JPS58104151A - Manufacture of low-carbon ferromanganese - Google Patents

Manufacture of low-carbon ferromanganese

Info

Publication number
JPS58104151A
JPS58104151A JP20099581A JP20099581A JPS58104151A JP S58104151 A JPS58104151 A JP S58104151A JP 20099581 A JP20099581 A JP 20099581A JP 20099581 A JP20099581 A JP 20099581A JP S58104151 A JPS58104151 A JP S58104151A
Authority
JP
Japan
Prior art keywords
manganese
low
carbon
reducing agent
ferromanganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20099581A
Other languages
Japanese (ja)
Inventor
Kinichi Abe
阿部 欽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MINAMIKIYUUSHIYUU KAGAKU KOGYO KK
Original Assignee
MINAMIKIYUUSHIYUU KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MINAMIKIYUUSHIYUU KAGAKU KOGYO KK filed Critical MINAMIKIYUUSHIYUU KAGAKU KOGYO KK
Priority to JP20099581A priority Critical patent/JPS58104151A/en
Publication of JPS58104151A publication Critical patent/JPS58104151A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture low-C low-P ferromanganese by reducing a mixture of manganese ore with a slag forming material and by reacting the resulting melt contg. manganese oxide with a noncarbonaceous reducing agent. CONSTITUTION:A reducing agent is added to a mixed composition consisting of manganese ore and a slag forming material, and they are melted by heating with a blast furnace or the like to reduce at least the iron component in the composition and to form a metallic phase and a nonmetallic phase. An adequate amount of a carbonaceous material is used as the reducing agent. The resulting melt contg. manganese oxide as the nonmetallic phase is separated from the metallic phase and charged into a reactor provided with a horizontal or bottom blowing nozzle, and after blowing a noncarbonaceous reducing agent together with a carrier gas, they are reacted in the reactor. One or more among ferrosilicon, metallic Si and Al are used as the noncarbonaceous reducing agent, and gaseous nitrogen or Ar is used as the carrier gas.

Description

【発明の詳細な説明】 本発明は低炭素低燐溝ガン鉄の製造法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing low carbon, low phosphorous grooved gun iron.

技術革新が進むにつれ、鉄鋼もその使用目的に応じて特
殊な成分を含む一方、不純成分の含有を嫌悪するように
なった。これにともない鉄Aの脱酸剤や、また合金成分
添加剤として用いられる満ガン鉄は不純物含有駄が少な
いこと、特に炭素及び燐分の少ないことが要望されてい
る。
As technological innovation progresses, steel also contains special ingredients depending on its intended use, while impure ingredients have come to be disliked. Accordingly, it is desired that the manganese iron used as a deoxidizing agent for iron A or as an additive for alloying components has a low content of impurities, especially a low content of carbon and phosphorus.

このために、従来この種の満ガン鉄には湿式法によって
製造される電解金属マンガン乾式法による。中炭素溝ガ
ン鉄、低炭素マンガン鉄が用いられていた。
For this reason, conventionally, this type of manganese iron is produced by a wet method, but by a dry method using an electrolytic manganese method. Medium carbon grooved iron and low carbon manganese iron were used.

しかし、電解金属マンガンはマンガン品位が高くシリコ
ン及び炭素含有社が低いけれども、酸素含有量、いおう
含有量が高く、かつ製造コストが高い欠点があり、中、
低炭素フエロマンガンは比較的安価に得られ、かつ酸素
含有紙、いおう含有量が低いけれども、低炭素、低シリ
コン及び低燐含有曖とするのが困難であった。
However, although electrolytic metal manganese has a high manganese grade and low silicon and carbon content, it has the drawbacks of high oxygen content and sulfur content, and high manufacturing cost.
Although low carbon ferromanganese is relatively inexpensive to obtain and has a low sulfur content, it has been difficult to produce low carbon, low silicon, and low phosphorus content.

