JPS6151606B2 - - Google Patents

Info

Publication number
JPS6151606B2
JPS6151606B2 JP15284580A JP15284580A JPS6151606B2 JP S6151606 B2 JPS6151606 B2 JP S6151606B2 JP 15284580 A JP15284580 A JP 15284580A JP 15284580 A JP15284580 A JP 15284580A JP S6151606 B2 JPS6151606 B2 JP S6151606B2
Authority
JP
Japan
Prior art keywords
gas
flow rate
tuyere
control valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15284580A
Other languages
Japanese (ja)
Other versions
JPS5776118A (en
Inventor
Kunio Iwai
Tsutomu Saito
Akira Konakano
Nozomi Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15284580A priority Critical patent/JPS5776118A/en
Publication of JPS5776118A publication Critical patent/JPS5776118A/en
Publication of JPS6151606B2 publication Critical patent/JPS6151606B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/34Blowing through the bath

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】 本発明は少なくとも1個のガス吹込用羽口を底
部に備えた転炉の底吹による金属、特に鋼の製造
の操業ステータスにおける一連の吹込用ガスの切
替等におけるガス吹込制御方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a series of blowing gas switching operations in the operational status of the production of metals, in particular steel, by bottom blowing in converters equipped with at least one gas blowing tuyere at the bottom. This invention relates to a blowing control method.

底吹あるいは上吹底吹転炉製鋼法における精錬
ガス吹込み工程は、通常装入期、精錬期、サンプ
リング期、タツピング期などに区分されその各区
分に応じて羽口を通じて吹込むべきガスの種類を
切替える必要がある。例えば転炉が直立状態にあ
る精錬期においては、酸素が羽口を通じて転炉内
の溶鋼中に吹込まれているが、精錬期が終了する
と酸素を窒素またはアルゴンに切替え転炉を傾倒
してサンプリングまたは出鋼し、このサンプリン
グまたは出鋼の間に低圧の窒素またはアルゴンに
切替える。
The refining gas injection process in the bottom-blowing or top-blowing converter steelmaking process is usually divided into charging, refining, sampling, and tucking stages, and the amount of gas to be injected through the tuyere is determined according to each stage. It is necessary to switch types. For example, during the refining period when the converter is upright, oxygen is injected into the molten steel inside the converter through the tuyere, but once the refining period is over, the oxygen is switched to nitrogen or argon and the converter is tilted for sampling. or tapping and switching to low pressure nitrogen or argon during this sampling or tapping.

ところで転炉操業では底吹羽口への溶鋼差し込
みを防止するために常に規定値以上のガス流量を
確保する必要がある。従つてガスの切換に際して
も、新たに切換えられるべきガス(後行ガスとい
う)の供給導管内での流量が規定値以上あること
が確認された後に、現に吹込まれつつあるガス
(先行ガスという)の供給を遮断するのが一般的
である。
By the way, in converter operation, it is necessary to always ensure a gas flow rate greater than a specified value in order to prevent molten steel from being inserted into the bottom blowing tuyere. Therefore, when switching gases, it is confirmed that the flow rate in the supply pipe of the gas to be newly switched (referred to as trailing gas) is equal to or higher than the specified value, and then the gas that is currently being blown in (referred to as leading gas) It is common to cut off the supply of

このような後行ガス流量確認による流量制御方
式が羽口への溶鋼差込防止上有効であるが、羽口
先は吹込ガスの種類によつて発熱反応あるいは吸
熱反応および溶鋼の激しい流動により、所謂マツ
シユルームと称する付着地金の急激な成長、ある
いは縮少ないしは脱落などの現象が発生してお
り、またガス元圧の変動もあることから、後行ガ
スの流量が確認できない場合がある。かかる場合
に流量調節弁の開度設定、開度確認方式によるガ
ス供給制御を行なう必要がある。
Although such a flow rate control method by checking the trailing gas flow rate is effective in preventing molten steel from being inserted into the tuyere, the tuyere tip may undergo exothermic or endothermic reactions depending on the type of blown gas and violent flow of molten steel. The flow rate of the trailing gas may not be confirmed due to phenomena such as rapid growth, shrinkage, or falling off of the deposited metal called pine room, and fluctuations in the gas source pressure. In such a case, it is necessary to control the gas supply by setting the opening degree of the flow rate control valve and checking the opening degree.

