JPS6136051B2 - - Google Patents

Info

Publication number
JPS6136051B2
JPS6136051B2 JP1742980A JP1742980A JPS6136051B2 JP S6136051 B2 JPS6136051 B2 JP S6136051B2 JP 1742980 A JP1742980 A JP 1742980A JP 1742980 A JP1742980 A JP 1742980A JP S6136051 B2 JPS6136051 B2 JP S6136051B2
Authority
JP
Japan
Prior art keywords
gas
tuyere
flow rate
pine
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1742980A
Other languages
Japanese (ja)
Other versions
JPS56116815A (en
Inventor
Shozo Murakami
Mutsuo Nakajima
Toshihiro Murata
Tsutomu Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1742980A priority Critical patent/JPS56116815A/en
Publication of JPS56116815A publication Critical patent/JPS56116815A/en
Publication of JPS6136051B2 publication Critical patent/JPS6136051B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/34Blowing through the bath

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】 本発明は精錬ガスの全量又は一部を精錬炉内溶
湯湯面下より吹込む羽口を有する金属精錬炉(以
下、ガス底吹き羽口を設けた転炉を代表例として
述べる)において、該羽口より吹込む精錬ガスの
種類を切換える方法に関するものである。
Detailed Description of the Invention The present invention relates to a metal smelting furnace (hereinafter referred to as a converter equipped with a gas bottom blowing tuyere) having a tuyere through which all or part of the refining gas is blown from below the surface of the molten metal in the smelting furnace. (described as an example) relates to a method of switching the type of refining gas blown into the tuyere.

一般に、ガス底吹き羽口を設けた転炉において
は溶融金属(以下、溶鋼を例に述べる。)が該羽
口内に侵入し、羽口を閉塞あるいは溶損すること
を防ぐために羽口からの吹込ガスの流量は羽口径
及び羽口上面に位置する溶鋼の静圧によつて決ま
るある最低流量以上に維持する必要があることは
良く知られている。
Generally, in a converter equipped with a gas bottom blowing tuyere, blowing from the tuyere is used to prevent molten metal (hereinafter, molten steel will be described as an example) from entering the tuyere and clogging or melting the tuyere. It is well known that the gas flow rate must be maintained above a certain minimum flow rate determined by the tuyere diameter and the static pressure of the molten steel located above the tuyere.

この羽口に溶鋼が侵入しないための最低流量は
羽口径及び溶鋼静圧(=溶鋼深さ×溶鋼密度)に
よつて決定される。併しながら羽口先端は吹込み
精錬ガスの顕熱及び分解吸熱により極度に冷却さ
れる結果、第2図に示す如く溶鋼7が羽口5の先
端に付着し地金6(一般にマツシユルームと呼ば
れる)が成長する。
The minimum flow rate to prevent molten steel from entering the tuyere is determined by the tuyere diameter and molten steel static pressure (=molten steel depth x molten steel density). However, as a result of the tuyere tip being extremely cooled by the sensible heat and decomposition endotherm of the injected refining gas, the molten steel 7 adheres to the tip of the tuyere 5 as shown in Fig. 2, and the metal 6 (generally called a pine room) ) grows.

このマツシユルーム6は精錬ガスを羽口1を通
じて吹込み中、該吹込ガスによる発熱反応あるい
は吸熱反応及び溶鋼の激しい流動により微妙な変
化、挙動を示す。つまりマツシユルームの急激な
成長、あるいは縮小さらには瞬間的な脱落などの
現象が発生する。このため、この様なマツシユル
ームの挙動に耐えしかも安定した操業が可能な吹
込ガスの供給圧力、流量制御方式及び吹込ガス種
類の切換方式等が要求されている。
While the refining gas is being blown into the pine room 6 through the tuyere 1, the pine room 6 exhibits subtle changes and behavior due to the exothermic or endothermic reactions caused by the blown gas and the intense flow of the molten steel. In other words, phenomena such as rapid growth, shrinkage, or even momentary shedding of the pine room occur. Therefore, there is a need for a method for controlling the supply pressure and flow rate of the blown gas, a method for switching the type of blown gas, etc. that can withstand such behavior of the pine room and also enable stable operation.