中、低炭素フェロマンガンの製造には中間体として炭素
含有量の少ないシリコマンガンを製造し、ついでこのシ
リコマンガンを満ガン鉱石で脱けいする方法が採られる
。中、低炭素フェロマンガンの炭素含有量を少なくしよ
うとすれば、中間体のシリコマンガンのシリコン含有量
を高くしなければならず、これにともなって満ガン鉱石
によるシリコマンガンの脱けい徽が多くなり、下記の理
由でシリコマンガンの脱けいが困難となり製品中にシリ
コンが残留するか、又は脱けいに長時間を要する。
To produce medium- to low-carbon ferromanganese, a method is adopted in which silicomanganese with a low carbon content is produced as an intermediate, and then this silicomanganese is desiliconized with manganese ore. In order to reduce the carbon content of medium- to low-carbon ferromanganese, it is necessary to increase the silicon content of the intermediate silicomanganese, and as a result, the silicomanganese is often desilicated by the manganese ore. For the following reasons, it becomes difficult to remove silicomanganese, and silicon remains in the product, or it takes a long time to remove it.

これはシリコマンガンと満ガン鉱石とが下記事− の反応式でボされる反応を行ない、(1)式から明らか
なようにシリコマンガンの脱けいが進行す1′1: るにつれて満ガン鉱石の溶融層の(MnO)a唯が減少
するので1、〔Si〕濃度が減少するにつれて脱けい速
度が急速に低下するからである。
This is because silicomanganese and manganese ore undergo a reaction as shown in the reaction equation below, and as is clear from equation (1), silicomanganese desilicification progresses. This is because (MnO) a in the molten layer decreases, and as the [Si] concentration decreases, the desilting rate rapidly decreases.

(Si)+2(MnO)−+ 2(Mn)+(S10s
)−・−m従来、この欠点を排除した乾式法での高品位
満ガン鉄を製造する方法に、反応容器に含マンガン酸化
物i@融物と非炭素質還元材及び造滓材を装入した後前
記反応容器に水平偏心円運動を行なわさせる方法が提案
されている。
(Si)+2(MnO)−+ 2(Mn)+(S10s
)-・-m Conventionally, a method for producing high-grade manganese iron using a dry process that eliminates this drawback involves equipping a reaction vessel with manganese-containing oxide i@ melt, a non-carbonaceous reducing material, and a slag-forming material. A method has been proposed in which the reaction vessel is caused to perform a horizontal eccentric circular motion after being placed in the reaction vessel.

しかし、この方法は反応容器を水平偏心円運動を行なわ
せているが、反応式(1)によって示されるように、シ
リコマンガンの脱けいが進行するにつれて、金属相はマ
ンガン分が増加して比重が大となり、非金属相は逆にM
nO分が減少して軽くなるので、水平偏心円運動を反応
容器内の内容物に与えても、これにより両者は運動して
も平行移動、するだけで相対的位置は余り変らないので
両者間の反応は十分といかず、この7’cA’)、7,
34ルヵ2ヶ+94.いオ6えやには含マンガンi化物
溶融物の(MnO)含量が十分に高い状態で脱けい反応
を完結する必要があり、生成するフェロマンガンに多く
の不純分を含有するにいたるなどの欠点がある。
However, in this method, the reaction vessel is caused to perform horizontal eccentric circular motion, but as shown by reaction equation (1), as the desiliconization of silicomanganese progresses, the manganese content of the metal phase increases and the specific gravity increases. becomes large, and the nonmetallic phase becomes M
Since the nO content decreases and the content becomes lighter, even if a horizontal eccentric circular motion is applied to the contents in the reaction vessel, the movement between the two will only move in parallel and the relative position will not change much. The reaction of 7'cA'), 7,
34 Luca 2 pieces + 94. In the case of ferromanganese, it is necessary to complete the desiliconization reaction in a state where the (MnO) content of the manganese-containing i-ide melt is sufficiently high, and the resulting ferromanganese may contain many impurities. There are drawbacks.