本発明は転炉操業における底吹ガス供給制御
を、流量調節弁の開度設定により行う方法を提供
するものである。
The present invention provides a method for controlling the supply of bottom-blown gas during converter operation by setting the opening degree of a flow rate control valve.

本発明における流量調節弁開度設定の考え方に
ついて第1図により説明する。図において1は転
炉、2は溶鋼、3は羽口ノズル、4はAガス源、
4′はBガス源、5はAガス系導管、5′はBガス
系導管、6,6′はガス元圧計、7,7′は流量
計、8,8′は流量調節弁、9,9′は遮断弁であ
る。
The concept of setting the opening degree of the flow control valve in the present invention will be explained with reference to FIG. In the figure, 1 is a converter, 2 is molten steel, 3 is a tuyere nozzle, 4 is an A gas source,
4' is a B gas source, 5 is an A gas system conduit, 5' is a B gas system conduit, 6, 6' are gas source pressure gauges, 7, 7' are flow meters, 8, 8' are flow rate control valves, 9, 9' is a shutoff valve.

ここで転炉1の溶鋼2に対し、羽口ノズル3か
ら吹込れるガスがAガスからBガスに切替えられ
たものとする。羽口ノズル3の吐出圧力P0は、羽
口ノズル3への溶鋼の差込みを防止するために溶
鋼2のヘツドを支える圧力でなければならない。
そこでΔP2を羽口レンガ圧損、ΔP3を配管圧損、
ΔP4を流量調節弁8′の圧損とすると、Bガスの
元圧P2との全体の圧力バランスは下記式に示すと
おりとなる。
Here, it is assumed that the gas blown into the molten steel 2 of the converter 1 from the tuyere nozzle 3 has been switched from A gas to B gas. The discharge pressure P 0 of the tuyere nozzle 3 must be a pressure that supports the head of the molten steel 2 in order to prevent the molten steel from being inserted into the tuyere nozzle 3.
Therefore, ΔP 2 is the tuyere brick pressure loss, ΔP 3 is the pipe pressure loss,
If ΔP 4 is the pressure loss of the flow control valve 8', the overall pressure balance with the original pressure P 2 of B gas is as shown in the following equation.

P2=P0+ΔP2+ΔP3+ΔP4 しかしてこの場合のBガス流量は先細ノズルの
理論式から吐出圧力P0を得るための流量として規
定される。
P 2 =P 0 +ΔP 2 +ΔP 3 +ΔP 4The B gas flow rate in this case is defined as the flow rate to obtain the discharge pressure P 0 from the theoretical formula for the tapered nozzle.

上式において、一定操業条件のもとにおいては
羽口ノズル吐出圧力P0および配管圧損ΔP3は一定
である。しかし羽口レンガ圧損ΔP2は操業回数増
大による摩耗に伴なつて減少し、またガス元圧P2
は、他工場における使用等の影響をうけて変動す
る。従つてノズル吐出圧力P0を一定に保つために
はこれらの変動分を、弁開度により調節可能な流
量調節弁圧損ΔP4により補償すればよい。
In the above equation, under constant operating conditions, the tuyere nozzle discharge pressure P 0 and the piping pressure drop ΔP 3 are constant. However, the pressure drop ΔP 2 of the tuyere brick decreases with wear due to the increase in the number of operations, and the gas source pressure P 2
varies depending on usage at other factories. Therefore, in order to keep the nozzle discharge pressure P 0 constant, these fluctuations can be compensated for by the flow rate control valve pressure loss ΔP 4 that can be adjusted by the valve opening degree.

