KR100868430B1 - Method for Making Molten Steel by Converter - Google Patents

Method for Making Molten Steel by Converter Download PDF

Info

Publication number
KR100868430B1
KR100868430B1 KR1020020060063A KR20020060063A KR100868430B1 KR 100868430 B1 KR100868430 B1 KR 100868430B1 KR 1020020060063 A KR1020020060063 A KR 1020020060063A KR 20020060063 A KR20020060063 A KR 20020060063A KR 100868430 B1 KR100868430 B1 KR 100868430B1
Authority
KR
South Korea
Prior art keywords
content
flow rate
molten iron
section
converter
Prior art date
Application number
KR1020020060063A
Other languages
Korean (ko)
Other versions
KR20040029693A (en
Inventor
김경환
정의준
김광현
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020020060063A priority Critical patent/KR100868430B1/en
Publication of KR20040029693A publication Critical patent/KR20040029693A/en
Application granted granted Critical
Publication of KR100868430B1 publication Critical patent/KR100868430B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/32Blowing from above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

본 발명은 산소를 용선표면에 취입하여 용강을 제조하는 전로취련방법에 관한 것으로써, 저[Si]용선의 전로취련시 용선중의 Si의 함량에 따라 산소취입패턴을 적절히 제어하므로써 용강중의 P의 함량을 보다 효과적으로 저감시킬 수 있는 전로 취련 방법을 제공하고자 하는데, 그 목적이 있는 것이다.The present invention relates to a converter blow method for producing molten steel by blowing oxygen to the molten iron surface, and by controlling the oxygen injection pattern according to the content of Si in the molten iron during the converter blow of low [Si] molten iron, It is an object of the present invention to provide a method for blowing converters that can reduce the content more effectively.

본 발명은 용선중의 Si 함량에 따라 총 취련시간의 15-55%의 취련구간에서 통상적인 취련패턴에서의 산소취입유량보다 낮게 제어하여 용강중의 P의 함량을 저감시키는 전로취련방법을 그 요지로 한다.
The present invention is a converter blow method for reducing the content of P in the molten steel by controlling the lower than the oxygen injection flow rate in the conventional blow pattern in the blow section of 15-55% of the total blow time according to the Si content of the molten iron do.

전로, 취련, 산소취입, 인(P), Si함량, 총취련시간 Converter, blowing, oxygen blowing, phosphorus (P), Si content, total blowing time

Description

전로취련방법{Method for Making Molten Steel by Converter}Method for Making Molten Steel by Converter

도 1은 저[Si]용선의 전로취련시 종래방법에 따르는 취련패턴의 일례도1 is an example of a blow pattern according to the conventional method when the converter blows low [Si] molten iron

도 2는 저[Si]용선의 전로취련시 본 발명에 따르는 취련패턴의 일례도Figure 2 is an example of the blow pattern according to the present invention at the time of converter blow of low [Si] molten iron

본 발명은 산소를 용선표면에 취입하여 용강을 제조하는 전로취련방법에 관한 것으로써, 보다 상세하게는 저[Si]용선의 전로취련시 용선중의 Si의 함량에 따라 산소취입패턴을 적절히 제어하므로써 용강중의 P의 함량을 보다 효과적으로 저감시킬 수 있는 전로 취련 방법에 관한 것이다.The present invention relates to a converter blow method for producing molten steel by blowing oxygen to the molten iron surface, and more particularly, by appropriately controlling the oxygen injection pattern according to the content of Si in the molten iron during the converter blow of the low [Si] molten iron. The present invention relates to a converter blowing method that can more effectively reduce the content of P in molten steel.

전로취련공정에서는 랜스(lance)로부터 고속으로 취입되는 순산소 제트(jet)에 의하여 용선 표면에 캐비티(cavity)를 형성하고 주변에는 많은 철립을 비산시키며 이에 따라 슬래그 내에는 많은 양의 철립이 혼입되어 슬래그와 반응하면서 강욕으로 들어간다. 이러한 슬래그 영역을 에멀젼(emulsion)이라 하며, 예를 들면 300톤전로의 경우 약3톤 이상의 철립을 포함하고 있다.In the converter blasting process, a cavity is formed on the surface of the molten iron by a pure oxygen jet blown from a lance at high speed, and a large amount of iron grains are scattered around the slag. Reacts with slag and enters an abusive manner. This slag area is called an emulsion, and for example, in the case of a 300-ton converter, it contains about 3 tons or more of iron grains.