本発明者らはこれら欠点のないシリコン、カーボン及び
燐分の少ない満ガン鉄を製造する方法を提供するよう研
究した結果、本発明を完成にいたったもので、その要旨
は満ガン鉱石及び造滓材との混合組成物を、還元材を用
いて少くともその混合組成物中の鉄分を還元して金属相
と非金属相とし、得られる非金属相の含マンガン酸化物
溶融物を横吹き又は底吹きノズルを有する反応容器に装
入し、ついで非炭素質還元材をキャリアガスに同伴させ
て、前記ノズルから反応容器内に吹きこんで、両者を反
応させて低炭素フェロマンガンを得ることを特徴とする
ものである。
The present inventors completed the present invention as a result of research to provide a method for producing Mangan iron with low silicon, carbon, and phosphorus content, which does not have these drawbacks. The mixed composition with the slag material is reduced to a metallic phase and a non-metallic phase by reducing at least the iron content in the mixed composition using a reducing agent, and the obtained manganese-containing oxide melt of the non-metallic phase is side-blown. Alternatively, the material is charged into a reaction vessel having a bottom blowing nozzle, and then the non-carbonaceous reducing material is entrained in a carrier gas and blown into the reaction vessel through the nozzle to cause the two to react to obtain low carbon ferromanganese. It is characterized by:

満ガン鉱石及び造滓材との混合組成物を、還元材を用い
て少くともその混合組成物中の鉄分を還元して得られる
含マンガン酸化物溶融物は、電気炉又は溶鉱炉を用いて
満ガン鉱石、造滓材及び還元材との混合物を加熱溶融し
て、得られる非金属相と金属相の溶融混合物から非金属
溶融相を分離して得られる。
The manganese-containing molten material obtained by reducing at least the iron content in the mixed composition of the manganese ore and the slag-making material using a reducing agent can be filled using an electric furnace or a blast furnace. It is obtained by heating and melting a mixture of gun ore, slag material, and reducing material, and separating the nonmetallic molten phase from the resulting molten mixture of the nonmetallic phase and the metallic phase.

このさい用いる還元材として適当量の炭材を用いれば、
金属相は高炭素フェロガンとなり、還元材にシリコマン
ガンを用いれば金属相は中炭素又は低炭素フェロマンガ
ンとなる。このさい原料中の鉄分を還元するに必要な還
元材を用いて非金属相に燐分を少くすることができる。
If an appropriate amount of carbonaceous material is used as the reducing material at this time,
The metal phase becomes high carbon ferromanganese, and if silicomanganese is used as the reducing agent, the metal phase becomes medium carbon or low carbon ferromanganese. At this time, it is possible to reduce the phosphorus content in the nonmetallic phase by using a reducing agent necessary to reduce the iron content in the raw material.

本発明に用いられる反応容器には、第1図に示す実施態
様、横吹き又は底吹きノズルを有する反応容器、あるい
は第2図に示す溶融物をガス吹込により攪拌するための
ポーラスプラグ及び上吹きノズルを有する反応容器が挙
げられる。
The reaction vessel used in the present invention includes the embodiment shown in Fig. 1, a reaction vessel having a side blowing or bottom blowing nozzle, or a porous plug for stirring the melt by gas blowing and a top blowing nozzle as shown in Fig. 2. A reaction vessel having a nozzle is mentioned.

さらにこれらについて詳述する。Further, these will be explained in detail.

第1図において、lは反応容器(取鍋がこれに充当でき
る)で、耐火物で作製され、2はセットリングであり、
反応容器に含マンガン酸化物溶融物が装入された後、i
!8@物が反応容器外へ放出されるのを防止するため、
及び、バーナーコーン6、バーナー7を固宇するために
用いられる。3は非炭素質還元材を吹込むノズルであ−
リ、4はその非炭素質還元材の供給タンクで、5はキャ
リアガス送入バイア”、11は気抜である。
In FIG. 1, l is a reaction vessel (a ladle can be used for this) made of refractory material, 2 is a settling ring,
After charging the manganese oxide melt into the reaction vessel, i
! 8@To prevent substances from being released outside the reaction vessel,
It is also used to secure the burner cone 6 and burner 7. 3 is a nozzle for injecting non-carbonaceous reducing material.
4 is a supply tank for the non-carbonaceous reducing material, 5 is a carrier gas feed via, and 11 is an air vent.

