JPS6250404A - Melting method for scrap iron - Google Patents
Melting method for scrap ironInfo
- Publication number
- JPS6250404A JPS6250404A JP60189964A JP18996485A JPS6250404A JP S6250404 A JPS6250404 A JP S6250404A JP 60189964 A JP60189964 A JP 60189964A JP 18996485 A JP18996485 A JP 18996485A JP S6250404 A JPS6250404 A JP S6250404A
- Authority
- JP
- Japan
- Prior art keywords
- scrap
- carbon
- burner
- oxygen gas
- carrier gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/30—Regulating or controlling the blowing
- C21C5/35—Blowing from above and through the bath
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/56—Manufacture of steel by other methods
- C21C5/562—Manufacture of steel by other methods starting from scrap
- C21C5/565—Preheating of scrap
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C2005/5258—Manufacture of steel in electric furnaces with crater formed by down-melting of scrap or charge through electrode or lance
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、炭素含有物質の酸化発熱反応を、熱源として
屑鉄(以下、スクラップという)を加熱、溶解する方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method of heating and melting scrap iron (hereinafter referred to as scrap) using an oxidation exothermic reaction of a carbon-containing substance as a heat source.
(従来の技術)
従来、電気エネルギーを用いずに炭素含有物質を酸素ガ
スにより燃焼させることによって発生する熱でスクラッ
プを加熱、溶解する方法として、微粉炭を転炉の底に設
けた羽目の一部から吹き込み他の羽目から酸素ガスを吹
き込んでスクラップを溶解することが、特開昭58〜5
8916号公報、特開昭56−33415号公報に記載
されている。(Prior Technology) Conventionally, as a method of heating and melting scrap using the heat generated by burning carbon-containing materials with oxygen gas without using electrical energy, pulverized coal was installed at the bottom of a converter. The method of melting scrap by blowing oxygen gas into one part and another part was disclosed in JP-A-58-5.
It is described in Japanese Patent Application Laid-open No. 8916 and Japanese Patent Application Laid-Open No. 56-33415.
また、鉄浴中に炭素含有物質と酸素ガスを同時に供給し
、発生するCoガスを酸素ガスで燃焼させて得られる高
温ガスで鉄浴上方に積まれるスクラップを加熱する方法
が、特開昭59−150005号公報に記載されている
。In addition, a method of heating scrap piled above the iron bath with high-temperature gas obtained by simultaneously supplying a carbon-containing substance and oxygen gas into an iron bath and burning the generated Co gas with oxygen gas was disclosed in JP-A-59. It is described in the publication No.-150005.
(発明が解決しようとする問題点)
しかしながら、前者の方法では、スクラップ溶解時に炉
の系外に微粉炭が飛び出さないように「種湯」や「残し
湯」といった溶鉄が必要となったり、あるいは微粉炭を
吹き込む前に炉底羽根口より天然ガス、プロパンガス等
を酸素ガスとともに供給し、得られる高温ガスによって
スクラソブの一部をン容解させる必要があるために、微
粉炭以外の燃料が必要となる問題があった。(Problems to be Solved by the Invention) However, the former method requires molten iron such as "seed hot water" or "remaining hot water" to prevent pulverized coal from flying out of the furnace system during scrap melting. Alternatively, before injecting pulverized coal, it is necessary to supply natural gas, propane gas, etc. together with oxygen gas from the tuyeres at the bottom of the furnace, and use the resulting high-temperature gas to dissolve a portion of the scrubber. There was a problem that required
また、後者の方法でも操業開始時に「種湯」や「残し湯
」といった溶鉄が必要となっていた。いずれの方法にお
いても、操業開始時に「種湯」といった一定量の溶鉄か
必要となるために高炉や電気炉のない場合、実質上前述
の各方法は実施できない場合がある。また、高炉や電気
炉があったとしても種湯を確保しつつ操業を行われなけ
ればならないために、生産能率が低下し、余分な熱損失
を招くので経済的な方法でなかった。さらに、残し湯は
短時間に使用しないと凝固するので、操業スケジュール
の管理を過度に行わなければならず、かつ工程が複雑に
なる。Furthermore, even with the latter method, molten iron such as ``seed hot water'' and ``remaining hot water'' was required at the start of operation. In either method, a certain amount of molten iron such as "seed water" is required at the start of operation, so if a blast furnace or electric furnace is not available, the above-mentioned methods may not be practical in some cases. Furthermore, even if a blast furnace or electric furnace were available, it was not an economical method because it had to be operated while securing seed water, which lowered production efficiency and caused excess heat loss. Furthermore, the remaining hot water will solidify if it is not used within a short period of time, requiring excessive management of the operating schedule and complicating the process.