전로취련초기 용선중 규소(Si)는 산소와의 반응이 가장 먼저 일어나는 원소이며 2~3분 후에 거의 산화된다. In the initial molten iron, silicon (Si) is the first element to react with oxygen and is almost oxidized after 2-3 minutes.                         

특히, 산화반응의 열량은 취련중 용선의 승온에 중요한 열원으로 사용되고 있으며, 이때 생성되는 SiO2는 투입된 생석회를 재화시키고 슬래그를 형성한다. In particular, the calorific value of the oxidation reaction is used as an important heat source for the temperature rise of the molten iron during the blow, and the SiO 2 produced at this time recycles the injected quicklime and forms slag.

규소가 저하됨에 따라 탈탄반응이 활발하게 되며 탈인(P)도 극히 조기에 진행된다.As silicon decreases, decarburization becomes active and dephosphorization (P) progresses very early.

취련중기는 탈탄 최성기이고 취입된 산소는 거의 전량 탈탄에 소비되어 탈탄효율은 100%에 이른다. The blowing stage is the decarburizing peak and the blown oxygen is consumed almost entirely for decarburization, resulting in 100% decarburization efficiency.

이러한 동안 강욕의 온도가 상승함과 동시에 석회의 슬래그화가 진행되어 철산화물(FetO)이 점차 감소한다. During this time, the temperature of the bath is increased and the slag of lime proceeds and the iron oxide (Fe t O) gradually decreases.

즉, 공급된 대부분의 산소는 용철중의 탄소와 반응하여 일산화탄소 기체를 형성하며, 일산화 탄소는 다시 슬래그중의 산화철과 반응하여 이산화탄소를 형성함과 동시에 산화철을 환원시키게 되는 것이다. That is, most of the supplied oxygen reacts with carbon in molten iron to form carbon monoxide gas, and carbon monoxide reacts with iron oxide in slag to form carbon dioxide and simultaneously reduce iron oxide.

따라서 슬래그중의 철산화물 농도는 낮아지게 되며 이러한 철산화물 농도 저하는 슬래그의 융점을 상승시키고 슬래그 점도를 높여 전체적인 반응효율을 저하시킨다.Therefore, the iron oxide concentration in the slag is lowered, and the decrease in the iron oxide concentration increases the melting point of the slag and increases the slag viscosity, thereby lowering the overall reaction efficiency.

또한 슬래그중 철산화물 농도가 낮은 경우 탈린에도 불리하게 작용하여 용철중의 인 함량을 상승시키는 경우도 있다.In addition, when the iron oxide concentration in the slag is low, it also adversely affects the Tallinn may increase the phosphorus content in the molten iron.

취련말기 탈탄속도가 낮아지며 철산화물의 형성이 증가하면서 강욕의 온도 상승을 수반하고 따라서 슬래그의 유동성이 좋아지게 된다.At the end of the blowdown, the decarburization rate is lowered and the formation of iron oxides is accompanied by an increase in the temperature of the bath, thereby improving the flowability of the slag.

그러나, 취련중기 탈탄 최성기에서 반응용기내 성분제어가 원활하지 않은 경우에는 취련말기 강욕의 온도와 철산화물 농도가 증가한다고 하더라도 목표성분을 만족시키기 어려운 경우가 많은데, 특히, 용선중 [Si]가 낮은 경우에는 탈탄이 빨라 취련 시간이 짧아져 [P]제어가 곤란하게 되므로 [P]격외로 인해 품질 저하를 초래하는 경우가 빈번히 발생되고 있다.However, when the control of the components in the reaction vessel is not smooth in the decarburization peak during the blowdown period, even though the temperature and iron oxide concentration in the end of the blowdown increase, it is often difficult to meet the target components. In particular, low [Si] in the molten iron In this case, since decarburization is fast and the blowing time is shortened, it becomes difficult to control [P], which causes frequent deterioration of quality due to [P] outbreak.