また第2図において、1′の反応容器(取−)に含マン
ガン酸化物溶融物管装入した後、セットリング2′、バ
ーナコーン6′及びバーナー7′を固定する。9はポー
ラスプラグであり、溶融物を攪拌するだめのガスを同ガ
ス送入パイプIOを介して吹込むためのもので、8は非
炭素質還元材を吹込むための上吹ノズルであり、4′は
その非炭素質還元材の供給タンク、5′はキャリアガス
送入バイブである。」 非炭素質還元材にはけい素鉄、金属けい素、アルミニウ
ムが用いられる。キャリアガスには窒素、アルゴンガス
が用いられる。
Further, in FIG. 2, after a manganese-containing oxide melt tube is charged into the reaction vessel 1', a settling ring 2', a burner cone 6' and a burner 7' are fixed. 9 is a porous plug for blowing gas for stirring the melt through the same gas feed pipe IO, 8 is a top blowing nozzle for blowing non-carbonaceous reducing material, and 4' is its A supply tank for non-carbonaceous reducing material, 5' is a carrier gas feeding vibe. ” Silicon iron, metallic silicon, and aluminum are used as non-carbonaceous reducing materials. Nitrogen and argon gas are used as carrier gas.

本発明によればけい素、カーボン及び燐分の少ない満ガ
ス鉄を乾式法で容易に製造することができる。非炭素質
還元材吋、金属けい素を用いれば、さらに高品位の乾に
金属マンガンを製造することができる。
According to the present invention, full-gas iron with a low content of silicon, carbon, and phosphorus can be easily produced by a dry method. If a non-carbonaceous reducing material, silicon metal, is used, it is possible to produce even higher quality manganese metal.

また、本発明によれば含マンガン醗化物溶融物と金閤槽
とが、キャリアガスによって十分に接触するので、「含
マンガン酸化物熔融物の(MnO)含装置が低い状態ま
で非炭素還元材により還元反応が進行するので、同じ非
炭素還元材−に対して含マンガン酸化物溶融物の使用磁
を少なくすることができるので、生成するフェロマンガ
ン中に含有する不純物を少なくすることができる。
Further, according to the present invention, since the manganese-containing molten material and the metal coating tank are brought into sufficient contact with each other by the carrier gas, the non-carbon reducing material can be reduced to a state where the (MnO) content of the manganese-containing oxide melt is low. Since the reduction reaction proceeds, the amount of magnetism used in the manganese-containing oxide melt can be reduced for the same non-carbon reducing material, and therefore the impurities contained in the produced ferromanganese can be reduced.

また、本発明はフェロマンガン製造のさい、得られるス
ラグを含マンガン酸化物溶融物とし、溶融状態のスラグ
に非炭素質還元材を加えて、マンガン酸化物を還元すれ
ば熱エネルギーを節減することができる。
In addition, the present invention provides that during the production of ferromanganese, thermal energy can be saved by converting the obtained slag into a molten manganese oxide, and adding a non-carbonaceous reducing agent to the molten slag to reduce the manganese oxide. I can do it.

次に本発明の実姉態様を実施例によって説明するが、こ
れによって本発明が限宇されるものではない0°゛ 実施例1 含マンガン酸化i浴融物として、フェロ7ノガン製造炉
より出湯したスラグを用い、このスラグ2400 ky
を反応容器に装入した(浴湯湛邸1488℃)。スラブ
の品位を第1表に示す。
Next, a sister embodiment of the present invention will be explained with reference to examples, but the present invention is not limited thereto.Example 1 A manganese-containing i-bath melt was tapped from a Ferro 7 Bustard production furnace. Using slag, this slag 2400 ky
was charged into a reaction vessel (bathroom temperature: 1488°C). Table 1 shows the quality of the slabs.

第  1  表 スラグを取鍋に装入した後、直ちに粉末状1i’sl 
 2号品(粒度lfl以下)を常温でlOす7m1n 
の速度でキャリアガス(Nuガス)に同伴させて、横吹
きノズルからスラグ中に吹込み反応させた。FS:L 
 2号品の品位を第2表に示す。
Table 1 After charging the slag into the ladle, immediately turn it into powdered 1i'sl.
7ml 1n of product No. 2 (particle size lfl or less) at room temperature
The mixture was blown into the slag from a side blowing nozzle at a speed of 100 mL to cause a reaction. FS:L
Table 2 shows the quality of No. 2 product.