さて、羽口先端のマツシユルームの挙動と吹込
みガス圧力、流量の関係について、前述のマツシ
ユルームの性状が如何なる影響を及ぼすかを、精
錬用酸素ガスを二重管羽口の内管に吹込む場合を
例にとつて詳述する。
Now, we will examine how the properties of the pine room mentioned above affect the relationship between the behavior of the pine room at the tip of the tuyere, the blown gas pressure, and the flow rate when refining oxygen gas is blown into the inner tube of a double-pipe tuyere. will be explained in detail using an example.

例えば二重管羽口内径30mmφの羽口よりある溶
鋼深さに対して該酸素ガスを吹込む場合、羽口先
端にマツシユルームの付着が全くないときの羽口
内に溶鋼が侵入しないための最低流量を1000N
m3/Hrとする。この時のガス供給設備の流量制
御弁後の圧力(ガス供給元圧に対していわゆる二
次圧という)はゲージ圧で3.5Kg/cm2であつた。
ところがガス吹込を継続していると羽口先端にマ
ツシユルームが生成して、羽口先端の開孔有効径
dは小さくなる(第2図参照)。
For example, when blowing oxygen gas into a certain depth of molten steel through a tuyere with a double pipe tuyere inner diameter of 30 mmφ, the minimum flow rate is the minimum flow rate to prevent molten steel from entering the tuyere when there is no pine loom attached to the tip of the tuyere. 1000N
Let m 3 /Hr. At this time, the pressure after the flow control valve of the gas supply equipment (so-called secondary pressure with respect to the gas supply source pressure) was 3.5 Kg/cm 2 in gauge pressure.
However, if gas injection is continued, a pine room is generated at the tip of the tuyere, and the effective diameter d of the opening at the tip of the tuyere becomes smaller (see FIG. 2).

この時マツシユルームの付着がない30mmφ羽口
内に溶鋼が侵入しない最低流量を常に維持すると
吹込ガスの二次圧は羽口先端の開孔有効径(実際
には真円ではないが円と近似した等断面積の直径
とする)によつて第3図曲線aの如く変化する。
但し第3図曲線aの関係は厳密にはガス供給設備
の配管抵抗、弁による圧損、羽口内圧損等の特性
により異なるものである。
At this time, if the minimum flow rate is always maintained so that molten steel does not enter into the 30mmφ tuyere where the pine room is not attached, the secondary pressure of the blown gas will be the effective diameter of the opening at the tip of the tuyere (actually not a perfect circle, but similar to a circle). The diameter of the cross-sectional area varies as shown by curve a in Figure 3.
However, strictly speaking, the relationship of curve a in FIG. 3 differs depending on the characteristics such as piping resistance of the gas supply equipment, pressure loss due to valves, and pressure loss within the tuyere.

一方、ある目的で精錬ガスを羽口を通じて溶鋼
内に吹込む時には一般的にその精錬目的によつて
必要とされるガス量を第3図曲線aのマツシユル
ームの生成状況によつて異なる二次圧の挙動にも
拘わらず、目標とする精錬期間中維持することが
必要である。
On the other hand, when refining gas is injected into molten steel through a tuyere for a certain purpose, the amount of gas required for that refining purpose is generally determined by adjusting the secondary pressure, which varies depending on the formation status of the pine room shown in curve a in Figure 3. Despite this behavior, it is necessary to maintain it during the targeted refining period.

また前述した羽口内への溶鋼の侵入を防止する
という意味ではマツシユルームにより羽口先端開
孔有効径が小さくなるにつれて、必要最低流量を
減ずることが出来ると考えられ勝ちではあるが、
マツシユルームの挙動、つまり大きく成長したマ
ツシユルームが瞬間的に脱落し、当初の羽口径に
急激に戻る現象は実際操業でも度々観察される。
Furthermore, in terms of preventing the intrusion of molten steel into the tuyere as mentioned above, it is likely that the required minimum flow rate can be reduced as the effective diameter of the tuyere tip opening becomes smaller due to the pine room.
The behavior of pine looms, that is, the phenomenon in which large pine looms momentarily fall off and rapidly return to their original tuyere diameter, is often observed in actual operations.