しかして流量調節弁圧損ΔP4は、 ΔP4=P2−P0−ΔP2−ΔP3、すなわちΔP4=P2
−ΔP2−Cで算定でき、ガス元圧P2の変動、羽口
ノズルレンガの摩耗が生じても、安定した吐出圧
力P0を得ることのできる流量調節弁の開度を設定
することができる。
Therefore, the flow rate control valve pressure drop ΔP 4 is ΔP 4 =P 2 −P 0 −ΔP 2 −ΔP 3 , that is, ΔP 4 =P 2
−ΔP 2 −C, and it is possible to set the opening degree of the flow rate control valve that can obtain a stable discharge pressure P 0 even if the gas source pressure P 2 fluctuates or the tuyere nozzle brick wears out. can.

そこで実際操業において流量調節弁開度の設定
は次のように行なわれる。
Therefore, in actual operation, the opening degree of the flow rate control valve is set as follows.

転炉の各操業ステータスに応じた羽口圧損を、
操炉回数、その他の炉操業情報毎に第2図イに示
す如きテーブルで持ち、5折線で近似する羽口圧
損ΔPy0は配管圧損ΔP3および吐出圧力P0を含む
ものとし(第2図イ参照)任意に設定可能とす
る。
Tuyere pressure loss according to each operating status of the converter,
The number of furnace operations and other furnace operation information are maintained in a table as shown in Figure 2 A, and the tuyere pressure drop ΔPy 0 , which is approximated by a five-fold line, includes the piping pressure drop ΔP 3 and the discharge pressure P 0 (Figure 2 I). Reference) Can be set arbitrarily.

流量調節弁開度の設定は、その都度のガス元圧
からテーブルにより求めた羽口圧損ΔPy0を減算
し、流量調節弁圧損ΔP4を得、之から流量調節弁
のCv値即ち弁流量係数を計算し、該当する流量
調節弁の規定開度を設定する。
To set the opening degree of the flow control valve, subtract the tuyere pressure drop ΔPy 0 obtained from the table from the gas source pressure at each time to obtain the flow control valve pressure drop ΔP 4 , and from this, calculate the Cv value of the flow control valve, that is, the valve flow coefficient. Calculate and set the specified opening of the relevant flow control valve.

この場合のガス流量は各々の規定吐出圧流量と
し、羽口締めにより羽口数n本がX本減少した場
合、流量値をn−X/n倍してCv値計算をする。炉回 数が一定回数以後(第2図イにおいてN×5以
後)は一定とする。
In this case, the gas flow rate is set to each specified discharge pressure flow rate, and when the number n of tuyeres decreases by X due to tuyere tightening, the Cv value is calculated by multiplying the flow rate value by n-X/n. The number of furnaces is constant after a certain number (after N×5 in Fig. 2A).

本発明方法を実施するための制御フローを第3
図に示す。羽口ノズルの損耗量、操業ステータス
に対応した使用羽口本数、羽口種別、ガス流量、
使用ガス種類にもとづき、あらかじめ計算設定し
たテーブルから該当する羽口圧損値ΔPy0を引き
出し、之とガス元圧、ガス流量より下記式より流
量調節弁のCv値を計算する。
The third control flow for implementing the method of the present invention
As shown in the figure. Amount of wear and tear on tuyere nozzles, number of tuyere used depending on operational status, type of tuyere, gas flow rate,
Based on the type of gas used, extract the corresponding tuyere pressure loss value ΔPy 0 from a pre-calculated table, and calculate the Cv value of the flow rate control valve using the following formula from the gas source pressure and gas flow rate.

ここで Q:ガス流量 (羽口ノズルからの目標ガス吐出流量) G:ガス比重 P1:流量調節弁前圧力(≒元圧力) P2: 〃 後圧力 ΔP:P1−P2 t:ガス温度 かくして得られた流量調節弁Cv値から関数計
算により流量調節弁の規定開度を計算して、設定
する。
Here, Q: Gas flow rate (target gas discharge flow rate from the tuyere nozzle) G: Gas specific gravity P 1 : Pressure before flow rate control valve (≒ original pressure) P 2 : Post pressure ∆P: P 1 − P 2 t: Gas Temperature The specified opening degree of the flow rate control valve is calculated and set by functional calculation from the thus obtained flow rate control valve Cv value.