본 발명은 저[Si]용선의 전로취련시 용선중의 Si의 함량에 따라 산소취입패턴을 적절히 제어하므로써 용강중의 P의 함량을 보다 효과적으로 저감시킬 수 있는 전로 취련 방법을 제공하고자 하는데, 그 목적이 있는 것이다.The present invention is to provide a converter blowing method that can effectively reduce the content of P in the molten steel by appropriately controlling the oxygen intake pattern according to the content of Si in the molten iron during the converter blow of the low [Si] molten iron, the purpose of It is.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 0.3중량%이하의 Si를 함유하는 용선을 사용하여 전로에서 취련하는 방법에 있어서,The present invention is a method of blowing in a converter using a molten iron containing less than 0.3% by weight of Si,

취련개시부터 취련종료까지의 취련패턴을 취련시간에 기초하여 총 취련시간에 대하여 취련개시부터 5%까지의 구간, 5-15%의 구간, 15-20%의 구간, 20-27%의 구간, 27-55%의 구간, 55-67%의 구간, 67-73%의 구간, 73-80%의 구간 및 80%-취련종료까지의 구간으로 구분하고;From the start of the drill to the end of the blow pattern, the starting pattern from the start to the 5% section, the 5-15% section, the 15-20% section, the 20-27% section, A section of 27-55%, a section of 55-67%, a section of 67-73%, a section of 73-80% and a section up to 80% -finish termination;

상기 취련개시부터 5%까지의 구간에서는 산소유량을 60800-67200N㎥/hr로, 5-15%의 구간에서는 산소유량을 57000-63000N㎥/hr로, 55-67%의 구간에서는 산소유량을 51300-56700N㎥/hr로, 67-73%의 구간에서는 산소유량을 54150-59850N㎥/hr로, 73-80%의 구간에서는 산소유량을 57000-63000N㎥/hr로, 80%-취련종료까지의 구간에서는 산소유량을 60325-66675N㎥/hr로 제어하고; The oxygen flow rate is 60800-67200Nm3 / hr in the section from the start of the blow to 5%, the oxygen flow rate is 57000-63000Nm3 / hr in the section 5-15%, and the oxygen flow rate is 51300 in the section 55-67%. Oxygen flow rate is 54150-59850Nm3 / hr in the range of -56700Nm3 / hr, 67-73%, and oxygen flow rate is 57000-63000Nm3 / hr in the range of 73-80%, up to 80% In the section, the oxygen flow rate is controlled to 60325-66675 Nm 3 / hr;

상기 15-20%의 구간에서는 상기 용선중의 Si의 함량이 0.3-0.21중량%인 경우에는 산소유량을 46850-47150N㎥/hr로, 상기 용선중의 Si의 함량이 0.20-0.11중량%인 경우에는 산소유량을 45275-45725N㎥/hr로, 상기 용선중의 Si의 함량이 0.10중량%이하인 경우에는 산소유량을 43700-44300N㎥/hr로 제어하고;In the 15-20% section, when the content of Si in the molten iron is 0.3-0.21% by weight, the oxygen flow rate is 46850-47150Nm3 / hr, and the content of Si in the molten iron is 0.20-0.11% by weight. The oxygen flow rate is 45275-45725Nm 3 / hr, and when the content of Si in the molten iron is 0.10% by weight or less, the oxygen flow rate is controlled to 43700-44300Nm 3 / hr;

상기 20-27%의 구간에서는 상기 용선중의 Si의 함량이 0.3-0.21중량%인 경우에는 산소유량을 42850-43150N㎥/hr로, 상기 용선중의 Si의 함량이 0.20-0.11중량%인 경우에는 산소유량을 40275-41725N㎥/hr로, 상기 용선중의 Si의 함량이 0.10중량%이하인 경우에는 산소유량을 39700-40300N㎥/hr로 제어하고; 그리고In the 20-27% section, when the content of Si in the molten iron is 0.3-0.21 wt%, the oxygen flow rate is 42850-43150 Nm3 / hr, and the content of Si in the molten iron is 0.20-0.11 wt%. The oxygen flow rate is 40275-41725Nm 3 / hr, and when the content of Si in the molten iron is 0.10% by weight or less, the oxygen flow rate is controlled to 39700-40300Nm 3 / hr; And