この変化は、仮に吹込ガス量がマツシユルーム
の成長で小さくなつた羽口先端開孔有効径に相当
し、溶鋼の侵入がないために必要な最低流量に減
じておいた時にはマツシユルームの脱落の速度は
流量制御弁の作動速度より速く、マツシユルーム
が脱落して急激に大きくなつた羽口径に対して、
溶鋼の侵入を防止するために必要な吹込ガスの最
低流量の確保が遅れ、極めて短時間ではあるが、
溶鋼が羽口内に侵入し、羽口閉塞、羽口損傷の原
因になる場合がある。
This change corresponds to the effective diameter of the tuyere tip opening, which has become smaller due to the growth of the pine loom, and if the flow rate is reduced to the minimum required to prevent the intrusion of molten steel, the rate of pine loom shedding will decrease. The tuyere diameter suddenly increased due to the fall of the pine loom faster than the operating speed of the flow control valve.
Due to the delay in securing the minimum flow rate of the blowing gas necessary to prevent the intrusion of molten steel,
Molten steel may enter the tuyere and cause tuyere blockage and tuyere damage.

このことより、たとえ精錬目的以外のために、
つまり溶鋼の羽口内への侵入を防止するという目
的のためだけでも、吹込ガス流量は、マツシユル
ームのない時の羽口径で、羽口内に溶鋼が侵入し
ないための最低ガス流量以上を常に維持すること
が必要である。
From this, even for purposes other than refining,
In other words, even just for the purpose of preventing molten steel from entering the tuyere, the blown gas flow rate must always be maintained at the minimum gas flow rate to prevent molten steel from entering the tuyere at the tuyere diameter when there is no pine room. is necessary.

これは第3図曲線aでマツシユルームの成長で
羽口先端開孔有効径が20mmφになつたとすると、
二次圧は約6Kg/cm2まで必要で、それに耐える元
圧供給圧力、及び配管とする必要があることを意
味する。
This is curve a in Figure 3, assuming that the effective diameter of the tuyere tip opening becomes 20 mmφ due to the growth of the pine room.
The secondary pressure is required to be up to about 6 kg/cm 2 , which means that the source pressure supply pressure and piping must be able to withstand this pressure.

前述のことはガス吹込みの目的が異なり、途中
で吹込ガスを切換える場合にも同様である。
The above also applies to cases where the purpose of gas injection is different and the blown gas is changed midway through.

特に、ガス切換えの場合は吹込ガス系列が例え
ば2系列関与し、この2系列のすべての弁の作動
及びガス元圧等の異常に対しても、先に述べた、
羽口内に溶鋼が侵入しないための必要最低流量が
確保維持されていることが必要である。
In particular, in the case of gas switching, for example, two blown gas lines are involved, and even in the event of an abnormality in the operation of all valves in these two lines or in the gas source pressure, etc., as mentioned earlier,
It is necessary to ensure and maintain the required minimum flow rate to prevent molten steel from entering the tuyere.

又、一般に鋼の精錬作業においては屑鉄、溶銑
を製鋼炉に入れる作業(以下装入作業という)、
純酸素ガス等で精錬する作業(以下吹錬作業とい
う)、精錬溶鋼を錆静出鋼する作業に分けられ
る。それぞれの作業に使用される精錬ガスの種類
はそれぞれの目的に合致したものを使用すること
が重要である。すなわち、例えば装入作業におい
ては赤煙の発生放散を防止するために一般的に不
活性ガスを使用している。
In addition, generally in steel refining work, there is the work of putting scrap iron and hot metal into a steelmaking furnace (hereinafter referred to as charging work),
Work is divided into work that involves refining using pure oxygen gas (hereinafter referred to as blowing work) and work that removes rust from refined molten steel. It is important to use the type of refining gas that matches the purpose of each operation. That is, for example, inert gas is generally used in charging operations to prevent the generation and dissipation of red smoke.

吹錬作業においては溶銑を鋼に精錬する目的で
純酸素あるいは酸素が主成分である酸化性ガスを
用いることが一般的であるが精錬の目的によつて
は窒素、アルゴン等のガスも使用される。
In blowing operations, pure oxygen or an oxidizing gas whose main component is oxygen is generally used to refine hot metal into steel, but gases such as nitrogen and argon may also be used depending on the purpose of refining. Ru.

