US3706549A - Method for refining pig-iron into steel - Google Patents

Method for refining pig-iron into steel Download PDF

Info

Publication number
US3706549A
US3706549A US800892A US80089269A US3706549A US 3706549 A US3706549 A US 3706549A US 800892 A US800892 A US 800892A US 80089269 A US80089269 A US 80089269A US 3706549 A US3706549 A US 3706549A
Authority
US
United States
Prior art keywords
converter
gas
oxygen
nozzles
encasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US800892A
Inventor
Helmut Knuppel
Karl Brotzmann
Hans-Georg Fassbinder
Guy Savard
Robert Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kloeckner CRA Technologie GmbH
Eisenwerke Gesellschaf Maximilianshuette mbH
Original Assignee
Eisenwerke Gesellschaf Maximilianshuette mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19691901563 external-priority patent/DE1901563A1/en
Priority claimed from DE19691904382 external-priority patent/DE1904382A1/en
Priority claimed from DE19691904383 external-priority patent/DE1904383C3/en
Application filed by Eisenwerke Gesellschaf Maximilianshuette mbH filed Critical Eisenwerke Gesellschaf Maximilianshuette mbH
Priority to US05/153,277 priority Critical patent/US3938790A/en
Priority to US05/315,377 priority patent/US3932172A/en
Application granted granted Critical
Publication of US3706549A publication Critical patent/US3706549A/en
Assigned to KLOCKNER CRA TECHNOLOGIE GMBH reassignment KLOCKNER CRA TECHNOLOGIE GMBH ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: EISENWERK GESELLSCHAFT MIXIMILIANSHUTTE MBH
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/34Blowing through the bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters

Definitions

  • FIG. 15 METHOD FOR REFINING PIG-IRON INTO STEEL Filed Feb. 20, 1969 6 Sheets-Sheet 6 FIG. 15
  • Pig-iron is refined into steel by blowing oxygen and a protective screen of an encasing gas through injecting means located at or near the bottom of a converter containing a melt of molten metal.
  • the encasing gas while protecting the injecting means, allows it to be consumed at substantially the same rate as the bottom of the converter so that the injecting means is not left projecting from the bottom of the converter.
  • the oxygen jet is circular in cross-section and the encasing gas is in the form of a concentric jet.
  • a converter for carrying out the method is made up of a pear-shaped sheet-steel casing having a refractory lining and an inserted bottom provided with nozzles in the form of metal tubes for the oxygen and encasing gas.
  • a substantial portion (for example about half) of the converter bottom is free of nozzles.
  • the nozzles can be arranged in groups and there can be rows running parallel with the tilting axis of the converter.
  • the nozzles may also be arranged to cause circulation of the molten metal in the converter.
  • the nozzles can be constructed to provide for swirling movement of the encasing gas. Examples of encasing gas which may be used are furnacemouth gas, coke-oven gas, natural gas and other gases containing hydrocarbons.
  • This invention relates to a method for refining pig-iron into steel, in which oxygen is blown into the melt from below its surface.
  • Another disadvantage is that a substantial portion of the oxygen passes to the melt through the slag, the iron-oxide content of which is correspondingly high. This, and the large volume of brown smoke, results in relatively high iron losses.
  • the Fe content of the slag amounts to up to 30%, and the iron loss through brown smoke, to about 1.5% of the weight of the steel. This renders necessary costly gas-cleaning installations, to remove the large amounts of iron oxide contained in the waste gas.
  • An aim of the present invention is to utilize the advantages of refining with pure oxygen in producing steel in bottom-blown converters, while eliminating the disadvantages of the oxygen-lance process, especially the large volume of brown smoke and the use of costly gascleaning installations rendered necessary thereby.
  • the invention is also concerned with a refining method combining quiet blowing with high yield, i.e. low iron losses in comparison with the oxygen-lance process.
  • the new method aims also to provide for the highest possible utilization of the oxygen and to produce a relatively low FeO content in the slag.
  • Another aim of the invention is to provide for refining a phosphorus-containing pig-iron, which is relatively cheaper than a pig-iron poor in phosphorus, into a steel of high quality with a low nitrogen content, using pure oxygen, in a bottom-blown converter, producing a slag which may be utilized as a phosphorus-containing fertilizer.
  • the durability of the converter bottom, provided with nozzles, is increased by the method of the invention, and a higher proportion of scrap may be added in the charge or a higher tapping temperature may be achieved, or both.