상기 27-55%의 구간에서는 상기 용선중의 Si의 함량이 0.3-0.21중량%인 경우에는 산소유량을 46850-47150N㎥/hr로, 상기 용선중의 Si의 함량이 0.20-0.11중량%인 경우에는 산소유량을 45275-45725N㎥/hr로, 상기 용선중의 Si의 함량이 0.10중량%이하인 경우에는 산소유량을 43700-44300N㎥/hr로 제어하여 용강중의 P의 함량을 저감시키는 전로취련방법에 관한 것이다.When the content of Si in the molten iron is 0.3-0.21% by weight in the section of 27-55%, the oxygen flow rate is 46850-47150 Nm3 / hr, and the content of Si in the molten iron is 0.20-0.11% by weight. In the converter smelting method to reduce the content of P in molten steel by controlling the oxygen flow rate to 43700-44300N㎥ / hr when the oxygen flow rate is 45275-45725N㎥ / hr, and the content of Si in the molten iron is 0.10% by weight or less. It is about.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 용선중의 Si 함량에 따라 총 취련시간의 15-55%의 취련구간에서 통상적인 취련패턴에서의 산소취입유량보다 낮게 제어하여 용강중의 P의 함량을 저감시키는 전로취련방법에 관한 것이다. The present invention relates to a converter blowdown method for reducing the content of P in the molten steel by controlling lower than the oxygen injection flow rate in the conventional blow pattern in the blow section of 15-55% of the total blow time according to the Si content in the molten iron.

본 발명에 있어서 전로 취련 패턴시 산소유량변화시점을 총 취련시간의 15~55%로 하는 이유는 다음과 같다.In the present invention, the reason for changing the flow rate of oxygen in the converter blow pattern is 15 to 55% of the total blow time is as follows.

즉, 총 취련시간의 15%이전에는 탈[Si]영역이므로 유량변화를 주어도 효과가 없고,총 취련시간의 55%이후에는 탈탄이 일어나는 영역이므로 탈[P]와는 무관하므로 효 과가 없기 때문이다.That is, since 15% of the total blowing time is a de-Si [Si] area, it is ineffective even if a flow rate change is given. Since 55% of the total blowing time is a decarburization area, it is not related to de-P [P]. .

또한, 상기한 총 취련시간의 15-55%의 취련구간에서 통상적인 취련패턴에서의 산소취입유량보다 산소취입유량이 큰 경우에는 취련 시간이 너무 짧아 노내에 투입된 부원료(생석회, 돌로마이트)의 재화시간이 짧아지게 되고 결과적으로 적정 조성의 슬래그를 조성하기가 곤란하게 되어 P제어가 어렵게 된다.In addition, when the oxygen blowing flow rate is larger than the oxygen blowing flow rate in the usual blowing pattern in the blowing section of 15-55% of the above-mentioned blowing time, the blowing time is too short and the ashing time of the subsidiary materials (quick lime, dolomite) introduced into the furnace This becomes short, and as a result, it becomes difficult to form slag of a suitable composition and P control becomes difficult.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

(발명예 1)(Invention example 1)

중량%로, C: 2.0%, Si: 0.25%, Mn: 0.25%, P: 0.10%, 및 S: 0.005%로 조성되는 용선을 전로에 투입하여 도 1의 종래의 산소취입패턴 및 도 2의 본 발명의 산소취입패턴에 따라 산소를 취입하여 취련한 후 용강중의 P의 농도를 조사한 결과, 본 발명에 의한 경우에는 P의 함량이 0.0192%이고, 종래방법에 의한 경우에는 P의 함량이 0.0221%이었다.By weight, a molten iron composition of C: 2.0%, Si: 0.25%, Mn: 0.25%, P: 0.10%, and S: 0.005% is added to the converter, and the conventional oxygen blowing pattern of FIG. According to the oxygen blowing pattern of the present invention, the oxygen content was blown and examined, and the concentration of P in the molten steel was examined. According to the present invention, the P content was 0.0192%, and the P content was 0.0221% according to the conventional method. It was.

도 2에서 α는 각 조건별 유량감소량을 나타내는 것으로서, 3000Nm3/h이였다.In FIG. 2, α represents the flow rate decrease for each condition, which was 3000 Nm 3 / h.