吹錬作業が終了した後、底吹羽口を設けた転炉
を傾動する時にも装入作業と同じ理由及び溶鋼の
酸化継続による溶鋼成分の変動を防ぐ必要がある
ため一般的に不活性ガスを使用している。
When tilting the converter equipped with bottom blowing tuyere after blowing work is completed, inert gas is generally used for the same reason as charging work and to prevent fluctuations in the molten steel composition due to continued oxidation of the molten steel. are using.

底吹羽口を設けた転炉を傾動して羽口が溶鋼上
面に位置する錆静出鋼作業においては、炉壁を流
れるスラグ、炉内ガスの羽口内侵入を防ぐことが
主目的であり、溶銑あるいは溶鋼と如何なる反応
もしない比較的安価な空気・窒素ガスを使用して
いる。
In rust removal steel work where a converter equipped with a bottom blowing tuyere is tilted so that the tuyere is positioned above the molten steel, the main purpose is to prevent slag flowing on the furnace wall and gas from entering the tuyere. , relatively inexpensive air/nitrogen gas that does not react in any way with hot metal or molten steel is used.

第1図は300t上、底吹転炉における底吹きガス
種類の模式図である。羽口2は二重管構成となつ
ており、内管からは酸素、アルゴン、窒素、空気
のいずれかを吹込むことが出来る。また外管から
は炭化水素、アルゴン、窒素のいずれかを吹込む
ことが出来、それぞれの吹込ガス流量は弁3で制
御され夫々の作業内容に適合したガス種類、ガス
流量を流すようになつている。4は上吹吹酸用ラ
ンスである。
Figure 1 is a schematic diagram of the types of bottom-blown gases in a 300-ton, bottom-blown converter. The tuyere 2 has a double pipe configuration, and oxygen, argon, nitrogen, or air can be blown into the inner pipe. In addition, either hydrocarbon, argon, or nitrogen can be blown from the outer tube, and the flow rate of each blown gas is controlled by valve 3 to flow the gas type and gas flow rate that are suitable for each work content. There is. 4 is a lance for top-blowing acid.

このように夫々の作業には最適なガス種類があ
り、夫々の目的に応じて合致したガスを円滑に切
換えることは極めて重要なことである。
As described above, there is an optimal type of gas for each task, and it is extremely important to smoothly switch the gas that matches the purpose.

このガス切換方法として特開昭49−66518号公
報に記載されている如く先行ガスAの流量を羽口
内に溶鋼が侵入しない最低流量を維持した状態
で、後続ガスBを同じく羽口内に溶鋼が侵入しな
い最低流量を追加、上乗せした後、先行ガスAの
流れを停止してガス切換を行う方法がある(第4
図)。
As described in Japanese Unexamined Patent Publication No. 49-66518, this gas switching method is such that while the flow rate of the leading gas A is maintained at the minimum flow rate at which molten steel does not enter the tuyere, the flow rate of the trailing gas B is maintained so that the molten steel does not enter the tuyere. There is a method of switching the gas by stopping the flow of the preceding gas A after adding or adding the minimum flow rate that does not cause intrusion.
figure).

この方法の利点は、先行ガスあるいは後続ガス
のいずれかの弁作動又は元圧低下などの異常があ
つても少なくとも異常のない方のガスによつてガ
ス流量は羽口内に溶鋼が侵入しない最低流量が確
実に維持されることにある(この方式を以下流量
制御ガス切換方式という)。
The advantage of this method is that even if there is an abnormality in either the leading gas or the trailing gas, such as valve operation or a drop in source pressure, the gas flow rate will be the minimum flow rate that will not allow molten steel to enter the tuyeres. (This method is hereinafter referred to as the flow rate control gas switching method).

しかしながらこの方法の欠点としては、ガス切
換え過程で先行ガスと後続ガスのそれぞれについ
て羽口内に溶鋼が侵入しない最低流量を確保する
必要があり、このためにガス切換過程の一時期で
はあるが吹込ガス流量は羽口内へ溶鋼が侵入しな
い最低流量の2倍(正確にはガス種類の性状によ
つて異なるが実際操業ではほぼ2倍と近似しても
良い)となり羽口先端のマツシユルームの状況に
よつては第3図曲線bに示した如く、先行ガスと
後続ガスを合せた二次圧は該設備では最高12Kg/
cm2となつた。つまりガス切換えのために各種ガス
の供給元圧(一次圧)及び流量制御後の二次圧が
大巾に高くなることになる。
However, the disadvantage of this method is that during the gas switching process, it is necessary to ensure a minimum flow rate for each of the leading and trailing gases to prevent molten steel from entering the tuyere. is twice the minimum flow rate at which molten steel does not enter the tuyere (accurately it varies depending on the properties of the gas type, but in actual operation it can be approximated to about twice) and depends on the condition of the pine room at the tip of the tuyere. As shown in curve b in Figure 3, the secondary pressure of the leading gas and trailing gas is a maximum of 12 kg/kg in this equipment.
It became cm 2 . In other words, due to gas switching, the supply source pressure (primary pressure) of various gases and the secondary pressure after flow rate control are significantly increased.