本発明の実施例を第4図にもとづいて説明す
る。
An embodiment of the present invention will be described based on FIG.

(A)先づ新炉で操業する場合に、ガス元圧がP1-1
(操業下限値)、羽口圧損Py0がP2-1であるとす
ると、流量調節弁圧損ΔP4が予め作成されたテ
ーブルから求められる。このΔP4は P1−1/2 以下であるから、Cv値は式1に従つて計算さ
れ、そのCv値に対応した弁開度が、予め関数
計算により求めた弁Cv値−弁開度のグラフか
ら求められる。
(A) When operating in a new furnace first, the gas source pressure is P 1-1
(lower limit of operation), and assuming that the tuyere pressure loss Py 0 is P 2-1 , the flow rate control valve pressure loss ΔP 4 is determined from a table prepared in advance. Since this ΔP 4 is less than P 1-1 /2, the Cv value is calculated according to Equation 1, and the valve opening corresponding to the Cv value is the valve Cv value calculated in advance by a function calculation - the valve opening. It can be found from the graph of

(B)次に操炉末期(操炉回数N×5以降)におい
て、ガス元圧がP1-2(操業上限値)、羽口圧損
がP2-2であるとすると、流量調節弁圧損ΔP4
同様にテーブルから求められる。このときのΔ
P4は P2−1/2 以上であるからCv値は式2に従つて計算さ
れ、この値に対応する弁開度が上記と同様にし
て求められる。
(B) Next , at the end of the furnace operation (after the number of furnace operations N ΔP 4 is similarly determined from the table. Δ at this time
Since P 4 is greater than or equal to P 2-1 /2, the Cv value is calculated according to Equation 2, and the valve opening degree corresponding to this value is determined in the same manner as above.

以上述べた如く、本発明によれば、転炉操業に
おける底吹ガス切替等のガス供給に際して、吹込
ガス流量の確認が困難な場合に、適正な流量を流
量調節弁の弁開度の設定により実施することがで
きるので、吐出圧力不足による溶鋼の羽口への差
込、吐出圧過剰による羽口先過冷却によつて生成
されるマツシユルームによる羽口ノズル閉塞又は
溶鋼の飛散に帰因する歩留低下、Ar等の高価な
ガスの無駄な消費を回避しうるという顕著な効果
が奏せられる。
As described above, according to the present invention, when it is difficult to confirm the blown gas flow rate when supplying gas such as when switching to bottom blowing gas during converter operation, an appropriate flow rate can be determined by setting the valve opening of the flow rate control valve. Since it can be carried out, it is possible to reduce the yield due to molten steel being inserted into the tuyere due to insufficient discharge pressure, tuyere nozzle blockage due to pine room generated by overcooling of the tuyere tip due to excessive discharge pressure, or scattering of molten steel. This has the remarkable effect of avoiding wasteful consumption of expensive gases such as Ar and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は底吹羽口のガス供給系における圧力バ
ランスの説明図、第2図イは各操業ステータスに
対応して炉回数その他の操業情報毎に作成された
羽口圧損の図表の一例、第2図ロは炉回数毎の羽
口種類、ガス種類別の規定吐出圧相当流量の図表
の一例、第3図は本発明の制御フローを示す図、
第4図は本発明の実施例の説明図表である。
Figure 1 is an explanatory diagram of the pressure balance in the gas supply system of the bottom blowing tuyere, and Figure 2 A is an example of a chart of tuyere pressure loss created for each furnace number and other operation information corresponding to each operation status. Figure 2B is an example of a chart of the flow rate equivalent to the specified discharge pressure for each type of tuyere and gas type, and Figure 3 is a diagram showing the control flow of the present invention.
FIG. 4 is an explanatory diagram of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 転炉操業における底吹羽口への吹込ガス切替
等におけるガス供給の制御を流量調節弁の開度制
御により行うにあたり、各操業ステータスに応じ
た羽口圧損ΔPy0を操炉回数毎に予め計算してお
き、その都度のガス元圧P2から羽口圧損ΔPy0
減算し、流量調節弁圧損ΔP4を得、之から流量調
節弁のCv値(弁流量係数)を求め、流量調節弁
の開度を、前記Cv値に基づく規定開度とするこ
とを特徴とする転炉の底吹ガス吹込制御方法。
1. When controlling the gas supply during converter operation, such as switching the blown gas to the bottom blowing tuyeres, by controlling the opening of the flow control valve, the tuyere pressure drop ΔPy 0 corresponding to each operation status is determined in advance for each number of furnace operations. Calculate it in advance and subtract the tuyere pressure drop ΔPy 0 from the gas source pressure P 2 each time to obtain the flow rate control valve pressure drop ΔP 4. From this, calculate the Cv value (valve flow coefficient) of the flow rate control valve and adjust the flow rate. A method for controlling bottom-blown gas injection into a converter, characterized in that the opening degree of the valve is set to a specified opening degree based on the Cv value.
JP15284580A 1980-10-30 1980-10-30 Control of bottom blow gas at converter Granted JPS5776118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15284580A JPS5776118A (en) 1980-10-30 1980-10-30 Control of bottom blow gas at converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15284580A JPS5776118A (en) 1980-10-30 1980-10-30 Control of bottom blow gas at converter