第  2  表 粉末状Fsi  2号品132kpをスラグ中に吹込み
反応させた後傾注出湯してフェロマンガン及び派生スラ
グを得た。得られたフェロマンガンは、及び派生スラグ
−はそれぞれ400枯、2100kpであった。フェロ
マンガン及ヒ派生スラグの品位をそれぞれ第3表、第4
表に示す。
Table 2 Powdered Fsi No. 2 product 132 kp was blown into the slag and reacted, followed by backward pouring to obtain ferromanganese and derived slag. The obtained ferromanganese and derived slag were 400 kp and 2100 kp, respectively. The quality of ferromanganese and H-derived slag are shown in Tables 3 and 4, respectively.
Shown in the table.

第  8  表 第  4  表 実施例2 実施例1で用いたのと同じ含マンガン酸化物溶融物25
00 kgを反応容器に装入し、直ちに粉末状金量けい
素(粒度1m以下) 107 klを実施例1に準じて
窒素ガスに同伴させて、含マンガン酸化物溶融物中に吹
込み反応させた金―けい素の品位を第5表に示す。
Table 8 Table 4 Example 2 Same manganese oxide melt as used in Example 1 25
00 kg was charged into a reaction vessel, and immediately 107 kl of powdered gold silicon (particle size of 1 m or less) was entrained in nitrogen gas according to Example 1, and blown into the manganese oxide melt to react. Table 5 shows the quality of gold and silicon.

第5表 反応終了後、反応生成物を出湯して、フェロマンガン3
90kj’s派生スラグ2200 kl得た。
Table 5 After the reaction is completed, the reaction product is tapped and the ferromanganese 3
I got 90kj's derived slug 2200kl.

得うれたフエロマンガ、ン及び派生スラグの品位をそれ
ぞれ第6表、第7表に示す。
The quality of the obtained Feromanga, N and derived slag are shown in Tables 6 and 7, respectively.

第  6  表 第  7  表 実施例3 マンガン鉱石5200に!Is生石灰690kg及びコ
ークス460 klを混合して、電気炉で溶融反応させ
て、フェロマンガン800 ky原料スラグ2500 
kyを得た。原料スラグの品位を第8表に示す。
Table 6 Table 7 Example 3 Manganese ore 5200! Is 690 kg of quicklime and 460 kl of coke were mixed and melted in an electric furnace to produce 800 ky of ferromanganese and 2,500 ky of raw material slag.
I got ky. Table 8 shows the quality of the raw material slag.

第  8 \表 得られた原料スラグ溶融物2500 kyを反応容器に
装入し、直ちに金属けい素182kpを、実施例1に準
じて、窒素ガスに同伴させ、1q料スラグ中に吹込み反
応させた。反応終了後、反応生成物を出湯して、フェロ
マンガン6501y及び派生スラグ2000kPを得た
〇 得られたフェロマンガン及び派生スラグの品位をそれぞ
れ第9表、第10表に示す。
Table 8 2500 ky of the obtained raw material slag melt was charged into a reaction vessel, and immediately 182 kp of metallic silicon was entrained in nitrogen gas and reacted by blowing it into 1 q of the raw material slag according to Example 1. Ta. After the reaction was completed, the reaction product was tapped to obtain ferromanganese 6501y and derived slag 2000 kP. The grades of the obtained ferromanganese and derived slag are shown in Tables 9 and 10, respectively.

