KR20020052520A - Method of low-carbon ferromanganese(LCFeMn) manufacturing by recycling dust containing manganese - Google Patents

Method of low-carbon ferromanganese(LCFeMn) manufacturing by recycling dust containing manganese Download PDF

Info

Publication number
KR20020052520A
KR20020052520A KR1020000081822A KR20000081822A KR20020052520A KR 20020052520 A KR20020052520 A KR 20020052520A KR 1020000081822 A KR1020000081822 A KR 1020000081822A KR 20000081822 A KR20000081822 A KR 20000081822A KR 20020052520 A KR20020052520 A KR 20020052520A
Authority
KR
South Korea
Prior art keywords
manganese
oxidizer
oxygen
molten metal
temperature
Prior art date
Application number
KR1020000081822A
Other languages
Korean (ko)
Other versions
KR100363608B1 (en
Inventor
박찬수
조해창
이홍식
박영규
Original Assignee
우종일
동부한농화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우종일, 동부한농화학 주식회사 filed Critical 우종일
Priority to KR1020000081822A priority Critical patent/KR100363608B1/en
Publication of KR20020052520A publication Critical patent/KR20020052520A/en
Application granted granted Critical
Publication of KR100363608B1 publication Critical patent/KR100363608B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE: A method for manufacturing low-carbon ferromanganese(LCFeMn) is provided to minimize oxidation loss of manganese by controlling infiltration depth of an oxidizer into molten metal, and increase product recovery ratio by constantly maintaining refining temperature and supplementing oxidation loss of manganese. CONSTITUTION: The method for manufacturing low-carbon ferromanganese(LCFeMn) by recycling collected dust containing manganese comprises the processes of continuously charging high-carbon ferromanganese into a converter enabling vertical and horizontal blowings at the same time by an oxygen blowing lance(2) and a horizontal blowing tuyere(3); blowing oxygen into an oxidizer through the oxygen blowing lance; blowing a mixed gas of oxygen and nitrogen or argon, and nitrogen or argon gas into inner and outer pipes of the horizontal blowing tuyere having a double pipe structure positioned on the side wall of the converter during the whole process time; and refining high-carbon ferromanganese by injecting calcium oxide into the oxidizer and injecting silicon manganese alloy or ferrosilicon into a reductor, wherein the method further comprises the process of injecting dust lumped after temperature of molten metal(5) is increased to the temperature range of 1600 to 1850 deg.C or more onto all over the oxidizer in an amount of 10 to 20 wt.% of molten metal during the oxidizer operation.

Description

집진 더스트 재활용에 의한 저탄소 훼로망간의 제조방법{Method of low-carbon ferromanganese(LCFeMn) manufacturing by recycling dust containing manganese}Manufacturing method of low carbon ferromangan by recycling dust collecting dust {Method of low-carbon ferromanganese (LCFeMn) manufacturing by recycling dust containing manganese}

본 발명은 금속성분의 회수율을 향상시킬 수 있는 저탄소 훼로망간의 제조방법에 관한 것으로서, 특히 산화기의 용탕 침투깊이를 조절하여 망간의 산화손실을 최소화하고 고형화된 더스트를 정련 중에 로(爐) 내에 투입하여 정련온도를 일정하게 유지하고 산화 손실된 망간을 보충하여 제품 회수율을 높이는 방법에 관한 것이다.The present invention relates to a method for producing low carbon ferro manganese which can improve the recovery rate of metal components, and in particular, by controlling the penetration depth of the oxidizer to minimize the oxidation loss of manganese and solidifying dust in the furnace during refining. The present invention relates to a method for increasing the product recovery rate by refining the refining temperature and replenishing the manganese lost in oxidation.

중탄소 훼로망간은 실리사이드법 또는 전로법에 의하여 제조할 수 있지만, 저탄소 훼로망간을 실리사이드법으로 생산할 경우에는 전기로를 사용하게 되어 전력 소모량이 지나치게 크고 실리콘 성분의 조절이 어려우므로, 전로법으로 생산하는 것이 다소 유리하다.Medium carbon ferro manganese can be produced by the silicide method or converter method, but when the low carbon ferro manganese is produced by the silicide method, an electric furnace is used, so the power consumption is too large and it is difficult to control the silicon component, Is somewhat advantageous.

그러나, 전로법으로 저탄소 훼로망간을 생산할 경우에는, 산소와 용탕이 직접 맞닿는 부위에서 급격한 온도상승으로 인하여 망간의 증기압이 증가되어 망간이 쉽게 증발되고, 상취 조건에 따라 슬랙에 거품이 생겨나 끓어 넘치는 현상(slag foaming)이 발생하여 금속성분의 회수율을 떨어지는 문제가 발생한다.However, in the case of producing low-carbon ferro-manganese by the converter method, the vapor pressure of manganese increases due to the rapid temperature rise in the area where oxygen and the molten metal directly contact, and the manganese easily evaporates, and foaming occurs in the slag according to the intake conditions. (slag foaming) occurs to reduce the recovery of the metal component occurs.