従つて、該ガス切換方法による実際の設備設計
にあたつてはマツシユルームの異常成長(第3図
ではマツシユルームによる羽口先端開孔有効径20
mmφ以下)を考慮し、二次圧を10Kg/cm2以上とす
る必要があり従つて高圧ガス取締法の対象とな
る。
Therefore, when designing actual equipment using this gas switching method, the abnormal growth of the pine room (in Figure 3, the effective diameter of the tuyere tip opening due to the pine room is 20
mmφ or less), the secondary pressure must be 10Kg/cm 2 or more, and is therefore subject to the High Pressure Gas Control Law.

このために設備の保守も煩雑になりかつ吹込ガ
スの元圧も高くせざるを得なく、ガス供給設備が
大規模になるなどの大きな欠点を有する。
For this reason, maintenance of the equipment becomes complicated, and the source pressure of the blown gas has to be increased, resulting in major drawbacks such as the gas supply equipment becoming large-scale.

本発明は前述したマツシユルームの特性や流量
調整弁の特性を種々検討した結果、全く理想的な
吹込ガス切換方法を発明したものであり、前述の
特開昭49−66518号公報に記載されている流量制
御ガス切換方式の欠点を完全に解消したものであ
る。
The present invention is the result of various studies on the characteristics of the above-mentioned pine room and the characteristics of the flow rate regulating valve, and as a result, a completely ideal blowing gas switching method has been invented, which is described in the above-mentioned Japanese Patent Application Laid-Open No. 49-66518. This completely eliminates the drawbacks of the flow rate control gas switching system.

即ち、本発明においてはガス切換のために各種
ガスの供給一次圧及び二次圧を高くする必要がな
く、これ等のガス圧力はガス切換時を除く通常吹
錬作業を遂行するために必要とされる最高圧力で
充分となるものである。又吹込ガス切換時の全ガ
ス流量も比較的少流量となるので溶鋼の飛散が少
なく歩留が高くなるなど大きな利点を有するもの
である。
That is, in the present invention, there is no need to increase the primary and secondary pressures of various gases to switch gases, and these gas pressures are not required to perform normal blowing operations except when switching gases. The maximum pressure applied is sufficient. Furthermore, since the total gas flow rate when switching the blown gas is relatively small, there are great advantages such as less scattering of molten steel and a higher yield.

該ガス切換方法は2重管の外管にも適用出来る
ものである。
This gas switching method can also be applied to the outer tube of a double tube.

以下、本発明によるガス切換の実施例を第5図
にもとづいて詳述する。
Hereinafter, an embodiment of gas switching according to the present invention will be described in detail based on FIG.

横軸(時間軸)o,e,f,g,h,i,j,
kは弁の作動タイミングを表わしている。先づ第
5図〔〕で先行ガスAは時間eまで一定流量に
制御されている。後続ガスBに切換えるためfで
先行ガスAの弁を前述のマツシユルームが脱落し
ても羽口内に溶鋼が侵入しないガス流量を確保で
きる開度(以下規定開度という)に絞り、弁開度
計等によりこれを確認する。
Horizontal axis (time axis) o, e, f, g, h, i, j,
k represents the valve actuation timing. First, in FIG. 5 [ ], the preceding gas A is controlled at a constant flow rate until time e. In order to switch to the succeeding gas B, at f, the valve for the leading gas A is narrowed down to an opening that ensures a gas flow rate that will prevent molten steel from entering the tuyere even if the pine room falls off (hereinafter referred to as the specified opening), and the valve opening is measured. Confirm this by etc.