  • the method of the invention is based on the principle of slowing down the violent reaction of the oxygen with the melt and the high wear in the nozzles and converter bottom, in such a manner that only a small amount of brown smoke is formed and the wear in the nozzles and bottom is reduced. According to the invention, this is accomplished by introducing a stream of oxygen into the melt through at least one nozzle located in the converter bottom, the said stream being surrounded by a haze or screen of shielding gas.
  • the encasing gas acts as a coolant and slows down the reaction velocity of the oxygen emerging from the nozzle to such an extent that bottom wear and nozzle burning are reduced and substantially less brown smoke arises.
  • the encasing gas should surround the stream of oxygen in the form of a concentric flow.
  • Vapour of a liquid which evaporates at the temperature of the bath may also be blown-in as an encasing or cooling gas.
  • Hydrocarbons for example, methane, propane, butane, or light oil in the form of vapour may also be blown-in as encasing gases.
  • casing gases containing a high proportion of hydrocarbons, such as natural gas or coke-oven gas may also be used.
  • the gases are introduced into the melt at a pressure at least half that of the oxygen pressure.
  • the above mentioned gases may be blown-in individually, side by side, mixed, or consecutively.
  • nitrogen contents between 0.001 and 0.002% may be obtained. These values are below the minimal nitrogen contents obtainable by the oxygen-lance process.
  • the use of hydrocarbons as encasing or cooling gases results in a relatively high hydrogen content in the steel, especially if the volume of encasing gas is increased at the end of the blow.
  • the method according to the invention is particularly suitable for producing steels semi-killed by a relatively high hydrogen content, even if the content of other elements having an aflinity for oxygen is relatively high. If a steel of this kind is killed prior to pouring in the conventional manner, e.g. with about 0.3% of silicon, and is cast into ingots, then the ingots solidify like semi-killed steels because of the relatively high hydrogen content of the melt. In addition to the pouring advantages associated therewith, a high yield of about 93% is produced in rolling.
  • the method according to the invention may also be carried out by blowing-in streams of oxygen through a plurality of jets, the said streams being surrounded by different encasing gases.
  • certain jets may be supplied with an inert scavenging gas, for example argon, instead of oxygen and an encasing gas.
  • a scavenging gas introduced in this way may also be used to reduce the hydrogen content, too high for certain qualities, resulting from a prior blowing with a hydrogen encasing gas.
  • the method of the invention is of special significance in the refining of pig-irons containing phosphorus; in this case, in contrast to the known oxygen-lance process, a
  • the low FeO contents of the slag in comparison with the oxygen-lance process, has a particularly favourable elfect in refining alloy pig-irons by the method of the invention.
  • a lower final carbon content can be obtained than by the oxygen-lance process, and even a lower proportion of the chromium contained in the iron is slagged.
  • the quiet course of the blow also permits better utilization of the converter since, in comparison with a bottomblown converter operated with oxygen-enriched air, may be increased by about 50%.
  • the quiet blow is not disturbed even when the pig-iron is at a relatively low temperature or has a high silicon and manganese content.
  • Another advantage of the quiet blow is that the mouth of the converter no longer builds up with steel and slag deposits. For these reasons, and due to the elimination of the slag change, the frequency of charges may be increased which results in, among other things, a highly economical process.
  • the volume and type of encasing gas and the type of material used for the oxygen feed pipe are matched in such a manner that the nozzles wear away at approximately the same rate as the refractory compound of the converter bottom in which the said nozzles are embedded. At the same time, care must be taken to ensure that solid deposits on the mouths of the nozzles, which may build up from the melt to be refined, are avoided.
  • Such a combination of encasing gas and oxygen feed-pipe material consists in using about 3% by volume of propane (4%% by weight) as the encasing gas, related to the throughput of oxygen, and a 15% chromium steel for the oxygen feed pipe. If a copper pipe, for example, is used in place of the 15 chromium steel, the amount of propane must be reduced to about one-half, which leads to a substantial increase in the formation of brown smoke.
  • Another combination consists, for example, in using about 10% of coke-oven gas as the encasing gas (approximate composition: 55% H 25% CH 10% CO, remainder inert gases) and an oxygen feed pipe of 15% chromium steel.
  • the percentage of coke-oven gas may be reduced by about but this again leads to increased formation of brown smoke
  • 20% by volume of methane (10% by weight) or 10% by volume of propane (13.75% by weight) and a copper oxygen feed pipe are used, heavy deposits are formed within a short time on the nozzle mouths, which reduce the throughput of oxygen and result in a substantial lengthening of the refining time.
  • the deposits on the converter bottom may be so deformed by the lumps of scrap, already present in the bath, that the flow of gases is largely cut oif, which may endanger operational safety.