따라서, 종래에 있어서는 이러한 문제를 해결하기 위하여, 특허 제129282호에 명시된 바와 같이 용탕 침투깊이의 비 L/H 값을 0.3~0.5 범위로 하고, 상취 산소는 용탕 1톤에 대해 150 내지 250Nm3/시간의 유량으로 산화기에 20 내지 30분간 취입하며, 이중관 구조의 횡취 튜이어를 통해 내관 및 외관으로 각각 산소와 질소 또는 아르곤과의 혼합가스(1:1 내지 1:4 중량비) 및 질소 또는 아르곤 가스를 취입하되, 산소는 상기 용탕 1톤에 대하여 10 내지 30Nm3를, 상기 질소 또는 아르곤 가스는 상기 용탕 1톤에 대하여 5 내지 10Nm3를 공정 전체에 걸쳐 취입하였다. 그리고, 슬로핑을 억제하기 위해 산화기의 슬랙 조성을 가급적 염기도가 낮게 유지하였다.Therefore, in order to solve such a problem in the related art, as specified in Patent No. 129282, the ratio L / H value of the penetration depth of the melt is in the range of 0.3 to 0.5, and the intake oxygen is 150 to 250 Nm 3 / for 1 ton of the melt. It is blown into the oxidizer for 20 to 30 minutes at a flow rate of time, and the mixed gas (1: 1 to 1: 4 weight ratio) and nitrogen or argon gas of oxygen and nitrogen or argon, respectively, in the inner tube and the outer tube through the double tube structured crosswinding tuyer. Was blown, but oxygen was blown from 10 to 30 Nm 3 with respect to 1 ton of the molten metal, and nitrogen or argon gas was blown from 5 to 10 Nm 3 with respect to 1 ton of the molten metal throughout the process. In order to suppress the slope, the slack composition of the oxidizer was kept as low as possible.

그러나, 탄소함량을 0.5 중량% 이하로 낮추어야하는 저탄소 훼로망간 제조에있어서 위의 두 가지 방법은 다음과 같은 문제점을 갖고 있다.However, in the preparation of low carbon ferro manganese, which requires lowering the carbon content to 0.5 wt% or less, the above two methods have the following problems.

가. 용탕 침투깊이의 비 L/H 값을 0.3~0.5 범위로 할 경우, 탄소함량이 1.0~2.0 중량%인 중탄소 훼로망간의 제조에는 우수한 조업결과를 얻을 수 있으나, 탄소함량이 0.5 중량% 이하인 저탄소 훼로망간의 제조에 있어서는 상취 중에 용탕의 온도가 급격히 증가해 증기손실이 증가하게 된다.end. When the ratio L / H of the molten metal penetration depth is in the range of 0.3 to 0.5, excellent operation results can be obtained for the production of medium carbon ferro-manganese having a carbon content of 1.0 to 2.0 wt%, but low carbon having a carbon content of 0.5 wt% or less In the production of ferro-manganese, the temperature of the molten metal increases rapidly during the deodorization, thereby increasing the steam loss.

나. 산화기의 슬랙 조성의 염기도를 가급적 낮게 유지할 경우, 슬로핑의 억제는 가능하나, 산화기의 정련온도가 과도하게 상승하여 망간의 증기손실이 커진다.I. If the basicity of the slack composition of the oxidizer is kept as low as possible, the slope can be suppressed, but the refining temperature of the oxidizer is excessively increased and the vapor loss of manganese is increased.

다. 상기 "가"의 조건은 로 내의 온도유지와 적정 탈탄효율과도 연관되므로 획기적인 휘발제어는 불가능하다.All. The condition of "A" is also related to maintaining the temperature in the furnace and the proper decarburization efficiency, so it is impossible to control volatilization.

따라서, 본 발명에서는 전술한 종래 기술의 문제점을 해결하고, 저탄소 훼로망간을 제조할 때, 적정 탈탄효율을 유지하면서 용이하게 정련온도를 낮추고, 슬로핑을 억제하며 망간 휘발분 만큼을 적정한 방법으로 보충하여 회수율을 높일 수 있는 방법을 얻는데 그 목적이 있다.Therefore, the present invention solves the problems of the prior art described above, and when manufacturing low carbon ferro manganese, while maintaining the proper decarburization efficiency easily lowered the refining temperature, suppressing the slope and replenish the manganese volatile fraction by an appropriate method The purpose is to obtain a method for increasing the recovery rate.

도 1은 전로법 저탄소 훼로망간 제조방법의 공정도,1 is a process chart of a method for manufacturing a low carbon ferro manganese converter;

도 2는 본 발명에 대한 복합 취련형 저탄소 훼로망간 제조설비의 개략도.Figure 2 is a schematic diagram of a composite blowable low carbon ferro manganese production facility for the present invention.

(도면의 주요부분에 대한 부호의 설명)(Explanation of symbols for the main parts of the drawing)

1...마그네시아 카본(MgO-C), 마그네시아 크롬(MgO-Cr)질 내화물,1 ... Magnesia Carbon (MgO-C), Magnesia Chromium (MgO-Cr) Refractory,

2...상취 랜스, 3....횡취 튜이어,2 ... fraud lance, 3 .... fraud tuyer,

4...슬랙, 5...용융금속,4 ... slack, 5 ... molten metal,

6...용탕 침투깊이.6. Melt penetration depth.

상기 목적을 달성하기 위하여, 본 발명에서는 용탕 침투깊이의 비 L/H 값을 0.2~0.3 범위로 작게 하여 용탕의 휘발을 억제할 수 있었다. 즉, 1)랜스 노즐(lance nozzle)의 구멍 수를 늘리고, 2) 분사각을 크게 하며, 3) 용탕과 랜스와의 간격을 크게 하여 화점경/욕경 값을 키워 망간의 휘발손실을 감소시켰다. 그러나, 상기 1)~3)의 조업조건은 로 내의 온도유지 및 적정 탈탄효율과도 연관되므로 조절에는 한계가 따른다. 따라서, 망간 휘발분 만큼을 적정한 방법으로 보충하여 줄 필요가 있는데, 합금철 전기로와 정련로의 괴상화한 더스트를 투입하여 망간을 보충하는 것이 환경적인 면과 경제적인 면에서 가장 유리하다는 점에 주목하였다.In order to achieve the above object, in the present invention, by reducing the ratio L / H value of the molten metal penetration depth in the range 0.2 ~ 0.3 it was possible to suppress the volatilization of the molten metal. That is, 1) the number of holes in the lance nozzle was increased, 2) the injection angle was increased, and 3) the gap between the melt and the lance was increased to increase the flash point / bath diameter value, thereby reducing the volatilization loss of manganese. However, the operating conditions of 1) to 3) are also related to the temperature maintenance and the proper decarburization efficiency in the furnace, so there is a limit to the adjustment. Therefore, it is necessary to supplement manganese volatiles in an appropriate way. It was noted that supplementing manganese by incorporating the agglomerated dust of ferroalloy furnaces and refining furnaces was most advantageous in terms of environmental and economical aspects. .