本発明は、前述した問題点を解決すべくスクラップのみ
から短時間で溶鉄を製造する方法を提供することを目的
としている。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing molten iron from only scrap in a short time in order to solve the above-mentioned problems.
(問題点を解決するための手段)
本発明は、スクラップの溶解にあたり、第1a図および
第1b図に示すようなバーナーを用いて、そのバーナー
の中心から微粉炭あるいは微粉コークスの如き粉体もし
くは粒体の炭素含有物質(以下、炭材という)を搬送ガ
スとともにスクラップの入った容器内に噴射供給すると
同時に噴射される炭材を取り囲むようにバーナーの周囲
から搬送ガスの2倍以上の流量で酸素ガスを噴射し、こ
の際該酸素ガスの噴射方向と炭材の噴射方向のなす角度
が少なくとも20度以上になるようにして酸素ガスと炭
材を衝突させて燃焼させることを特徴とする屑鉄の溶解
方法である。(Means for Solving the Problems) In the present invention, when melting scrap, a burner as shown in FIGS. 1a and 1b is used, and powder such as pulverized coal or pulverized coke is At the same time, a granular carbon-containing material (hereinafter referred to as carbon material) is injected into a container containing scrap together with a carrier gas, and at the same time a flow rate of more than twice that of the carrier gas is supplied from around the burner to surround the injected carbon material. Scrap iron characterized in that oxygen gas is injected, and at this time, the angle between the injection direction of the oxygen gas and the injection direction of the carbon material is at least 20 degrees or more, so that the oxygen gas and the carbon material collide and are combusted. This is a method of dissolving.
本発明の方法を実施するために必要なバーナーの例を第
1a図および第1b図に示す
第1a図のバーナーは、配管内での燃焼や爆発を回避す
るために通常は非酸化性ガス(空気を一部あるいは全部
用いても問題はない)で炭材を搬送するための流路1と
同心円状に設けた酸素ガスの流路2とバーナーの先端部
にスリット状の噴出口を設けたノズル3からなり、酸素
ガスの噴出口を炭材の噴出流に衝突する方向に向けであ
る。Examples of burners necessary to carry out the method of the invention are shown in FIGS. 1a and 1b. The burner in FIG. There is no problem even if some or all of the air is used), and an oxygen gas flow path 2 is provided concentrically with the flow path 1 for transporting the carbonaceous material, and a slit-shaped jet port is provided at the tip of the burner. It consists of a nozzle 3, with the oxygen gas ejection port oriented in the direction of colliding with the jet stream of carbonaceous material.
また、上述のスリットノズルの場合と比較して若干効果
は劣るが、第1b図に示すように酸素ガスの噴出孔を通
常の転炉用ランスのようにラバルノズル(末広ノズル)
にすることもできる。In addition, although the effect is slightly inferior to the case of the slit nozzle described above, as shown in Fig. 1b, the oxygen gas ejection hole can be replaced with a Laval nozzle (wide-spread nozzle) like a normal converter lance.
It can also be done.
(作 用)
炭材の噴出方向に対する酸素ガスの衝突角度に1)いて
、5トン転炉を用いて第1図に示す構造のバージ−一を
使用し炭材を搬送するガスと酸素ガスを吹き込み、通常
のランスから溶鋼に達する距離でナンプルを採取し燃焼
状況を調査した結果を第2図に示す。この図からもわか
るように、吹き込んだ炭材に対する未燃焼炭材の割合は
、衝突角度θを小さくなると急激に大きくなる。(Function) 1) At the collision angle of oxygen gas with respect to the jetting direction of carbonaceous material, a 5-ton converter was used and a barge with the structure shown in Fig. 1 was used to transfer the gas for conveying carbonaceous material and oxygen gas. Fig. 2 shows the results of blowing and investigating the combustion situation by taking specimens at a distance from a normal lance to reach the molten steel. As can be seen from this figure, the ratio of unburned carbonaceous material to the blown carbonaceous material increases rapidly as the collision angle θ decreases.