  • deposits may, within the scope of the method according to the invention, be melted away by brief blowing with a mixture of nitrogen and oxygen, the oxygen content of which is preferably between 10 and 20%. If the oxygen content is kept to within 10 to 20%, the said deposits are usually removed within about one minute. This is preferably accomplished by after-blowing at the end of the refining time. If the nozzles are individually adjustable, the cleaning blow according to the invention may be restricted to those nozzles on which deposits are observed. The mixture is preferably blown through both the oxygen pipe and the encasing-gas pipe.
  • a quiet refining operation in the converter is of critical importance for the economics of the method. It was found, surprisingly enough, that quiet refining is greatly influenced by the number of nozzles in relation to the filling level of the converter. For reasons of economics, and for the simplest possible supervision of the process, it is naturally of interest to keep the number of nozzles as small as possible.
  • the minimal number of nozzles and the maximal permissible nozzle diameter may be calculated from the following relationships.
  • the total nozzle area in cm. should correspond approximately to the weight of the pig-iron to be refined in tons.
  • the maximal nozzle diameter is determined by the height of the bath; it should amount, at the most to of the depth of the bath in the refining vessel. These data are valid for the oxygen pressure of about 5 to atm. normally used in refining, but are also approximately correct in other pressure ranges. By way of example, it may be stated here that the converter used had an average capacity of 30 t. and a. bath depth of 70 cm. This gives a maximal nozzle diameter for the oxygen feed pipe of mm.; the number of nozzles is then calculated from the overall nozzle area of 30 cm. as being 10.
  • Nozzles larger than those calculated from the foregoing relationships may be used if the axis of the nozzles is, rather than being perpendicular to the surface of the bath, is at a certain angle of inclination to the longitudinal axis of the converter, or is built into the wall of the converter parallel with the surface of the bath. If the nozzles are incorporated obliquely, e.g. at an angle of about 30 to the vertical arrangement, the maximal nozzle diameter may be increased by about 20%. If the nozzles are incorporated horizontally into the side wall of the converter, the nozzle diameter calculated in accordance with the above relationship may even be doubled. In this case, therefore, only 3 nozzles with a diameter of 36 mm. are needed for the oxygen feed pipe for a 30 t. melt.
  • the oxygen and the encasing gas may be blown-in at one or at two opposing locations in the converter bottom. This imparts to the melt a definite circulating movement, which is of considerable significance for the thorough mixing of the melt, in view of the small volume of gas as compared with the traditional bottom-blown converter.
  • blowing-in takes place on one side, the flow of metal above the nozzles is in an upward direction and, in the remainder of the converter, in a downward direction, whereas if the blowing-in is on two sides, the outside of the melt rises while the melt at the center of the converter flows downwards.
  • the cooperation of the oxygen and the encasing gas with the circulating movement induced by the type of gas supply over the converter bottom leads to a rapid exchange of material, lower ironoxide contents in the slag, and thus to very low iron losses.
  • the method according to the invention is preferably carried out in a converter having the following characteristics. It has a pear-shaped steel casing with an inserted bottom and a refractory lining.
  • the nozzles are located in the converter bottom, a substantial portion of which is free of nozzles. The result of this is that the melt rises in the nozzle region, sweeps partly through the layer of slag, and is drawn down again in the nozzle-free area of the bottom.
  • the nozzles are preferably arranged entirely in one-half of the bottom, and may be arranged in groups so that a strong suction arises at the converter bottom.
  • the distance between individual groups of nozzles is preferably selected in such a manner that the funnel-shaped upward currents intersect to some extent just below the surface of the bath, thus ensuring near the surface of the melt a uniform distribution of gases which contributes to a reduction in ejection;
  • a converter of this kind in which the nozzles are arranged along a central strip on the bottom, may be made rotationally symmetrical with its longitudinal axis, the rows of nozzles terminating at a distance from the side walls of the converter which is dependent, in the individual case, upon the number of nozzles.
  • the rotationally symmetrical converter with a row of nozzles lying, for example, parallel with the axis of rotation (tilting axis) and along the diameter makes it possible to tilt the converter in both directions. In this way, slag may be removed by tilting in one direction, while the melt may be tapped by tilting in the other direction.
  • gas is fed continuously through the nozzles to prevent them from becoming blocked and, above all, to prevent them from coming into contact with the steel and the highly aggressive slag.
  • nozzles are arranged obliquely, it then becomes possible, with the method to remove the refining slag by means of jets of gas impinging obliquely on the surface of the bath when the converter is in the horizontal position. Slag removal may then be effected by means of hot gases, for example, the combustible gases of an oxygen/ hydrocarbon-gas mixture which forms at the outlet apertures of the nozzles when the oxygen is blown through the inside pipe and hydrocarbon gas through the outside pipe.