(발명예 2) (Invention example 2)

중량%로, C: 2.5%, Si: 0.17%, Mn: 0.22%, P: 0.11%, 및 S: 0.004%로 조성되는 용선을 전로에 투입하여 도 1의 종래의 산소취입패턴 및 도 2의 본 발명의 산소취입패턴에 따라 산소를 취입하여 취련한 후 용강중의 P의 농도를 조사한 결과, 본 발명에 의한 경우에는 P의 함량이 0.017%이고, 종래방법에 의한 경우에는 P의 함량 이 0.023%이었다.By weight, the molten iron composition of C: 2.5%, Si: 0.17%, Mn: 0.22%, P: 0.11%, and S: 0.004% was added to the converter to the conventional oxygen blowing pattern of FIG. According to the oxygen blowing pattern of the present invention, the oxygen content was blown and examined, and the concentration of P in the molten steel was investigated. According to the present invention, the P content is 0.017%, and the P content is 0.023% according to the conventional method. It was.

도 2에서 α는 각 조건별 유량감소량을 나타내는 것으로서, 4500Nm3/h이였다.In Fig. 2, α represents a flow rate reduction amount for each condition, which was 4500 Nm 3 / h.

(발명예 3)(Invention Example 3)

중량%로, C: 2.2%, Si: 0.06%, Mn: 0.12%, P: 0.09%, 및 S: 0.006%로 조성되는 용선을 전로에 투입하여 도 1의 종래의 산소취입패턴 및 도 2의 본 발명의 산소취입패턴에 따라 산소를 취입하여 취련한 후 용강중의 P의 농도를 조사한 결과, 본 발명에 의한 경우에는 P의 함량이 0.019%이고, 종래방법에 의한 경우에는 P의 함량이 0.021%이었다.By weight, a molten iron composition of C: 2.2%, Si: 0.06%, Mn: 0.12%, P: 0.09%, and S: 0.006% is added to the converter, and the conventional oxygen blowing pattern of FIG. According to the oxygen injection pattern of the present invention, the oxygen content was blown and examined, and the concentration of P in the molten steel was examined. According to the present invention, the P content is 0.019%, and the P content is 0.021% according to the conventional method. It was.

도 2에서 α는 각 조건별 유량감소량을 나타내는 것으로서, 6000Nm3/h이였다.In FIG. 2, α represents a flow rate reduction amount for each condition, which was 6000 Nm 3 / h.

상기한 바와 같이, 본 발명에 의하면 종래방법에 비하여 용강중의 P의 함량을 저하시킬 수 있음을 알 수 있다.As described above, according to the present invention, it can be seen that the content of P in the molten steel can be lowered as compared with the conventional method.

상술한 바와 같이, 본 발명은 저[Si]용선의 전로 취련시 전로 취련 패턴을 달리해 저 [Si]용선 취련시에도 [P]제어를 용이하도록 하므로써, 안정된 전로 조업을 확보할 수 있을 뿐만 아니라 [P]격외 방지로 강의 품질 향상도 기대할 수 있는 효과가 있는 것이다.As described above, the present invention can not only ensure a stable converter operation by changing the converter blow pattern at the time of blowing the low [Si] molten iron so as to facilitate the control of [P] even at low [Si] melt blown. [P] The anti-separation prevents the improvement of steel quality.

Claims (1)