본 발명에서는 L/H 값의 효용 변화와 괴상화한 더스트의 장입물로서의 효용을 다음과 같은 방법으로 검증하였다.In the present invention, the change of utility of L / H value and the utility of agglomerated dust as a charge were verified by the following method.

상취와 횡취가 가능한 정련용 전로에 고탄소 훼로망간 용탕을 장입한 후, 상취 랜스를 통하여 산소가스를 분사하며 동시에 이중관으로 이루어져 있는 횡취 튜이어의 내관으로 산소가스 혹은 산소와 질소 또는 아르곤과 같은 불활성 기체와의 혼합가스를, 외관으로는 질소 또는 아르곤 같은 불활성가스를 불어넣어 용탕중의 탄소함량을 저하시킨다. 이 때, 고형화한 합금철 전기로와 정련로의 더스트를 투입하였다. 용탕이 소정의 탄소함량에 도달하면 상취 산소의 취입을 중단하고 횡취 가스만으로 용탕을 유동시키고, 로 상부의 원료 투입구를 통하여 전로 내로 실리콘 망간합금, 훼로실리콘을 장입하여 산화망간을 회수한다.After charging the high carbon ferro-manganese molten metal into the refining converter that can be stowed and stolen, the oxygen gas is injected through the wicking lance and at the same time the inert tube such as oxygen, nitrogen, or argon as the inner tube of the double tubing. A mixed gas with a gas is blown outwardly with an inert gas such as nitrogen or argon to lower the carbon content in the molten metal. At this time, dust of the solidified ferroalloy electric furnace and the refining furnace was introduced. When the molten metal reaches the predetermined carbon content, the blowing of the oxygen is stopped and the molten metal is flowed only by the gas of the gas, and the manganese oxide is recovered by charging silicon manganese alloy and ferrosisil through the raw material inlet at the top of the furnace into the converter.

이때, 랜스 노즐의 구멍 수, 분사각, 용탕과 랜스와의 간격을 변화시켜 L/H 값을 조절하여 최적 값을 도출하였으며, 고형화한 더스트의 투입시기와 투입량을 달리함으로써 그 효용을 비교하였다.At this time, the optimum value was obtained by adjusting the L / H value by changing the hole number, injection angle, gap between the melt and the lance, and comparing the utility by changing the input time and the input amount of the solidified dust.

조업시에 L/H값과 고형화 더스트의 투입시기 및 투입량을 바꾸어 가면서 산화기에 있어서의 망간의 증기손실과 환원기에 있어서의 망간 회수 경향을 관찰하였으며, 이를 통해 본 발명의 목적에 적합한 저탄소 훼로망간 제조방법을 제안하게 되었다.While changing the L / H value and the timing and amount of the solidified dust during operation, the vapor loss of manganese in the oxidizer and manganese recovery in the reducer were observed. I came up with a method.

본 발명의 목적에 적합한 저탄소 훼로망간은 1,550~1,850℃의 온도범위에서 제조된다. 이 때, 고탄소 훼로망간 용탕에 산소를 불어넣었을 때의 탈탄반응식은 다음과 같이 나타낼 수 있다.Low carbon ferro manganese suitable for the purpose of the present invention is prepared in the temperature range of 1,550 ~ 1,850 ℃. At this time, the decarburization reaction when oxygen is blown into the high carbon ferro-manganese molten metal can be expressed as follows.

MnO + C = CO + MnMnO + C = CO + Mn

LogK = -11600/T + 7.623LogK = -11600 / T + 7.623

상기 반응의 온도 의존성은 임계온도 Tc 이하에서는 취입된 산소가 망간을 먼저 산화시키게 되지만, Tc 이상에서는 탄소가 먼저 산화되어 상기 식과 같은 탈탄반응이 가능해 지므로, 가급적 신속히 반응용기 내의 용탕의 온도를 임계온도 이상으로 상승시켜야 망간의 손실을 최소화할 수 있게 된다. 그러나, 지나치게 온도가 높아질 경우 망간의 증기압이 높아져서 망간이 증발되게 되므로, 고탄소 훼로망간의 탈탄반응에 있어서 적합한 온도구간이 존재하게 되며, 저탄소 훼로망간의 경우 1,550~1,850℃ 사이의 온도범위를 가질 때 효율적인 탈탄이 가능하다.The temperature dependence of the reaction is that oxygen blown to oxidize manganese first below the critical temperature Tc, but carbon is first oxidized above Tc to enable the decarburization reaction as described above. Increasing above will minimize the loss of manganese. However, if the temperature is excessively high, the vapor pressure of manganese is increased, so that manganese is evaporated, and thus there exists a temperature range suitable for decarburization of high carbon ferro-manganese, and in the case of low carbon ferro-manganese, it has a temperature range of 1,550 to 1,850 ° C. When efficient decarburization is possible.

용탕의 온도는 상취 랜스를 통한 산소의 취입조건에 의하여 조정되게 된다. 본 발명에서는 15톤 규모의 실생산 시험을 통하여 상취 산소의 취입에 의하여 용탕 면에 생성되는 요철의 깊이(이하, "용탕 침투깊이"로 표기)가 용탕의 온도에 가장 큰 영향을 미치는 인자임을 발견하였다. 용탕 침투깊이는 아래의 식으로 나타내어진다.The temperature of the melt is controlled by the blowing conditions of oxygen through the upper lance. In the present invention, 15 tons of actual production test, the depth of the irregularities (hereinafter referred to as "melt penetration depth") generated on the molten surface by the injection of fresh oxygen is found to be the most important factor in the temperature of the molten metal It was. The melt penetration depth is represented by the following equation.