また、5トン上底吹き転炉にスクラップを5トン装入し
前記バーナーを用いて、スクラップを全量溶解するのに
必要な時間と衝突角度θとの関係乙こついて調査した結
果を第3図に示す。この図からも)わかるように、衝突
角度θが20度以下になると溶解に要する時間が急上昇
し、衝突角度が0度では未燃焼炭材の割合が大きくなり
、スクラップを溶解することができない。また、その衝
突角度θの最適値は、微粉炭中の揮発分の割合や噴出速
度によって異なるが、炭材の燃焼炎が広がりすぎると炭
材の添加効率の低下や炉壁耐火物の損傷が若干生じるの
で、70度未満にすることが望ましい。In addition, Figure 3 shows the relationship between the time required to melt all of the scrap and the collision angle θ when 5 tons of scrap was charged into a 5-ton top-bottom blowing converter and the burner was used. Shown below. As can be seen from this figure, when the collision angle θ becomes 20 degrees or less, the time required for melting increases rapidly, and when the collision angle is 0 degrees, the proportion of unburned carbonaceous material increases, making it impossible to melt the scrap. In addition, the optimal value of the collision angle θ varies depending on the proportion of volatile matter in the pulverized coal and the ejection speed, but if the combustion flame of the carbonaceous material spreads too much, the addition efficiency of the carbonaceous material may decrease and the furnace wall refractories may be damaged. It is desirable that the angle be less than 70 degrees.
つぎに、炭材の搬送ガスと酸素ガスの流星比が炭材の燃
焼に及ぼす影害を調査した結果、酸素ガス流量が搬送ガ
ス流量の2倍以下になると未燃焼炭が多(なることがわ
かった。その理由としては、炭材が搬送ガス中に含まれ
ていために、その運動エネルギーが同一流量の酸素ガス
の運動エネルギーよりも大きくなるためである。そのた
めに搬送ガスの流量は少ないほどよいが、その流量は炭
材の供給速度と搬送ガスの圧力によって決まる。しかし
、酸素ガス流量は搬送ガス流量の2倍以上にする必要が
ある。Next, as a result of investigating the influence of the meteor ratio of carbon material carrier gas and oxygen gas on the combustion of carbon material, it was found that when the oxygen gas flow rate is less than twice the carrier gas flow rate, there is a large amount of unburned coal. I understand.The reason is that since the carbonaceous material is included in the carrier gas, its kinetic energy is greater than that of oxygen gas at the same flow rate.Therefore, the lower the flow rate of the carrier gas, the more However, the flow rate is determined by the supply rate of the carbonaceous material and the pressure of the carrier gas.However, the oxygen gas flow rate needs to be at least twice the carrier gas flow rate.
以上に述べた条件下で本発明を実施する際の態様を第4
図に基づき説明する。The fourth embodiment of the present invention under the conditions described above is described below.
This will be explained based on the diagram.
前述したバーナーの機能を有するランス5の火炎8が反
応容器6内のスクラップ7のみに当たるような位置に下
降させでスフ丹ツブ7を溶解する。The lance 5, which has the function of a burner, is lowered to a position where the flame 8 hits only the scrap 7 in the reaction vessel 6, thereby melting the scrap 7.
容器の底に鉄浴10が出来ると、この鉄浴10に攪拌を
与え周囲の未溶解のスクラップを溶かし落とすと同時に
鉄浴の温度・成分を均一に保つために、底吹き羽口9か
らガスあるいは生石灰などの精錬剤を混合したガスを吹
き込む。このときの底吹きガスの種類と量は次のように
決められる。まず、酸素ガスを使用すれば羽口冷却用の
炭化水素ガスあるいは灯油が燃焼して高温ガスが発生し
て、スクラップの下方からも溶解が始まるので、溶解時
間を短くすることができる反面、耐火物や羽口の溶損が
比較的大きい欠点がある。また、酸素ガスを使用するの
は高生産性が目的であるので、供給速度は最終的に生産
される溶鉄1トン当たり0.2Nm3/min以上、特
にI Nm’/min以上が望ましい。Once the iron bath 10 is formed at the bottom of the container, gas is supplied from the bottom blowing tuyere 9 to agitate the iron bath 10 and melt away undissolved scraps around it, while at the same time keeping the temperature and composition of the iron bath uniform. Alternatively, blow gas mixed with a refining agent such as quicklime. The type and amount of bottom-blown gas at this time are determined as follows. First, if oxygen gas is used, the hydrocarbon gas or kerosene used to cool the tuyere is burned and high-temperature gas is generated, and melting starts from below the scrap, which shortens the melting time. The disadvantage is that the material and tuyere are subject to relatively large erosion. Furthermore, since the purpose of using oxygen gas is high productivity, the supply rate is desirably 0.2 Nm3/min or more, particularly I Nm'/min or more per ton of molten iron finally produced.