  • hot gases for example, the combustible gases of an oxygen/ hydrocarbon-gas mixture which forms at the outlet apertures of the nozzles when the oxygen is blown through the inside pipe and hydrocarbon gas through the outside pipe.
  • the converter For the purpose of slag removal, the converter need merely be tilted beyond the horizontal position, so that the level of the bath is at an acute angle to the longitudinal axis of the converter and to the jet of gas issuing from the nozzles.
  • the degree of tilt is determined in the individual case by the curvature of the converter lining or casing and, is greater in the case of a non-rotationally symmetrical converter than in the case of a rotationally symmetrical converter.
  • the longitudinal axes of some or all of the nozzles are at an angle to the longitudinal axis of the converter so that the emerging jets of gas impinge upon the slag cover or bath surface at an acute angle when the rotationally symmetrical converter is in the horizontal position.
  • Individual nozzles among those arranged along a central strip may be inclined, or several nozzles with inclined axes may be located in one half of the bottom. The said nozzles may also be inclined at different angles.
  • the nozzles may, with advantage, be inclined in such a manner that their longitudinal axes intersect in the upper part of the converter with the 1ongitudinal axis thereof, so that, when the converter is on its side, the gas jets impinge on the slag or on the surface of the bath approximately between the center of the bath surface and the mouth of the converter. If only a few nozzles are inclined in relation to the longitudinal axis of the converter, these nozzles may have a separate gas connection, so that they may be supplied with gas independ ently of the other nozzles.
  • the slag-removal nozzles arranged at an angle to the longitudinal axis of the converter may also be operated at a pressure which is substantially higher than the gas pressure during refining and which may amount, for example, to 60 atm., whereas the gas pressure for refining is only 6 atm. If the nozzles are at different angles of inclination, this produces a more or less widely fanned-out jet which, at a correspondingly high pressure, provides effortless and rapid slag removal.
  • the method according to the invention offers the advantage of producing higher nitrogen contents in the steel by mixing nitrogen with the oxygen.
  • the simplest way of doing this is to mix air with the oxygen. If, for example, nitrogen contents between 0.008 and 0.10% are required in the liquid steel, this can be obtained with 4% of nitrogen in the oxygen. It is also within the scope of the present invention to add the additional nitrogen only towards the end of the refining, approximately during the last /3 of the process.
  • the increase in nitrogen may also be obtained by using ammonia as the encasing gas.
  • FIG. 1 is a plan view of a horizontally sectioned converter with an example of the construction of a converter bottom according to the invention
  • FIG. 2 is a vertical section through the converter in FIG. 1, along the line IIII;
  • FIGS. 3 to 6 are converter bottoms with differently arranged nozzles
  • FIG. 7 shows nozzles according to the invention for oxygen and encasing or cooling gas, on an enlarged scale incorporating a non-return valve
  • FIG. 8 is a vertical longitudinal section through a rotationally symmetrical converter according to the invention.
  • FIG. 9 is a horizontal section along the line XX in FIG. 8;
  • FIG. 10 shows a converter according to the invention with nozzles inclined to the longitudinal axis of the converter
  • FIG. 11 shows a converter, with a plurality of nozzles at different angles, in the tilted position during slag removal
  • FIG. 12 is an enlarged representation of a nozzle according to the invention with a wire spiral used as a spacer between the nozzle pipes;
  • FIG. 13 is a cross-section through a nozzle according to the invention with spacer ribs
  • FIG. 14 is a cross-section of a nozzle according to the invention with porous refractory material in the annular space between the two nozzle pipes;
  • FIG. 15 is a schematic illustration of a converter according to the invention, having a common oxygen line for the oxygen pipes and individual connections for the encasing-gas pipes.
  • the converter according to the invention (FIG. 2) consists of the usual steel casing 1 having a refractory lining 2 and a refractory bottom 3 on a bottom plate 13.
  • the one-sided arrangement of nozzles 4 in bottom 3 has the advantage that when the converter is tilted to the right in the drawingfor charging, the nozzles are not damaged and the scrap can be accommodated in the nozle-free half of the bottom.
  • the converter when the converter is on its side, it can be filled up to the level of the first row of nozzles.
  • the scrap in the lower, nozzle-free half of the converter may be pre-heated by introducing oxygen and hydrocarbon through nozzles 4, as in an open-hearth furnace.
  • the nozzles are protected from melting by the introduction of a gas, preferably an inert gas.