L = Lhexp(-0.78 ×h/Lh)L = L h exp (-0.78 × h / L h )

Lh= 63.0[Kq/(nd)]2/3 L h = 63.0 [Kq / (nd)] 2/3

L : 용탕 침투깊이, Lh: h=0일 때의 용탕 침투깊이, h : 상취 랜스와 용탕 면과의 거리,L: molten metal penetration depth, L h : molten metal penetration depth at h = 0, h: distance between the upper lance and the molten metal surface,

Q :산소유량, n : 노즐수, d : 노즐 지름, k : 보정상수Q: oxygen flow rate, n: number of nozzles, d: nozzle diameter, k: correction constant

용탕 침투깊이가 적정치보다 작을 경우 용탕 유동이 약해지고, 취입된 산소가 용탕 표면만을 가열하게 되어 용탕 내부가 1,550℃이상으로 상승하는데 장시간이 소요되므로 반응효율이 낮아지게 된다. 용탕 침투깊이가 커질수록 용탕 유동이 향상되고 온도조절은 용이해지나, 용탕이 로 밖으로 튀어나가는 현상이 생겨서 망간 회수율이 떨어지며, 아울러 산소가스와 로벽 내화물이 직접 접촉하게 될 경우 내화물의 용손이 발생하게 되므로, 적정범위로 용탕 침투깊이를 조절해야 우수한 탈탄효율과 회수율을 기대할 수 있다.When the penetration depth of the melt is smaller than the appropriate value, the flow of the melt is weakened, and the injected oxygen heats only the surface of the melt, so that it takes a long time for the inside of the melt to rise above 1,550 ° C., thereby reducing the reaction efficiency. The greater the penetration depth of the melt, the better the flow of the melt and the easier temperature control, but the more the melt is splashed out of the furnace, resulting in a lower manganese recovery rate. Therefore, it is possible to expect excellent decarburization efficiency and recovery rate by adjusting the penetration depth of molten metal in an appropriate range.

본 발명에서는 탄소함량이 0.5 중량% 이하인 저탄소 훼로망간 조업시 랜스 노즐의 구멍 수를 종래의 3개에서 5개로 늘리고, 분사각을 9°에서 12°로 하며, 용탕과 랜스와의 간격을 크게 하여 화점경/욕경 값을 키우며, 전체 용탕 깊이에 대한 용탕 침투깊이의 비 L/H 값을 종래의 0.3~0.5범위보다 작은 0.2~0.3범위로 유지함으로써, 망간의 휘발손실을 줄여 85% 이상의 우수한 망간 회수율로 저탄소 훼로망간을 제조할 수 있다.In the present invention, the number of holes of the lance nozzle is increased from three to five, and the injection angle is 9 to 12 degrees, and the distance between the molten metal and the lance is increased during the operation of low carbon ferromangan with a carbon content of 0.5 wt% or less. Increases the flash point / bath value and maintains the ratio L / H of the melt penetration depth to the total melt depth in the 0.2-0.3 range, which is smaller than the conventional 0.3-0.5 range, thereby reducing the volatilization loss of manganese to more than 85%. Low carbon ferro manganese can be produced with recovery.

상취 산소는 용탕 1톤에 대해 100 내지 300Nm3/시간의 유량으로 25 내지 35분간 취입한다. 본 발명에 따르면 이중관 구조의 횡취 튜이어를 통해 내관 및 외관으로 각각 산소와 질소 또는 아르곤과의 혼합가스 (1:1 내지 1:4 중량비) 및 질소 또는 아르곤 가스를 취입하되, 산소는 상기 용탕 1톤에 대하여 10 내지 30Nm3를, 상기 질소 또는 아르곤 가스는 상기 용탕 1톤에 대하여 5내지 10Nm3를 공정 전체에 걸쳐 취입한다. 상취 산소의 취입이 중단된 시점에서 횡취 튜이어의 내관을 통한 횡취 가스의 혼합비율을 1:5 중량비로 바꾸고, 생석회와 실리콘 망간합금 또는 훼로실리콘을 첨가하여 훼로망간을 회수하는 환원기 조업을 한다.The deodorizing oxygen is blown for 25 to 35 minutes at a flow rate of 100 to 300 Nm 3 / hour for 1 ton of molten metal. According to the present invention, a mixed gas of oxygen and nitrogen or argon (1: 1 to 1: 4 weight ratio) and nitrogen or argon gas are respectively blown into the inner tube and the outer tube through the double-pipe structured tubing, but oxygen is the molten metal 1 10 to 30Nm 3 with respect to the tone, wherein the nitrogen or argon gas is blown over the 5 to 10Nm 3 the entire process with respect to the molten metal ton. When the intake of the oxygen is stopped, the mixing ratio of the gas to be fed through the inner tube of the gas is changed to 1: 5 weight ratio, and the reduction machine operation to recover the ferro-manganese is added by adding quicklime, silicon manganese alloy or ferrosilicon. .

본 발명에서는 산화기 조업 중에 괴상화한 합금철 전기로와 정련로의 더스트(이하, "고형화 더스트"로 표기)를 투입하여, 산화기에 발생하는 슬로핑을 억제하고 정련온도를 일정하게 유지하며 휘발 손실되는 망간을 보충하여 회수율을 높였다.In the present invention, the dust of the ferroalloy furnace and the refinery furnace (hereinafter referred to as " solidified dust ") which has been agglomerated during the operation of the oxidizer is introduced to suppress the slope occurring in the oxidizer, keep the refining temperature constant, and volatilization loss. Manganese supplemented to increase the recovery rate.

더스트는 대부분 Mn3O4의 형태를 이루고 있는데, Mn3O4는 용탕 중에 투입될 경우 다음의 해리반응을 일으킨다.Dust is there the form of a most Mn 3 O 4, Mn 3 O 4 is added when the molten metal leads to the following dissociation reaction.