一方、少量の不活性ガスを用いれば、溶解時間は多少長
くなるものの、反応容器の底の耐火物や羽目の寿命が長
くなり、総合的には経済的である。On the other hand, if a small amount of inert gas is used, although the dissolution time becomes somewhat longer, the life of the refractories and lining at the bottom of the reaction vessel is extended, and it is overall economical.
この場合の不活性ガスの供給速度は、最終的に製造され
る溶鉄1トン当たりI Nn+’/min以下、特に0
.2Nm’/min以下が望ましい。この際、不活性ガ
スの流量範囲を太き(とれる羽口を設けて、溶は落ちた
量の増加に合わせてガス流量を最低量から約0.2Nm
’/minまで漸次増加させることが望ましい。In this case, the inert gas supply rate is I Nn+'/min or less per ton of molten iron finally produced, especially 0
.. 2 Nm'/min or less is desirable. At this time, increase the flow rate range of the inert gas (provide a removable tuyere, and adjust the gas flow rate to about 0.2 Nm from the lowest amount to match the increase in the amount of melt that falls).
It is desirable to gradually increase the speed up to '/min.
また、前述のバーナーを用いると、炭材の燃焼による加
熱と同時に炭材を溶鉄へ侵入させ加炭することも可能で
あり、この場合スクラップが溶解するまでは、炭材を酸
素ガスの理論燃焼量以上吹き込むことが望ましい。そし
て、加炭する条件下ではスクラップの融点が低下するの
で、溶解に有利である。In addition, by using the above-mentioned burner, it is possible to simultaneously heat the carbonaceous material by infiltrating the molten iron and carburize it. It is desirable to blow more than the amount. Under carburizing conditions, the melting point of scrap is lowered, which is advantageous for melting.
以上述べた態様は、反応容器として周知の上底吹き転炉
を用いて効率よくスクラップを溶解した場合であるが上
吹き転炉も反応容器として使用できる。しかし、スクラ
ップ溶解のためのエネルギー原単位および鉄浴の成分調
整の点で上底吹き転炉が有利である。In the embodiment described above, scrap is efficiently melted using a well-known top-bottom blowing converter as the reaction vessel, but a top-blowing converter can also be used as the reaction vessel. However, top-bottom blowing converters are advantageous in terms of energy consumption for scrap melting and composition adjustment of the iron bath.
(実施例)
第1a図、第ib図に示すような炭剤燃焼バーナーの機
能をもつ上吹きランス11、底吹き羽口9からなる5ト
ン規模の上底吹き転炉11と炭材(微粉炭)を貯蔵し供
給するためのディスペンサー12を備えた装置を第5図
に示す。この装置を用いて、炭材の搬送流と酸素ガスの
噴出流の衝突角度θを45度として本発明の方法を実施
した。(Example) A 5-ton scale top-bottom blowing converter 11 consisting of a top-blowing lance 11 having the function of a carbonaceous combustion burner and a bottom-blowing tuyere 9 as shown in FIGS. 1a and ib, and a carbonaceous material (fine powder) A device with a dispenser 12 for storing and dispensing charcoal is shown in FIG. Using this apparatus, the method of the present invention was carried out with the collision angle θ of 45 degrees between the carbon material carrier flow and the oxygen gas jet flow.
まず、炉内を予熱し炉内壁温度を約900℃にして、製
鉄所内で発生した鋼板のトリミング屑、スラブの切断片
などのスクラップを約4トン装入して炉を垂直にした。First, the inside of the furnace was preheated to bring the temperature of the furnace inner wall to about 900°C, and about 4 tons of scrap such as trimmings of steel plates and cut pieces of slabs generated in the steel mill were charged and the furnace was made vertical.