0.3중량%이하의 Si를 함유하는 용선을 사용하여 전로에서 취련하는 방법에 있어서,In the method of blowing in a converter using a molten iron containing less than 0.3% by weight of Si, 취련개시부터 취련종료까지의 취련패턴을 취련시간에 기초하여 총 취련시간에 대하여 취련개시부터 5%까지의 구간, 5-15%의 구간, 15-20%의 구간, 20-27%의 구간, 27-55%의 구간, 55-67%의 구간, 67-73%의 구간, 73-80%의 구간 및 80%-취련종료까지의 구간으로 구분하고;From the start of the drill to the end of the blow pattern, the starting pattern from the start to the 5% section, the 5-15% section, the 15-20% section, the 20-27% section, A section of 27-55%, a section of 55-67%, a section of 67-73%, a section of 73-80% and a section up to 80% -finish termination; 상기 취련개시부터 5%까지의 구간에서는 산소유량을 60800-67200N㎥/hr로, 5-15%의 구간에서는 산소유량을 57000-63000N㎥/hr로, 55-67%의 구간에서는 산소유량을 51300-56700N㎥/hr로, 67-73%의 구간에서는 산소유량을 54150-59850N㎥/hr로, 73-80%의 구간에서는 산소유량을 57000-63000N㎥/hr로, 80%-취련종료까지의 구간에서는 산소유량을 60325-66675N㎥/hr로 제어하고; The oxygen flow rate is 60800-67200Nm3 / hr in the section from the start of the blow to 5%, the oxygen flow rate is 57000-63000Nm3 / hr in the section 5-15%, and the oxygen flow rate is 51300 in the section 55-67%. Oxygen flow rate is 54150-59850Nm3 / hr in the range of -56700Nm3 / hr, 67-73%, and oxygen flow rate is 57000-63000Nm3 / hr in the range of 73-80%, up to 80% In the section, the oxygen flow rate is controlled to 60325-66675 Nm 3 / hr; 상기 15-20%의 구간에서는 상기 용선중의 Si의 함량이 0.3-0.21중량%인 경우에는 산소유량을 46850-47150N㎥/hr로, 상기 용선중의 Si의 함량이 0.20-0.11중량%인 경우에는 산소유량을 45275-45725N㎥/hr로, 상기 용선중의 Si의 함량이 0.10중량%이하인 경우에는 산소유량을 43700-44300N㎥/hr로 제어하고;In the 15-20% section, when the content of Si in the molten iron is 0.3-0.21% by weight, the oxygen flow rate is 46850-47150Nm3 / hr, and the content of Si in the molten iron is 0.20-0.11% by weight. The oxygen flow rate is 45275-45725Nm 3 / hr, and when the content of Si in the molten iron is 0.10% by weight or less, the oxygen flow rate is controlled to 43700-44300Nm 3 / hr; 상기 20-27%의 구간에서는 상기 용선중의 Si의 함량이 0.3-0.21중량%인 경우에는 산소유량을 42850-43150N㎥/hr로, 상기 용선중의 Si의 함량이 0.20-0.11중량%인 경우에는 산소유량을 40275-41725N㎥/hr로, 상기 용선중의 Si의 함량이 0.10중량%이하인 경우에는 산소유량을 39700-40300N㎥/hr로 제어하고; 그리고In the 20-27% section, when the content of Si in the molten iron is 0.3-0.21 wt%, the oxygen flow rate is 42850-43150 Nm3 / hr, and the content of Si in the molten iron is 0.20-0.11 wt%. The oxygen flow rate is 40275-41725Nm 3 / hr, and when the content of Si in the molten iron is 0.10% by weight or less, the oxygen flow rate is controlled to 39700-40300Nm 3 / hr; And 상기 27-55%의 구간에서는 상기 용선중의 Si의 함량이 0.3-0.21중량%인 경우에는 산소유량을 46850-47150N㎥/hr로, 상기 용선중의 Si의 함량이 0.20-0.11중량%인 경우에는 산소유량을 45275-45725N㎥/hr로, 상기 용선중의 Si의 함량이 0.10중량%이하인 경우에는 산소유량을 43700-44300N㎥/hr로 제어하여 용강중의 P의 함량을 저감시키는 것을 특징으로 하는 전로취련방법When the content of Si in the molten iron is 0.3-0.21% by weight in the section of 27-55%, the oxygen flow rate is 46850-47150 Nm3 / hr, and the content of Si in the molten iron is 0.20-0.11% by weight. Has an oxygen flow rate of 45275-45725Nm3 / hr, and when the content of Si in the molten iron is 0.10% by weight or less, the oxygen flow rate is controlled to 43700-44300Nm3 / hr to reduce the content of P in the molten steel. How to Train
KR1020020060063A 2002-10-02 2002-10-02 Method for Making Molten Steel by Converter KR100868430B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020060063A KR100868430B1 (en) 2002-10-02 2002-10-02 Method for Making Molten Steel by Converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020060063A KR100868430B1 (en) 2002-10-02 2002-10-02 Method for Making Molten Steel by Converter