Publications (2)

Publication Number Publication Date
JPS5776118A JPS5776118A (en) 1982-05-13
JPS6151606B2 true JPS6151606B2 (en) 1986-11-10

Family

ID=15549382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15284580A Granted JPS5776118A (en) 1980-10-30 1980-10-30 Control of bottom blow gas at converter

Country Status (1)

Country Link
JP (1) JPS5776118A (en)

Also Published As

Publication number Publication date
JPS5776118A (en) 1982-05-13

Similar Documents

Publication Publication Date Title
CN110373511A (en) A kind of converter smelting process of low lime consumption
CN109321699A (en) A kind of method of the blast furnace stockline dropping blowing out not residual iron placing burn-up dead coke heap of tuyere area
JPS5687617A (en) Steel making method using arc furnace
CN109825665B (en) Method for reducing carbon and oxygen deposit of molten steel at converter end point
JPH02236235A (en) Smelt reduction method of ni ore and smelting furnace thereof
US4395283A (en) Method of switching bottom-blown gases and apparatus therefor
CN115927784B (en) Based on CO 2 Converter steelmaking end point control method by dynamic mixed blowing
CN107502704A (en) A kind of method for reducing alumina inclusion in semi-steel making strand
JPS6151606B2 (en)
US4420334A (en) Method for controlling the bottom-blowing gas in top-and-bottom blown converter steel making
CN206916179U (en) Slag equipment is splashed in a kind of converter automatically
US4139368A (en) Metallurgical method
JPS6136051B2 (en)
US3088821A (en) Open hearth steelmaking process
CN114807493B (en) Operation method for improving converter life
GB1598909A (en) Power for controlling a steel refining process for steels having a carbon content within the range of 0.1 to 0.8% by weight
JPH04124211A (en) Method for controlling blowing in oxygen steelmaking furnace
JP2533815B2 (en) Operating method of bottom blown converter
JPS6151608B2 (en)
JPH0762414A (en) Steelmaking method with converter
JP2584891B2 (en) Operating method of bottom blown converter
JPH02141513A (en) Smelting reduction iron making method
Heinke et al. Developments In Refining Stainless Steel Melts By the Krupp Combined Blowing Process
CN114107609A (en) Gas injection process model for ladle refining
CA1106183A (en) Method of treating molten ferrous metal to produce low carbon steel