炉底羽口から酸素ガスを5Nm37minおよび羽目冷
却用のプロパンガス13を供給すると同時に炉の上方か
ら前述のバーナー機能を有するランス5を下降し、微粉
炭を35kg/min、搬送ガス流量を4 Nm’/m
in 、酸素ガス流量を17Nm37min供給して、
ノズル出口で燃焼させて火炎がスクラップに当たる位置
で固定した。この状態で30時間保持後、炉上からスク
ラップを1.5トン追加しさらに15分間保持した後、
炉を傾動して炉内のスクラップが全量溶解していること
を確認した。第1表に、この操業で使用した原料の重量
を12ヒートの平均値で示す。At the same time, the lance 5 having the burner function described above is lowered from above the furnace, and the pulverized coal is fed at 35 kg/min and the carrier gas flow rate is 4 Nm. '/m
in, supplying an oxygen gas flow rate of 17Nm37min,
It was burned at the nozzle outlet and fixed at the position where the flame hit the scrap. After holding this state for 30 hours, add 1.5 tons of scrap from above the furnace and hold for another 15 minutes.
The furnace was tilted to confirm that all the scrap inside the furnace had been melted. Table 1 shows the weight of raw materials used in this run as an average of 12 heats.
第1表
(*スクラップ1を当り溶解するのに使用した原料の原
単位)なお、使用した転炉が小さいことやバッチ操業の
ために炉体耐火物全体に蓄熱されていなかったので、ス
クラップ溶解に必要な熱量を得るため以上の微粉炭と酸
素を必要とした。また、生石灰は、微粉炭中の灰分がA
1□Oz、SiO□を主成分としておりまたスクラップ
中のシリコンがSiO□となるので、塩基性耐火物を保
護する目的で添加した。Table 1 (*Intensity of raw materials used to melt 1 piece of scrap) In addition, since the converter used was small and heat was not stored in the entire furnace refractory due to batch operation, scrap melting In order to obtain the necessary amount of heat, more pulverized coal and oxygen were required. In addition, quicklime has an ash content of A in pulverized coal.
Since the main component is 1□Oz and SiO□, and the silicon in the scrap becomes SiO□, it was added for the purpose of protecting the basic refractory.
操業後の溶鉄成分と温度を第2表に示す。Table 2 shows the molten iron components and temperatures after operation.
第2表
この表中のSi、Mn、Pは主としてスクラップから入
り、Sはスクラップと微粉炭から大量に溶鉄中に入るが
、添加する生石灰の量を調整し、スラグ塩基度を2以上
にした場合に低いs濃度の溶鉄が得られた。しかし、物
質収支をとると不明なS量がかなり多く、気相中へ逸散
したものと考えられる。Table 2 In this table, Si, Mn, and P mainly enter from scrap, and S enters molten iron in large quantities from scrap and pulverized coal, but the amount of quicklime added was adjusted to make the slag basicity 2 or more. In some cases, molten iron with low s concentration was obtained. However, when the mass balance was taken, the unknown amount of S was quite large, and it is thought that it had escaped into the gas phase.
〈比較例〉
実施例と同じ上底吹き転炉で、第6図に示すような衝突
角度0度のランスを使用し、流路1から微粉炭35kg
/minと搬送ガス流量を4 Nm’/minとを、周
囲の酸素ガスの流路2から17Nm’/minの酸素ガ
スを供給した。火炎がスクラップに当たる位置にランス
を固定し、この状態で2時間保持し、30分毎に炉を傾
動して炉内のスクラップの状態を観察したが、一部のス
クラップは溶解したものの全量を)8解するに至らなか
った。この際、炉内に光フアイバースコープを装入して
観察すると燃焼が十分に行われず、スクラップが溶解し
ないためにやがて未燃焼炭材が系外に飛散してしまって
いることが確認された。<Comparative example> In the same top-bottom blowing converter as in the example, a lance with a collision angle of 0 degrees as shown in Fig. 6 was used, and 35 kg of pulverized coal was poured from flow path 1.
/min and the carrier gas flow rate was 4 Nm'/min, and oxygen gas was supplied at 17 Nm'/min from the surrounding oxygen gas flow path 2. The lance was fixed in the position where the flame hit the scrap, and it was held in this state for 2 hours, and the furnace was tilted every 30 minutes to observe the state of the scrap inside the furnace. 8 I couldn't figure it out. At this time, when an optical fiberscope was inserted into the furnace and observed, it was confirmed that sufficient combustion did not take place, and as the scrap was not melted, unburned carbonaceous materials were eventually scattered outside the system.