Mn3O4=> 3 MnO + 1/2 O2 Mn 3 O 4 => 3 MnO + 1/2 O 2

상기 반응은 비교적 고온에서 일어나는 관계로 정확한 발생온도 측정이 힘들지만, 자유 에너지(Free energy)를 감안할 때 대략 1,500℃부근에서 일어나는 것으로 추정된다. 이에 따라, 더스트의 투입은 망간뿐만 아니라 잉여 산소까지도 공급하게 되어, 저온영역에서 탈탄효율이 낮을 때 잉여 산소는 Fe을 먼저 산화시키게 되므로, 더스트를 효율적으로 환원시키기 위하여는 일정 수준이상의 고온조건이 전제되어야 함을 알수 있다.The reaction occurs at a relatively high temperature, so accurate measurement of the generated temperature is difficult, but considering the free energy, it is estimated to occur around 1,500 ° C. Accordingly, the dust is supplied not only manganese but also surplus oxygen. When decarburization efficiency is low in the low temperature region, the excess oxygen oxidizes Fe first, so that a high temperature condition of a certain level or more is required to efficiently reduce dust. It can be seen that.

본 발명에서는 더스트 투입시기의 용탕온도와 투입량이 중요한 조업조건임을 발견하였으며, 산화기 조업시의 온도가 1,600~1,850℃ 이상으로 상승한 후부터 용탕의 10~20 중량%의 더스트를 산화기 전체에 걸쳐 지속적으로 투입할 때 가장 우수한 결과를 얻을 수 있었다. 더스트를 투입하는 시기의 조업온도가 1600℃ 이상의 고온일수록 투입된 더스트가 빠른 속도로 환원되는 반면, 용탕온도가 지나치게 상승하면 산소 취련에 의한 망간의 증기손실이 커지게 되어 회수율은 감소하게 된다. 또한, 1,600℃ 미만의 상대적 저온영역에서 더스트를 투입할 경우 위의 반응이 일어나지 못해 바람직 하지 않다.In the present invention, it was found that the melt temperature and the input amount of the dust injection timing is an important operating condition, since 10 to 20% by weight of dust in the molten metal is continuously maintained throughout the oxidizer after the temperature during the oxidizer operation rises to 1,600 to 1,850 ° C or more. The best results were obtained when the solution was added. While the operating temperature at the time of injecting the dust is higher than 1600 ° C, the introduced dust is reduced at a high rate, whereas if the molten metal temperature is excessively increased, the steam loss of manganese due to oxygen blowing is increased and the recovery rate is reduced. In addition, when dust is added in a relatively low temperature region of less than 1,600 ℃, the above reaction does not occur is not preferable.

환원기에서는 횡취 가스에 의한 용탕의 유동만이 존재하므로 적절한 유동조건의 수립이 중요하게 된다. 본 발명에서는 환원 유동조건 중 전체 용탕의 깊이 H와 횡취 튜이어의 높이 h의 비가 가장 중요한 조업조건임을 알 수 있었는데, h/H 값이 0.2~0.3의 범위를 가질 때 가장 우수한 조업결과를 얻을 수 있었다. h/H 값이 적정범위 이상일 경우에는, 용탕의 유동이 미치지 못하는 정체구역이 존재하게 되어 반응용기 내의 용탕의 화학성분이 불균일하게 되므로 최종 제품의 탄소농도가 높아질 뿐만 아니라 망간 회수율이 낮아지게 되며, h/H 값이 적정범위보다 낮을 경우에는 용탕 압력의 증가로 인해 횡취 가스가 로벽과 맞닿게 되어 횡취 튜이어 부근의 내화물이 심하게 손상받게 된다.In the reducer, only the flow of the molten metal by the stolen gas exists, so it is important to establish proper flow conditions. In the present invention, it can be seen that the ratio of the depth H of the total melt and the height h of the stowing tuber is the most important operating condition among the reducing flow conditions. When the h / H value is in the range of 0.2 to 0.3, the best operation result can be obtained. there was. If the h / H value is more than the appropriate range, there is a stagnation zone in which the flow of the molten metal does not reach, the chemical composition of the molten metal in the reaction vessel is non-uniform, not only increases the carbon concentration of the final product but also reduces the manganese recovery, If the h / H value is lower than the appropriate range, the gas being brought into contact with the furnace wall due to the increase in the melt pressure, and the refractory in the vicinity of the gas duct is severely damaged.

전체 반응을 통틀어 조재제의 조성 및 투입조건은 슬로핑과 밀접한 관련이 있다. 본 발명에서는 고탄소 훼로망간의 탈탄 정련시 발생하는 슬로핑이 슬랙과 메탈 계면에서의 탈탄반응으로 생긴 CO가스 거품으로 인한 슬랙포밍(slag foaming)현상이 나타나는 경우에는, 이를 방지하기 위해서 산화기의 슬랙조성의 염기도를 가급적 낮게 유지해야 함을 알았다. 이에 따라, 본 발명에서는 산화기 조업시에 온도가 1,600~1,850℃로 상승한 후 고형화한 더스트와 생석회 일부를 연속하여 산화기 종료시까지 투입한 후에, 환원기로 이행하기 직전에 잔여 량의 생석회를 투입하여 산화기의 슬로핑을 억제하며, 환원기에서는 원활한 망간의 환원이 가능하도록 한다. 이 때, 투입되는 생석회의 총량은 용탕의 10~20 중량%로써, 산화기에 총 투입량의 1/3을 고형화한 더스트와 함께 투입하고, 나머지 2/3은 환원기로 이행하기 직전에 투입한다.Throughout the entire reaction, the composition and loading conditions of the preparation are closely related to the slope. In the present invention, when the slope generated during the decarburization of high carbon ferro-manganese appears slag foaming due to the CO gas bubbles generated by the decarburization reaction at the slag and the metal interface, in order to prevent this, It was found that the basicity of the slack composition should be kept as low as possible. Accordingly, in the present invention, after the temperature rises to 1,600 to 1,850 ° C during the operation of the oxidizer, a portion of the solidified dust and quicklime is continuously added to the end of the oxidizer, and then the remaining amount of quicklime is added just before the transition to the reducing machine. Slope of the oxidizer is suppressed, and in the reducer, smooth reduction of manganese is possible. At this time, the total amount of quicklime added is 10-20% by weight of the molten metal, and 1/3 of the total input amount is added to the oxidizer together with the solidified dust, and the remaining 2/3 is added immediately before the transition to the reducing machine.