第  9  表 第1O表 1:1Table 9 Table 1 O 1:1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図のそれぞれは本発明の製造法に使用さ
れる二実怖態様の製造装置の概略図である。 1、1/@反応容器、2、2’  :セットリング3、
3′ :ノズル、4、4′ :非炭素質還元材供給タン
ク、5、5’  :キャリアガス送入パイプ、6、6′
 :バーナーコーン、7、7′ :燃焼バーナー、8:
上吹きノズル、9:ポーラスプラグ、lO;攪拌用ガス
送入パイプ、ll111’:気抜 特許出願人 南九州化学工業株式会社 代理人弁理士 漫 野 豐 司 第1図
FIG. 1 and FIG. 2 are each a schematic diagram of a manufacturing apparatus of two embodiments used in the manufacturing method of the present invention. 1, 1/@reaction vessel, 2, 2': Set ring 3,
3': Nozzle, 4, 4': Non-carbonaceous reducing material supply tank, 5, 5': Carrier gas supply pipe, 6, 6'
: Burner cone, 7, 7' : Combustion burner, 8:
Top-blowing nozzle, 9: Porous plug, 1O; Stirring gas feed pipe, 111': Air removal Patent applicant: Minamikyushu Chemical Industry Co., Ltd. Representative Patent Attorney Tsukasa Manno Tsukasa Figure 1

Claims (1)

【特許請求の範囲】 (1)満ガン鉱石及び造滓材との混合組成物を、還元材
を用いて、少くともその混合PA我動物中鉄分を還元し
て金属相と非金属相とし、得られる非金属相の含マンガ
ン酸化物溶融物を横吹き又は底吹きノズルを有する反応
容器に装入し、ついで非炭素質還元材をキャリアガスに
同伴させて、前記ノズルから反応容器内に吹き込んで、
両者を反応させることを特徴とする′低炭素フェロマン
ガンの製造法。 (2、特許請求の範囲第1項において含マンガン醗化物
溶融物が、普通溝ガン鉄、中炭素フェロマンガン、低炭
素フェロマンガンを製造したさいのスラグ゛である低炭
素フエロヤンガンf/製造法◇ (3) 等許請求の範囲第1項又は第2項において非炭
素質還元材がフェロシリコン、金属けい素又はアルミニ
ウムの一種以上である低炭素マンガン鉄の製造法。
[Scope of Claims] (1) A mixed composition of manganese ore and slag-making material is reduced to a metallic phase and a non-metallic phase by reducing at least the iron content in the mixed PA and animal using a reducing agent, The resulting non-metal phase manganese-containing oxide melt is charged into a reaction vessel having a side-blowing or bottom-blowing nozzle, and then the non-carbonaceous reducing material is entrained in a carrier gas and blown into the reaction vessel through the nozzle. in,
A method for producing low-carbon ferromanganese, which is characterized by reacting both. (2. Low carbon ferroyangane f/manufacturing method in which the manganese-containing molten material in claim 1 is a slag used in producing ordinary groove gun iron, medium carbon ferromanganese, and low carbon ferromanganese)◇ (3) A method for producing low-carbon manganese iron according to claim 1 or 2, wherein the non-carbon reducing material is one or more of ferrosilicon, metallic silicon, or aluminum.
JP20099581A 1981-12-15 1981-12-15 Manufacture of low-carbon ferromanganese Pending JPS58104151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20099581A JPS58104151A (en) 1981-12-15 1981-12-15 Manufacture of low-carbon ferromanganese

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20099581A JPS58104151A (en) 1981-12-15 1981-12-15 Manufacture of low-carbon ferromanganese

Publications (1)

Publication Number Publication Date
JPS58104151A true JPS58104151A (en) 1983-06-21

Family

ID=16433751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20099581A Pending JPS58104151A (en) 1981-12-15 1981-12-15 Manufacture of low-carbon ferromanganese

Country Status (1)

Country Link
JP (1) JPS58104151A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100363608B1 (en) * 2000-12-26 2002-12-05 동부한농화학 주식회사 Method of low-carbon ferromanganese(LCFeMn) manufacturing by recycling dust containing manganese
KR100889859B1 (en) * 2008-05-06 2009-03-24 주식회사 동부메탈 Process for production of ultra low phosphorous and carbon ferromananganese by using of ferromanganese slag
KR100946621B1 (en) * 2007-12-06 2010-03-09 주식회사 동부메탈 Manufacturing method of ultra low phosphorous and carbon ferromanganese and its product
KR101469678B1 (en) * 2009-03-02 2014-12-05 신화메탈 주식회사 Low carbon-metal manganese and low carbon-ferromanganese manufacturing method by using continuous thermit reaction
KR101469679B1 (en) * 2009-03-02 2014-12-05 신화메탈 주식회사 Low carbon-ferrochromium manufacturing method by using continuous thermit reaction
CN107630117A (en) * 2017-08-25 2018-01-26 鞍钢股份有限公司 A kind of method that ferrosilicon and calcium aluminate material are prepared with thermal-state blast furnace slag