〈比較例2〉
比較例1と同様に上底吹き転炉で炭材の搬送流と酸素ガ
スの噴出流との角度を45度とし、中心から微粉炭を3
5kg/minと搬送ガス流量を9.ONm37min
とを、またその周囲から酸素ガスを17Nm3/min
供給した。やはり、火炎がスクラップに当たる位置でラ
ンスを固定し、この状態で30分間保持し、炉を傾動し
てスクラップを観察したがスクラップは溶解していなか
った。そこで、搬送ガスの流量を8、ONm3/min
を下げたところ、炉口での未燃焼炭材が減少し、30分
後には炉内のスクラップが完全に溶解するのが観察され
た。<Comparative Example 2> As in Comparative Example 1, in a top-bottom blowing converter, the angle between the conveying flow of carbon material and the jetting flow of oxygen gas was set to 45 degrees, and pulverized coal was
5kg/min and carrier gas flow rate 9. ONm37min
and oxygen gas from its surroundings at a rate of 17Nm3/min.
supplied. Again, the lance was fixed at the position where the flame hit the scrap, held in this state for 30 minutes, and the furnace was tilted to observe the scrap, but the scrap was not melted. Therefore, the flow rate of the carrier gas was set to 8, ONm3/min.
When the temperature was lowered, the amount of unburned carbonaceous material at the furnace mouth decreased, and it was observed that the scrap inside the furnace was completely dissolved after 30 minutes.
(発明の効果)
以上説明したように、安価でかつ豊富なエネルギー源で
ある石炭を使用して産業上必ず発生する屑鉄から、溶鉄
を経済的に得られる。また、従来スクラップ溶解時に一
定量の溶鉄が必要であるのに対して、本発明ではその必
要がない。(Effects of the Invention) As explained above, molten iron can be economically obtained from scrap iron that is inevitably generated in industry by using coal, which is an inexpensive and abundant energy source. Furthermore, while conventionally a certain amount of molten iron is required when melting scrap, this is not necessary in the present invention.
第1a図および第1b図は、本発明の方法に用いるバー
ナーの構造を表す図であり、
第2図は炭材の搬送ガス流と酸素ガス流の衝突角度と未
燃焼炭材との関係を表す図であり、第3図は炭材の搬送
ガス流と酸素ガス流の衝突角度とスクラップの溶解時間
の関係を表す図であり、
第4図は上底吹きランスとスクランプの位置関係を表す
図であり、
第5図は上底吹き転炉で本発明の方法を実施している状
態を表す図であり、
第6図は比較例で用いた炭材の搬送ガスと酸素ガス流の
衝突角度が0度のランスを表す図である。
■・・・炭材の流路 2・・・酸素ガスの流路3・
・・ノズル 4・・・冷却水流路5・・・バー
ナー機能を有するランス
6・・・反応容器 7・・・スクラップ8・・・
燃焼炎 9・・・底吹き羽目10・・・溶鉄
11・・・上底吹き転炉12・・・ディスペ
ンサーFigures 1a and 1b are diagrams showing the structure of a burner used in the method of the present invention, and Figure 2 shows the relationship between the collision angle of the carbonaceous material carrier gas flow and the oxygen gas flow and the unburned carbonaceous material. Figure 3 is a diagram showing the relationship between the collision angle of the carbon carrier gas flow and oxygen gas flow and the scrap melting time, and Figure 4 is a diagram showing the positional relationship between the top and bottom blowing lance and the scrap. FIG. 5 is a diagram showing the state in which the method of the present invention is implemented in a top-bottom blowing converter, and FIG. 6 is a diagram showing the collision between the carbon carrier gas and the oxygen gas flow used in a comparative example. FIG. 3 is a diagram representing a lance with an angle of 0 degrees. ■...Charcoal material flow path 2...Oxygen gas flow path 3.
... Nozzle 4 ... Cooling water channel 5 ... Lance with burner function 6 ... Reaction vessel 7 ... Scrap 8 ...