Publications (2)

Publication Number Publication Date
KR20040029693A KR20040029693A (en) 2004-04-08
KR100868430B1 true KR100868430B1 (en) 2008-11-11

Family

ID=37331055

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020060063A KR100868430B1 (en) 2002-10-02 2002-10-02 Method for Making Molten Steel by Converter

Country Status (1)

Country Link
KR (1) KR100868430B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101117651B (en) * 2006-07-31 2010-10-13 宝山钢铁股份有限公司 Converting process for converter low-silicon molten iron
CN103555878B (en) * 2013-11-25 2015-02-04 武钢集团昆明钢铁股份有限公司 Safe and high-efficient low-silicon molten-ion blowing process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318012A (en) * 1986-07-09 1988-01-25 Nippon Kokan Kk <Nkk> Method for controlling flow rate of oxygen for refining for metallurgical refining furnace
KR20000042513A (en) * 1998-12-26 2000-07-15 이구택 Method for refining electric furnace by using hot metal having small amount of silica
JP2001279317A (en) * 2000-03-31 2001-10-10 Nippon Steel Corp Method for dephosphorizing molten iron
KR20020000701A (en) * 2000-06-28 2002-01-05 이구택 A method for refining high silicon molten iron without slopping
JP2002212624A (en) * 2000-11-16 2002-07-31 Nkk Corp Converter oxygen blowing method
KR100398397B1 (en) * 1999-11-18 2003-09-19 주식회사 포스코 A Method For Refining Using High Si Contained Hot Metal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318012A (en) * 1986-07-09 1988-01-25 Nippon Kokan Kk <Nkk> Method for controlling flow rate of oxygen for refining for metallurgical refining furnace
KR20000042513A (en) * 1998-12-26 2000-07-15 이구택 Method for refining electric furnace by using hot metal having small amount of silica
KR100398397B1 (en) * 1999-11-18 2003-09-19 주식회사 포스코 A Method For Refining Using High Si Contained Hot Metal
JP2001279317A (en) * 2000-03-31 2001-10-10 Nippon Steel Corp Method for dephosphorizing molten iron
KR20020000701A (en) * 2000-06-28 2002-01-05 이구택 A method for refining high silicon molten iron without slopping
JP2002212624A (en) * 2000-11-16 2002-07-31 Nkk Corp Converter oxygen blowing method

Also Published As

Publication number Publication date
KR20040029693A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
US4334921A (en) Converter steelmaking process
CA2555472C (en) Method for producing low carbon steel
WO2019172195A1 (en) Dephosphorization method for molten iron
KR100868430B1 (en) Method for Making Molten Steel by Converter
JPH0243803B2 (en)
US5769923A (en) Decarburization refining process for chromium-containing molten metal and associated top blowing lance
CA1157276A (en) Method for preventing slopping during subsurface pneumatic refining of steel
KR20230136164A (en) Method of refining molten iron and manufacturing method of molten steel using the same
US4891064A (en) Method of melting cold material including iron
JPS6138248B2 (en)
JP2002047508A (en) Blowing method in converter
KR20020052520A (en) Method of low-carbon ferromanganese(LCFeMn) manufacturing by recycling dust containing manganese
KR100225249B1 (en) Remaining slag control method of of slopping control
JPH1030110A (en) Method for blowing oxygen in top-bottom combination-blown converter
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
SU1604165A3 (en) Method of producing steel in converter
JP2024054574A (en) Operation method for converter
JP3861618B2 (en) Dephosphorization method of hot metal using converter.
JP2561032Y2 (en) Lance for steel making
SU1712424A1 (en) Method of making high-carbon steel for high-strength wire
JP2000008113A (en) Production of medium and high carbon steel
KR20020051961A (en) A method for refining high phosphurous steel in converter
JP3067591B2 (en) Hot metal desulfurization method
CN118272610A (en) Method for smelting ultralow-phosphorus steel by using low-silicon high-phosphorus molten iron converter
JP2003064410A (en) Converter blowing method, and top-blow lance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121102

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131101

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141027

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20151104

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20171102

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20181102

Year of fee payment: 11