction vessel, and a carbon-containing substance and oxygen gas are simultaneously sprayed from above the scrap iron while it is being combusted, thereby heating and melting the scrap iron to obtain carbon-containing molten iron. A method for melting scrap iron. 2. The method according to 1, wherein the reaction vessel has a tuyere on at least one of the bottom wall and the side wall. 3. The method according to 1, wherein the reaction vessel is a top-bottom blowing converter. 4. Scrap iron is charged into a reaction vessel, and the scrap iron is heated and melted by simultaneously blowing a carbon-containing substance and oxygen gas from above the scrap iron while burning, thereby producing carbon-containing material without using molten pig iron. A method for melting scrap iron characterized by obtaining molten iron.
JP60035218A 1985-02-26 1985-02-26 Method for melting iron scrap in converter Pending JPS61195909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60035218A JPS61195909A (en) 1985-02-26 1985-02-26 Method for melting iron scrap in converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60035218A JPS61195909A (en) 1985-02-26 1985-02-26 Method for melting iron scrap in converter

Publications (1)

Publication Number Publication Date
JPS61195909A true JPS61195909A (en) 1986-08-30

Family

ID=12435705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60035218A Pending JPS61195909A (en) 1985-02-26 1985-02-26 Method for melting iron scrap in converter

Country Status (1)

Country Link
JP (1) JPS61195909A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250404A (en) * 1985-08-30 1987-03-05 Kawasaki Steel Corp Melting method for scrap iron
US5698010A (en) * 1994-11-02 1997-12-16 Nkk Corporation Scrap melting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541220A (en) * 1977-05-04 1979-01-08 Maximilianshuette Eisenwerk Steel producing method and converter
JPS58130210A (en) * 1982-01-27 1983-08-03 Nippon Steel Corp Heating method for scrap iron and ferroalloy in converter
JPS59110715A (en) * 1982-12-16 1984-06-26 Nippon Steel Corp Method for heating charging material like cold iron source, solid fuel, etc. by converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541220A (en) * 1977-05-04 1979-01-08 Maximilianshuette Eisenwerk Steel producing method and converter
JPS58130210A (en) * 1982-01-27 1983-08-03 Nippon Steel Corp Heating method for scrap iron and ferroalloy in converter
JPS59110715A (en) * 1982-12-16 1984-06-26 Nippon Steel Corp Method for heating charging material like cold iron source, solid fuel, etc. by converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250404A (en) * 1985-08-30 1987-03-05 Kawasaki Steel Corp Melting method for scrap iron
US5698010A (en) * 1994-11-02 1997-12-16 Nkk Corporation Scrap melting method

Similar Documents

Publication Publication Date Title
US4936908A (en) Method for smelting and reducing iron ores
JP5552754B2 (en) Arc furnace operation method
JP5608989B2 (en) Hot metal heating method
EP1721017B1 (en) Method for producing low carbon steel
US3232748A (en) Process for the production of steel
US5304232A (en) Fumeless cupolas
JPH0726318A (en) Operation of electric furnace for steelmaking
JPS61195909A (en) Method for melting iron scrap in converter
JP3286114B2 (en) Method for producing high carbon molten iron from scrap iron
JP2661478B2 (en) Cylindrical furnace and method for producing hot metal using the same
WO2022163156A1 (en) Refining method of molten iron and manufacturing method of molten steel using same
JP7136390B1 (en) Molten iron smelting method
JP5949627B2 (en) Method of refining hot metal in converter
JP2013028832A (en) Molten iron refining method
JP7099657B1 (en) Refining method of molten iron and manufacturing method of molten steel using it
WO2022234762A1 (en) Electric furnace and steelmaking method
JPS6250404A (en) Melting method for scrap iron
JPS61227119A (en) Manufacture of steel in converter using cold material containing iron as principal starting material
JP2022143183A (en) Molten iron dephosphorization method
JPH08311525A (en) Method for melting steel scrap and melting furnace
JPH01215919A (en) Method for starting melting in reactor ironmaking
JPS637315A (en) Secondary combustion method for gaseous co in oxygen bottom blowing converter
JPH068447B2 (en) Method for melting iron-containing cold material
JPS6312921B2 (en)
JPH0438812B2 (en)