Combustion flame 9...bottom blowing 10...molten iron
11... Top and bottom blowing converter 12... Dispenser
Claims (1)
鉄を得る屑鉄の溶解方法において、バーナーの中心から
粉体もしくは粒体の炭素含有物質を搬送ガスとともに容
器内に噴射供給すると同時に噴射される炭素含有物質を
取り囲むようにバーナーの周囲から搬送ガスの2倍以上
の流量で酸素ガスを噴射し、この際該酸素ガスの噴射方
向と炭素含有物質の噴射方向のなす角度が少なくとも2
0度以上になるようにして酸素ガスと炭素含有物質を衝
突させて燃焼させることを特徴とする屑鉄の溶解方法。1. In a scrap iron melting method in which scrap iron charged in a container is heated and melted to obtain high carbon-containing iron, powder or granular carbon-containing material is injected into the container together with a carrier gas from the center of the burner. Oxygen gas is injected from the periphery of the burner at a flow rate more than twice that of the carrier gas so as to surround the carbon-containing material that is injected at the same time, and at this time, the angle between the injection direction of the oxygen gas and the injection direction of the carbon-containing material is at least 2
A method for melting scrap iron characterized by colliding and burning oxygen gas and carbon-containing material at temperatures above 0 degrees Celsius.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60189964A JPS6250404A (en) | 1985-08-30 | 1985-08-30 | Melting method for scrap iron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60189964A JPS6250404A (en) | 1985-08-30 | 1985-08-30 | Melting method for scrap iron |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6250404A true JPS6250404A (en) | 1987-03-05 |
Family
ID=16250132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60189964A Pending JPS6250404A (en) | 1985-08-30 | 1985-08-30 | Melting method for scrap iron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6250404A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0790347A (en) * | 1993-03-01 | 1995-04-04 | Berry Metal Co | Blow assembly for steel manufacture |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS619512A (en) * | 1984-06-25 | 1986-01-17 | Kawasaki Steel Corp | Method for supplying heat source to steelmaking converter |
JPS61195909A (en) * | 1985-02-26 | 1986-08-30 | Kawasaki Steel Corp | Method for melting iron scrap in converter |
-
1985
- 1985-08-30 JP JP60189964A patent/JPS6250404A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS619512A (en) * | 1984-06-25 | 1986-01-17 | Kawasaki Steel Corp | Method for supplying heat source to steelmaking converter |
JPS61195909A (en) * | 1985-02-26 | 1986-08-30 | Kawasaki Steel Corp | Method for melting iron scrap in converter |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0790347A (en) * | 1993-03-01 | 1995-04-04 | Berry Metal Co | Blow assembly for steel manufacture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4936908A (en) | Method for smelting and reducing iron ores | |
JP5552754B2 (en) | Arc furnace operation method | |
CA1188518A (en) | Metal refining processes | |
JP6597332B2 (en) | Phosphate fertilizer manufacturing method and phosphate fertilizer manufacturing apparatus | |
EP1721017B1 (en) | Method for producing low carbon steel | |
US3232748A (en) | Process for the production of steel | |
SU1009279A3 (en) | Method for producing steel in converter | |
JP5928094B2 (en) | Method for refining molten iron | |
JP7099657B1 (en) | Refining method of molten iron and manufacturing method of molten steel using it | |
JP5962156B2 (en) | Method for refining molten iron | |
RU2005126707A (en) | IMPROVED METHOD OF Smelting for iron production | |
JPS6250404A (en) | Melting method for scrap iron | |
JP3286114B2 (en) | Method for producing high carbon molten iron from scrap iron | |
TWI808633B (en) | Method for refining molten iron and manufacturing method for molten steel using the same | |
US4772318A (en) | Process for the production of steel from scrap | |
JPS61195909A (en) | Method for melting iron scrap in converter | |
JP5949627B2 (en) | Method of refining hot metal in converter | |
JP5870868B2 (en) | Method of refining hot metal in converter | |
SU870440A2 (en) | Steel melting device | |
SU1036753A1 (en) | Method for smelting steel | |
JP2022143183A (en) | Molten iron dephosphorization method | |
JPS61227119A (en) | Manufacture of steel in converter using cold material containing iron as principal starting material | |
SU729251A1 (en) | Method of steel casting in hearth steel-melting set | |
JPH01195211A (en) | Method for melting and reducing iron oxide | |
JPS62247013A (en) | Apparatus for producing molten ferrous metal |