そうすると、実際操業ではマツシユルームが成
長しているのでガス流量は〔〕のように低下し
規定開度に相当したガス流量となる。それと同時
又は若干時間経過後gで後続ガスBの弁を規定開
度にすると(予め後続ガスの弁を規定開度にして
おいて遮断弁を開にすることも含む)時刻hで
〔〕のように夫々のガス流量はほぼ同量づつ流
れ合計流量は〔〕の如くピークとなる。この流
量はマツシユルームの大きさにより左右されるも
のであり一定ではない。ガスの二次圧も同様であ
るが第5図の実施例では5.5Kg/cm2であつた。
Then, in actual operation, since the pine room is growing, the gas flow rate decreases as shown in [ ] and becomes the gas flow rate corresponding to the specified opening degree. At the same time or after a certain amount of time has elapsed, when the valve for the following gas B is set to the specified opening (this also includes setting the valve for the following gas to the specified opening in advance and opening the shutoff valve), at time h, the As shown, each gas flow rate is approximately the same, and the total flow rate reaches a peak as shown in [ ]. This flow rate depends on the size of the pine room and is not constant. Similarly, the secondary pressure of the gas was 5.5 Kg/cm 2 in the example shown in FIG.

つぎに後続ガスBの弁が規定開度になつた後時
刻iで先行ガスAの弁を閉とし、時刻jとなると
〔〕の如く先行ガスAの流量はOとなるがそれ
につれて後続ガスBの弁は規定開度のまま維持し
ているから、後続ガスBの流量は規定開度に相当
した量となる。後続ガスは時刻kでガス切換後の
吹錬作業の目的に合つた流量に制御され、これで
ガス切換えを完了したことになる(以下、この方
法を規定開度ガス切換方式という)。
Next, after the valve for the trailing gas B reaches the specified opening degree, the valve for the leading gas A is closed at time i, and at time j, the flow rate of the leading gas A becomes O as shown in [ ], but as the flow rate of the trailing gas B increases Since the valve is maintained at the specified opening, the flow rate of the subsequent gas B is equivalent to the specified opening. At time k, the subsequent gas is controlled to a flow rate that meets the purpose of the blowing operation after gas switching, and this completes the gas switching (hereinafter, this method will be referred to as the specified opening gas switching method).

本発明の規定開度ガス切換方式と前述した流量
制御ガス切換方式の著しい相違について更に詳し
く以下に説明する。
The significant difference between the specified opening degree gas switching method of the present invention and the flow rate control gas switching method described above will be explained in more detail below.

流量制御ガス切換方式では前述の如くガス切換
過程で、マツシユルームの急激な脱落があつて
も、羽口内に溶鋼の侵入がないようにするため
に、これを防ぐに必要な最低ガス流量を先行ガス
と後続ガスの両者について維持することになり、
ガスの供給元圧及び二次圧が著しく高くなる特性
を有している。
In the flow rate control gas switching method, as mentioned above, in the gas switching process, in order to prevent molten steel from entering the tuyere even if the pine room suddenly falls off, the minimum gas flow rate necessary to prevent this is set to the preceding gas flow rate. and subsequent gas,
It has the characteristic that the gas supply source pressure and secondary pressure are significantly high.

これに対して本発明の規定開度ガス切換方式で
は、先行ガスと後続ガスの制御弁の開度を夫々羽
口先端にマツシユルームが全くない仮想状態つま
り羽口先端での圧損が最小の状態(二次圧最小と
なる)で羽口に溶鋼が侵入しない最低流量を得る
ためのバルブ開度に設定してガス切換えを行なう
ものである。つまりこの方式では羽口先端にマツ
シユルームがない二次圧最小の状態で羽口に溶鋼
が侵入しない最低流量のガスが得られるに足るガ
ス供給元圧(一次圧)でガス切換えが遂行される
ことにある。
On the other hand, in the specified opening gas switching system of the present invention, the opening degrees of the control valves for the leading gas and the trailing gas are respectively set to a virtual state where there is no pine room at the tuyere tip, that is, a state where the pressure drop at the tuyere tip is minimal ( Gas switching is performed by setting the valve opening to obtain the lowest flow rate at which molten steel does not enter the tuyere (secondary pressure is at its minimum). In other words, in this method, gas switching is performed at the gas supply source pressure (primary pressure) sufficient to obtain the minimum flow rate of gas that does not allow molten steel to enter the tuyere in a state where there is no pine room at the tip of the tuyere and the secondary pressure is minimal. It is in.