환원기로 이행하기 직전에 생석회를 투입할 때, 백운석 및 형석이 단독 또는 혼합물의 형태로 함께 투입될 수도 있으며, 이 때, 백운석 및 형석은 각각 생석회 총 중량의 3~7 중량%로 사용하는 것이 효과적이다. 환원기에 환원제로서 투입되는 실리콘 망간합금 또는 훼로실리콘의 양은 용탕 1톤당 실리콘 50 내지 100kg이 되도록 하는 것이 바람직하다.When the quicklime is added immediately before transition to the reducing machine, dolomite and fluorspar may be added together in the form of a single or a mixture, where dolomite and fluorspar are used effectively at 3 to 7% by weight of the total weight of the quicklime, respectively. to be. The amount of silicon manganese alloy or ferosilicon introduced into the reducing machine as the reducing agent is preferably such that 50 to 100 kg of silicon per ton of molten metal.

이하, 본 발명을 다음의 실시 예를 통하여 좀 더 상세히 설명하나, 본 발명은 이러한 실시 예에 의하여 한정되지 않는 것은 물론이다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

(실시 예)(Example)

망간광석 20톤, 백운석 2톤 및 탄재 4.2톤을 22,000KWH의 전력으로 환원시킨 고탄소 훼로망간 10톤을 MgO-C계 내화물을 내장한 전로에 장입하였다. 상기 용탕은 하기 표 1의 조성을 가졌으며, 장입 후 끝 부분에 5공(孔) 노즐이 부착된 랜스로 상취 산소를 취입하고, 로 바닥으로부터 용탕 전체높이의 1/5되는 높이에 2중관으로 이루어진 2개의 횡취 튜이어를 60°각도로 설치하되, 내관으로는 산소와 아르곤의 혼합가스를, 외관으로는 아르곤가스를 각각 취입하였다. 초기 상취 산소의 유량은 2,500Nm3/시간으로 15분간 유지하였으며, 이 후 10분간은 2,000Nm3/시간으로, 다음 10분간은 1,500Nm3/시간으로 유지한 후 상취 산소의 취입을 중단하고 환원기로 이행하였으며, 이행 직전에 조재제인 생석회를 800Kg 투입하였다. 산화기 조업시에 있어서 용탕 침투깊이는 전체 용탕 높이의 25% 범위가 되도록 랜스 높이를 조절하였다. 산화기 초기 15분간의 횡취 가스의 조성은 산소:아르곤 유량비가 1:2가 되도록 하였으며, 그 후의 10분간은 1:3으로, 그 후의 10분간은 1:4로 바꾸었으며, 횡취 가스의 총량은 상취 산소량의 8%로 유지하였다. 이 때, 괴상화한 더스트 1톤을 용탕의 온도가 1,750℃가 유지되도록 연속하여 투입하였다. 조재제로는 생석회를 산화기가 끝나는 시점에 800Kg을 5분간에 나누어 투입하였고, 환원재로는 실리콘망간 합금 1.5톤을 사용하고, 환원기 조업시에는 상취 산소가스의 취입을 중단하고, 횡취 가스의 조성을 산소:아르곤의 중량비가 1:5로 하였으며, 횡취 튜이어와 전체 용탕의 높이의 비가 h/H =0.25가 되도록 하여 20분간 유지한 후 출탕하였다. 이와 같이 하여 얻어진 최종 저탄소 훼로망간 제품은 11.2톤이었고, 이의 화학 조성은 표 2와 같았다. 이 때, 투입물과 산출물과의 비, 즉 물질수지로 구한 망간 회수율은87%였다.10 tons of high-carbon ferro-manganese, which reduced 20 tons of manganese ore, 2 tons of dolomite and 4.2 tons of carbonaceous material to 22,000KWH, was charged into a converter containing MgO-C-based refractory. The molten metal had the composition shown in Table 1 below, and charged with fresh oxygen with a lance attached to a five-hole nozzle at the end after charging, and made of a double tube at a height equal to 1/5 of the total height of the molten metal from the bottom of the furnace. Two percolating tuyers were installed at an angle of 60 °, but a mixed gas of oxygen and argon was blown into the inner tube and argon gas was blown out from the outside. The initial flow rate of fresh oxygen was maintained at 2,500 Nm 3 / hour for 15 minutes, after which 10 minutes were 2,000Nm 3 / hour, and the next 10 minutes were maintained at 1,500Nm 3 / hour, after which the blowing of oxygen was stopped and reduced. In addition, 800Kg of quicklime was added as a preparation. During oxidizer operation, the lance height was adjusted so that the melt penetration depth was in the range of 25% of the total melt height. The composition of the gas for the first 15 minutes of the oxidizer was made to have an oxygen: argon flow rate ratio of 1: 2, the following 10 minutes were changed to 1: 3, and the subsequent 10 minutes was set to 1: 4. The amount of fresh oxygen was maintained at 8%. At this time, 1 ton of agglomerated dust was continuously added so that the temperature of a molten metal was maintained at 1,750 degreeC. As a rejuvenating agent, quicklime was added and divided into 800Kg for 5 minutes at the end of the oxidizer, and 1.5 tonnes of silicon manganese alloy was used as the reducing agent. The weight ratio of oxygen to argon was 1: 5, and the ratio of the height of the stowing tuyer and the entire molten metal was maintained for 20 minutes with h / H = 0.25, followed by tapping. The final low carbon ferro manganese product thus obtained was 11.2 tons, the chemical composition thereof is shown in Table 2. At this time, the ratio of inputs and outputs, that is, the recovery rate of manganese obtained from the mass balance was 87%.