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100363608B1 (en) * 2000-12-26 2002-12-05 동부한농화학 주식회사 Method of low-carbon ferromanganese(LCFeMn) manufacturing by recycling dust containing manganese
KR100946621B1 (en) * 2007-12-06 2010-03-09 주식회사 동부메탈 Manufacturing method of ultra low phosphorous and carbon ferromanganese and its product
KR100889859B1 (en) * 2008-05-06 2009-03-24 주식회사 동부메탈 Process for production of ultra low phosphorous and carbon ferromananganese by using of ferromanganese slag
WO2009136684A1 (en) * 2008-05-06 2009-11-12 Dongbu Metal Co., Ltd. Process for production of ultra low phosphorous and carbon ferromanganese by using of ferromanganese slag
US8268036B2 (en) 2008-05-06 2012-09-18 Dongbu Metal Co., Ltd. Process for production of ultra low phosphorous and carbon ferromanganese by using of ferromanganese slag
KR101469678B1 (en) * 2009-03-02 2014-12-05 신화메탈 주식회사 Low carbon-metal manganese and low carbon-ferromanganese manufacturing method by using continuous thermit reaction
KR101469679B1 (en) * 2009-03-02 2014-12-05 신화메탈 주식회사 Low carbon-ferrochromium manufacturing method by using continuous thermit reaction
CN107630117A (en) * 2017-08-25 2018-01-26 鞍钢股份有限公司 A kind of method that ferrosilicon and calcium aluminate material are prepared with thermal-state blast furnace slag
CN107630117B (en) * 2017-08-25 2019-04-26 鞍钢股份有限公司 A method of ferrosilicon and calcium aluminate material are prepared with thermal-state blast furnace slag

Similar Documents

Publication Publication Date Title
CN101935740B (en) White slag refining agent for LF (Ladle Furnace) refining furnace and preparation method thereof
JP2956022B2 (en) Treatment agent for metal melt and method for homogenizing, refining, cooling and alloying metal melt
US4518422A (en) Process and apparatus for refining steel in a metallurgical vessel
JPH06145836A (en) Production of alloy utilizing aluminum slag
US4071355A (en) Recovery of vanadium from pig iron
JPS58104151A (en) Manufacture of low-carbon ferromanganese
SU1009279A3 (en) Method for producing steel in converter
JPS60152611A (en) Method for modifying slag
US3486882A (en) Continuous steel making process
US3074793A (en) Process for the production of mediumto low-carbon ferromanganese
US3347664A (en) Process for the production of low silicon, medium-to-low carbon ferromanganese
SU648118A3 (en) Method of producing alloy steel
US2864689A (en) Process of successively desulphurizing and desiliconizing a bath of pig iron
US2079848A (en) Making steel
JP3365129B2 (en) Manufacturing method of low sulfur steel
US3666445A (en) Auxiliary composition for steel-making furnaces
US3807988A (en) Refining hematite pig iron in a converter
JP2000345224A (en) Method for desulfurizing molten iron
CN1206373C (en) Method and use of calcium nitrate for foaming of steel-making slags
KR100224635B1 (en) Slag deoxidation material for high purity steel making
GB2094354A (en) Producing Mn-Fe alloy by carbothermic reduction
JP2564604B2 (en) Electric furnace refining method for chromium-containing steel
JPH03502361A (en) Manufacturing method of general-purpose steel
SU399548A1 (en) OPTWATERS. J. Vesnin and N. A. Chuvatin
JPS60190509A (en) Manufacture of alloy steel