この方式による実際操業では、先に述べた如く
羽口先端のマツシユルームは常に微少な変化を
し、かつ急激な脱落現象が度々見られる。
In actual operation using this method, as mentioned above, the pine room at the tip of the tuyere always undergoes slight changes, and rapid shedding phenomena are often observed.

マツシユルームが大きく成長し、羽口先端にお
ける圧損が大となると本発明方式では一次圧が一
定のため、その圧損が大きくなつた分に相当する
だけガス流量が低下するが、この時マツシユルー
ムによる実際の羽口先端開孔有効径が小さくなつ
ており、溶鋼の侵入が完全に防止されている。
When the pine room grows large and the pressure drop at the tip of the tuyere becomes large, the primary pressure is constant in the method of the present invention, so the gas flow rate decreases by an amount corresponding to the increased pressure loss. The effective diameter of the opening at the tip of the tuyere is small, completely preventing molten steel from entering.

またある大きさにマツシユルームが成長して、
それに見合つたガス流量下でマツシユルームが急
激に脱落した時には、羽口先端開孔有効径が瞬間
的に大きくなるが、この時は本発明方式では、弁
は常に規定開度で保持されていて弁の作動が必要
ないため、羽口の有効径拡大に相当するガス流量
増が瞬間的に図られる。
The pine tree grows to a certain size again,
When the pine room suddenly falls off under a corresponding gas flow rate, the effective diameter of the tuyere tip opening increases instantaneously, but in this case, with the method of the present invention, the valve is always maintained at the specified opening. Since there is no need to operate the tuyere, the gas flow rate can be increased instantaneously by increasing the effective diameter of the tuyere.

前述のように本発明は、ガス吹込用羽口先端の
複雑な挙動を研究し、ガス切換え時に関与する弁
の作動不良等による羽口への溶鋼侵入による羽口
事故を完全に防止し、かつこれを、関与する各種
ガスの供給元圧(一次圧)及び二次圧が最小の状
態で可能にする優れたガス切換方法を提供するも
のであるから、産業界に稗益するところが極めて
大である。
As mentioned above, the present invention has been developed by studying the complex behavior of the tip of a gas injection tuyere, and completely preventing tuyere accidents caused by molten steel entering the tuyere due to valve malfunctions involved in gas switching, and The present invention provides an excellent gas switching method that enables this while minimizing the source pressure (primary pressure) and secondary pressure of the various gases involved, so it will greatly benefit the industry. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は底吹転炉の吹込ガスフローの概念図、
第2図は二重管羽口先端に付着するマツシユルー
ムの概念図、第3図は羽口先端の開孔有効径と二
次圧との関係図でaはガス流量が1000Nm3/H、
bはガス流量が2000Nm3/Hのときの関係図、第
4図は特開昭49−66518号公報記載のガス切換方
法とガス流量、ガス圧力の模式図、第5図は本発
明によるガス切換方法とガス流量、ガス圧力の模
式図を示す。 1:底吹転炉、2:二重管羽口、3:ガス流量
調節弁、4:上吹々酸用ランス(第1図)、5:
羽口、6:マツシユルーム、7:溶鋼(第2
図)。
Figure 1 is a conceptual diagram of the blown gas flow in a bottom-blowing converter.
Figure 2 is a conceptual diagram of the pine loom attached to the tip of the double pipe tuyere, Figure 3 is a diagram of the relationship between the effective diameter of the opening at the tip of the tuyere and secondary pressure.
b is a relationship diagram when the gas flow rate is 2000Nm 3 /H, Figure 4 is a schematic diagram of the gas switching method, gas flow rate, and gas pressure described in JP-A-49-66518, and Figure 5 is a diagram of the gas flow rate according to the present invention. A schematic diagram of the switching method, gas flow rate, and gas pressure is shown. 1: Bottom blowing converter, 2: Double pipe tuyere, 3: Gas flow rate control valve, 4: Top blowing acid lance (Figure 1), 5:
Tuyere, 6: Pine room, 7: Molten steel (second
figure).