(비교 예)(Comparative example)

전술한 실시 예에서와 동일하게 실시하되, 용탕 침투깊이를 전체 용탕 높이의 35%범위가 되도록 하고, 산화기에 고형화한 더스트의 투입없이 조업하여 표 2와 같은 성분의 저탄소 훼로망간을 얻었다. 또한, 실시 예 및 비교 예에서의 장입물의 화학조성은 표 1과 같다.In the same manner as in the above embodiment, the molten metal penetration depth was 35% of the total melt height, and was operated without the addition of dust solidified in the oxidizer to obtain a low carbon ferro manganese of the components shown in Table 2. In addition, the chemical composition of the charges in Examples and Comparative Examples is shown in Table 1.

비교 예에서 얻어진 최종 저탄소 훼로망간 제품은 10.3톤이었고, 이 때 투입물과 산출물과의 물질수지로 구한 망간 회수율은 83%였다.The final low carbon ferro manganese product obtained in the comparative example was 10.3 tons, and the manganese recovery obtained from the mass balance between the input and the output was 83%.

구 분division MnMn SiSi CC FeFe 금속metal 고탄소 훼로망간용탕(실시예)High carbon ferro manganese molten metal (Example) 78.1578.15 0.350.35 6.766.76 잔여량Residual amount 고탄소 훼로망간용탕(비교 실시예)High carbon ferromanganyongtang (comparative example) 78.2878.28 0.320.32 6.786.78 잔여량Residual amount 실리콘 망간Silicon manganese 65.5265.52 16.8016.80 2.032.03 잔여량Residual amount 조재제Preparation 구 분division Mn3O4 Mn 3 O 4 Fe2O3 Fe 2 O 3 SiO2 SiO 2 CaOCaO MgOMgO Al2O3 Al 2 O 3 lgnition loss기타lgnition loss 고형화한 더스트Solidified dust 73.7973.79 5.025.02 7.857.85 3.023.02 0.360.36 0.400.40 잔여량Residual amount 생석회quicklime -- -- -- 88.088.0 -- -- 잔여량Residual amount

구 분division MnMn SiSi CC FeFe 저탄소 훼로망간(실시예)Low Carbon Ferro Manganese (Examples) 81.2981.29 0.290.29 0.450.45 잔여량Residual amount 저탄소 훼로망간(비교 실시예)Low Carbon Ferromanganese (Comparative Example) 79.8879.88 0.250.25 0.470.47 잔여량Residual amount

이상과 같이, 본 발명에서는 용탕 침투깊이와 괴상화된 더스트의 투입시점과 투입량 등의 조업변수를 적정범위로 조절함으로써, 환경친화적일 뿐 아니라 저렴한 가격으로 높은 망간 회수율을 실현할 수 있었다. 또한, 이를 중탄소 훼로망간 제조시에 적용하는 경우에도 용탕 1톤당 100kg의 괴상화된 더스트를 투입하여 3%의 망간 회수율이 향상되는 효과를 얻었다.As described above, in the present invention, by adjusting the operating parameters such as the molten metal penetration depth and the aggregated dust input time and input amount in an appropriate range, it is possible to realize a high manganese recovery rate at an environmentally friendly and low price. In addition, in the case of applying this to the production of medium-carbon ferro-manganese it was obtained by the addition of 100kg of agglomerated dust per ton of molten metal to improve the recovery of manganese of 3%.

Claims (1)

상취 랜스와 횡취 튜이어에 의하여 상취와 횡취가 동시에 가능한 전로 내에 고탄소 훼로망간을 연속적으로 장입하고, 산화기에 상취 랜스를 통해 산소를 취입하는 한편, 전로의 측벽에 위치한 이중관 구조의 횡취 튜이어를 통해서는 그 내관과 외관으로 각각 산소와 질소 또는 아르곤과의 혼합가스 및 질소 또는 아르곤 가스를 공정 전체에 걸쳐 취입하고, 상기 산화기에는 생석회를 투입하며, 환원기에는 실리콘 망간합금 또는 훼로실리콘을 투입하여 고탄소 훼로망간을 정련하여 저탄소 훼로망간을 제조하는 방법에 있어서,A high-carbon ferro-manganese is continuously charged into the converter which can be simultaneously picked up and stowed by the injector lance and the takeover tuyer, and oxygen is injected into the oxidizer through the intake lance. Through the inner tube and the outer tube, the mixed gas of oxygen and nitrogen or argon and nitrogen or argon gas are blown through the whole process, quicklime is added to the oxidizer, and silicon manganese alloy or ferrosilicon is introduced to the reducer. In the process of refining high carbon ferro manganese to produce a low carbon ferro manganese, 상기 산화기 조업 중에 용탕온도가 1,600∼1,850℃ 이상으로 상승한 후에 괴상화한 더스트를 산화기 전체에 걸쳐 용탕의 10∼20 중량% 투입하는 것을 특징으로 하는 집진 더스트 재활용에 의한 저탄소 훼로망간의 제조방법.Method for producing low-carbon ferro-manganese by recycling dust collection dust, characterized in that 10 to 20% by weight of the molten metal is added to the entire oxidizer after the melt temperature rises to 1,600 to 1,850 ℃ or more during the oxidizer operation. .
KR1020000081822A 2000-12-26 2000-12-26 Method of low-carbon ferromanganese(LCFeMn) manufacturing by recycling dust containing manganese KR100363608B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000081822A KR100363608B1 (en) 2000-12-26 2000-12-26 Method of low-carbon ferromanganese(LCFeMn) manufacturing by recycling dust containing manganese