Claims (1)

【特許請求の範囲】[Claims] 1 ガス底吹き羽口を具備した精錬炉を用いる金
属精錬法において、精錬過程に応じ底吹きガスを
所望ガスに切換えるにあたり、被切換ガス管路用
弁の弁開度を、羽口先端部に付着地金が不存在と
する仮想状態で、羽口閉塞を防止し得る最低ガス
流量を確保可能な開度に設定したのち、または該
設定と同時に、切換ガス管路用弁の弁開度を羽口
先端に付着地金が不存在とする仮想状態で、羽口
閉塞を防止し得る最低ガス流量を確保可能な開度
に設定したのち、前記被切換ガスの通入を停止
し、以後切換ガスを精錬作業に必要な所望流量に
制御することを特徴とする金属精錬炉における底
吹きガス切換制御方法。
1. In a metal refining method using a refining furnace equipped with a gas bottom blowing tuyere, when switching the bottom blowing gas to the desired gas according to the refining process, the valve opening of the valve for the gas pipe to be switched is adjusted to the tip of the tuyere. After setting the opening to ensure the minimum gas flow rate that can prevent tuyere clogging in a hypothetical state where there is no deposited metal, or at the same time, adjust the valve opening of the switching gas pipe valve. In a hypothetical state where there is no metal attached to the tip of the tuyere, the opening is set to the minimum gas flow rate that can prevent tuyere clogging, and then the passage of the gas to be switched is stopped, and the switching is performed thereafter. A bottom-blown gas switching control method in a metal smelting furnace, characterized by controlling gas to a desired flow rate necessary for smelting work.
JP1742980A 1980-02-15 1980-02-15 Controlling method of switching of bottom blowing gas in metal refining furnace Granted JPS56116815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1742980A JPS56116815A (en) 1980-02-15 1980-02-15 Controlling method of switching of bottom blowing gas in metal refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1742980A JPS56116815A (en) 1980-02-15 1980-02-15 Controlling method of switching of bottom blowing gas in metal refining furnace

Publications (2)

Publication Number Publication Date
JPS56116815A JPS56116815A (en) 1981-09-12
JPS6136051B2 true JPS6136051B2 (en) 1986-08-16

Family

ID=11943766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1742980A Granted JPS56116815A (en) 1980-02-15 1980-02-15 Controlling method of switching of bottom blowing gas in metal refining furnace

Country Status (1)

Country Link
JP (1) JPS56116815A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185710A (en) * 1982-04-22 1983-10-29 Kawasaki Steel Corp System for switching gas in bottom blown converter
JP2533815B2 (en) * 1991-03-01 1996-09-11 新日本製鐵株式会社 Operating method of bottom blown converter

Also Published As

Publication number Publication date
JPS56116815A (en) 1981-09-12

Similar Documents

Publication Publication Date Title
US5190577A (en) Replacement of argon with carbon dioxide in a reactor containing molten metal for the purpose of refining molten metal
US4405365A (en) Method for the fabrication of special steels in metallurgical vessels
US3970446A (en) Method of refining an iron base melt
US4395283A (en) Method of switching bottom-blown gases and apparatus therefor
CA2203410C (en) Process for vacuum refining molten steel and apparatus therefor
US4420334A (en) Method for controlling the bottom-blowing gas in top-and-bottom blown converter steel making
JPS6136051B2 (en)
US3533778A (en) Automatic control of pig iron refining
CN112481439B (en) Smelting process of converter low-phosphorus steel
US2936230A (en) Method for making steel
JP2803528B2 (en) Converter steelmaking method
CN114317868B (en) Dynamic control method for converting gun position of converter oxygen gun
JP2022152721A (en) Operation method of blast furnace
JPS6151606B2 (en)
JPS58120708A (en) Converter for refining of metal
RU1837077C (en) Oxygen lance
JP2584891B2 (en) Operating method of bottom blown converter
JPS6151608B2 (en)
JPH02179810A (en) Method for operating top and bottom blowing converter
JPS6221846B2 (en)
JPH09227921A (en) Method for blowing gas into molten iron
JPS61509A (en) Method and apparatus for blowing gas into molten metal
JPH0647690B2 (en) Apparatus and method for producing steel in top blowing container
JPS63171811A (en) Operation of oxygen blast furnace
JPS6223044B2 (en)