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000081822A KR100363608B1 (en) 2000-12-26 2000-12-26 Method of low-carbon ferromanganese(LCFeMn) manufacturing by recycling dust containing manganese

Publications (2)

Publication Number Publication Date
KR20020052520A true KR20020052520A (en) 2002-07-04
KR100363608B1 KR100363608B1 (en) 2002-12-05

Family

ID=27685828

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000081822A KR100363608B1 (en) 2000-12-26 2000-12-26 Method of low-carbon ferromanganese(LCFeMn) manufacturing by recycling dust containing manganese

Country Status (1)

Country Link
KR (1) KR100363608B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2449038C1 (en) * 2010-09-23 2012-04-27 УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ МЕТАЛЛУРГИИ УРАЛЬСКОГО ОТДЕЛЕНИЯ РАН (ИМЕТ УрО РАН) Charge for smelting ferrosilicomanganese
RU2567412C2 (en) * 2013-12-27 2015-11-10 Иван Миронович Кашлев Charge for casting of ferrosilicon manganese in ore-smelting electric furnace
RU2698161C1 (en) * 2018-12-03 2019-08-22 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Charge for producing ferrosilicon
RU2704872C1 (en) * 2019-03-25 2019-10-31 Общество с ограниченной ответственностью "Управляющая компания "Шимко групп"" Charge for production of ferrosilicon

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100889859B1 (en) 2008-05-06 2009-03-24 주식회사 동부메탈 Process for production of ultra low phosphorous and carbon ferromananganese by using of ferromanganese slag
KR101089327B1 (en) 2009-03-02 2011-12-02 주식회사 동부메탈 Low-phosphorus high-, medium-, and low-carbon ferromanese process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104151A (en) * 1981-12-15 1983-06-21 Minamikiyuushiyuu Kagaku Kogyo Kk Manufacture of low-carbon ferromanganese
JPS6067608A (en) * 1983-09-22 1985-04-18 Japan Metals & Chem Co Ltd Manufacture of medium or low carbon ferromanganese
JPH024938A (en) * 1988-06-24 1990-01-09 Kawasaki Steel Corp Manufacture of medium-carbon and low-carbon ferromanganese
KR970009513B1 (en) * 1994-06-23 1997-06-14 동부건설 주식회사 Process for preparing low-carbon ferromanganese

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2449038C1 (en) * 2010-09-23 2012-04-27 УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ МЕТАЛЛУРГИИ УРАЛЬСКОГО ОТДЕЛЕНИЯ РАН (ИМЕТ УрО РАН) Charge for smelting ferrosilicomanganese
RU2567412C2 (en) * 2013-12-27 2015-11-10 Иван Миронович Кашлев Charge for casting of ferrosilicon manganese in ore-smelting electric furnace
RU2698161C1 (en) * 2018-12-03 2019-08-22 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Charge for producing ferrosilicon
RU2704872C1 (en) * 2019-03-25 2019-10-31 Общество с ограниченной ответственностью "Управляющая компания "Шимко групп"" Charge for production of ferrosilicon
WO2020197437A1 (en) * 2019-03-25 2020-10-01 Общество С Ограниченной Ответственностью "Управляющая Компания "Шимко Групп" Charge for manufacturing ferrosilicon
CN113166863A (en) * 2019-03-25 2021-07-23 斯拉夫罗斯有限责任公司 Charge for manufacturing ferrosilicon

Also Published As

Publication number Publication date
KR100363608B1 (en) 2002-12-05

Similar Documents

Publication Publication Date Title
CN109022675B (en) Energy supply method by using chemical energy for smelting of full-scrap steel electric arc furnace
CN109207672A (en) A kind of production method of Slagoff method and ultra-low phosphoretic steel in ultra-low phosphoretic steel production process
CN108754062A (en) A kind of method of the interior gasification dephosphorization steel-making of converter steel slag hearth
US4543125A (en) Process of making steel in converter using a great amount of iron-bearing cold material
CN114606357A (en) Method for removing phosphorus and leaving carbon in medium-high carbon steel by converter
CN102851449B (en) Refining furnace molten steel dephosphorization method adopting component adjustment and hermetical blowing of argon gas and oxygen gas
WO2005069977A2 (en) Method for producing low carbon steel
KR100363608B1 (en) Method of low-carbon ferromanganese(LCFeMn) manufacturing by recycling dust containing manganese
CN110527786B (en) Method for directly alloying and steelmaking by using manganese ore in converter
CN116179794A (en) Technological method for continuously recycling hot casting residue into LF ladle furnace
CN113088617B (en) Converter steelmaking method
CN108676954A (en) A kind of interior dephosphorization method for making steel recycled of converter steel slag hearth
KR930009972B1 (en) Method for manufacturing steel through something reduction
JP3002593B2 (en) Melting method of ultra low carbon steel
CN113278760A (en) Method for defoaming converter double-slag smelting steel slag
JP2912963B2 (en) Slag reforming method as desulfurization pretreatment
KR100336854B1 (en) Carbon injection method into d.c electric furnace
JP3774674B2 (en) Method for producing low nitrogen-containing chromium molten steel
JP2003147430A (en) Reducing agent for steelmaking, and steelmaking method
KR970009513B1 (en) Process for preparing low-carbon ferromanganese
EA003345B1 (en) Method for denitriding molten steel during its production
JP4411934B2 (en) Method for producing low phosphorus hot metal
KR101526447B1 (en) Method of refining molten steel
JP5949627B2 (en) Method of refining hot metal in converter
JPH0488114A (en) Method for producing high manganese steel

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121025

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20131017

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20141113

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150921

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160921

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170919

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20181022

Year of fee payment: 17