  • the bottom half provided with nozzles 4 may also be made interchangeable, while the other half of the bottom is a fixed part of the lining.
  • the nozzles may also be arranged in circular or triangular groups (FIGS. 3, 4) in several rows of two (FIG. 6) or may also be distributed uniformly over one half of the bottom (FIG. 5).
  • the relatively great distance between individual nozzles or groups of nozzles results in a nozzle-free space in the converter bottom, allowing unimpeded access of the metal to the nozzles and to the gas/metal jets forming above the nozzles.
  • the nozzles (FIG. 7) consist of an internal pipe 6 for oxygen and a concentric external pipe 7 for the encasing or cooling gas.
  • the pipe ends projecting from the converter bottom carry a T-shaped connecting piece 8 with an adaptor 9 for the encasing or cooling gas and a connection 11 for the oxygen.
  • the converter illustrated in FIG. 8 is rotationally symmetrical in relation to the longitudinal axis 12 of the converter and also consists of a steel-plate casing 1 and a refractory lining 2. Inserted into the converter 1, 2, and resting upon a bottom plate 13, is a bottom 3 of refractory material, for example burned coal-tar dolomite.
  • the converter bottom 3 has a plurality of nozzles 4 arranged in a row along bottom diameter 15 and parallel with the tilting axis (not shown) of the converter.
  • Nozzles 4 consist of an external pipe 7 and a concentric internal pipe 6 which are connected to a gasline for the encasing gas 19 and a common oxygen line 21.
  • the refining of pig-iron with the converter shown in FIGS. 8, 9 is accomplished by blowing pure oxygen through internal pipe 6, and an encasing gas, for example propane, through external pipe 7 into the converter which is approximately half full of pig-iron.
  • the hydrocarbon gas acts as an encasing gas and prevents rapid melting away of the nozzles mouths and thus premature wear of converter bottom 3.
  • the converter is tilted out of the position shown in FIG. 8 to beyond the horizontal, so that the level of the bath, as shown in FIG. 11 for another converter, is at an acute angle to the longitudinal axis 12 of the converter.
  • blowing with oxygen and propane is continued in order to prevent damage to nozzles 4 by the melt of the slag.
  • the example illustrated in FIG. contains a plurality of nozzles 4 in converter bottom 3, these nozzles being at an angle to the longitudinal axis 12 of the converter.
  • a main advantage of these inclined nozzles 4 is that they produce a relatively deeply staggered jet of combustion gas during slag removal in the tilted position, which, as shown in FIG. 11, moves the slag towards the mouth of the converter and then out of the converter.
  • the converter bottom 3 may also contain a plurality of nozzles running parallel with the longitudinal axis 12 of the converter. In this case, however, it is advisable to provide the inclined nozzles with their own gas connections, in order to be able to vary the pressure, and if necessary the type, of the gases issuing from the inclined nozzles independently of the other nozzles.
  • the nozzles consist of an internal pipe 6 for oxygen and an external pipe 7 for encasing gas.
  • Located between the tWo pipes 6, 7 is a wire spiral which maintains a constant annular space 26 between the two pipes 6 and 7 (FIG. 12).
  • the said wire spirals also cause the encasing or cooling gas to enclose the oxygen jet, closely and uniformly, when it leaves oxygen pipe 6, since the said wire spirals 25 impart a twist to the said encasing gas.
  • encasing-gas pipe 7 may also be provided with internal ribs 27 acting as spacers (FIG. 13).
  • the annular space 26 between the oxygen pipe and the encasing gas-pipe may also be filled, as shown in FIG. 14, with a porous material 28, for example, a porous sintered metal or a refractory substance.
  • a non-return valve (FIGS. 7, 15) is located in line 19 to encasing-gas pipe 7.
  • This non-return valve is set to a specific pressure at which it closes immediately.
  • the oxygen pipes are generally connected to a common oxygen line
  • the encasing-gas pipes preferably have their own supply lines with flow meters gen pipes were made of a steel consisting of 18% chromium, 10% nickel, and the remainder mainly iron.
  • the wall thickness was about 1 mm. This left a concentric annular gap of about 1 mm. between the internal and external pipe for the introduction of the propane.
  • the encasing-gas pipe was a steel pipe having a wall thickness of about 2 mm.
  • the encasing-gas pipes were connected to a nitrogen line, a propane line, and an air line.
  • both nozzle tubes were supplied with atmospheric air at 3 atm.
  • the air supply was shut off and propane was fed to the encasing-gas pipe and oxygen to the oxygen pipe.
  • propane had ignited, the converter was returned to the vertical position and 3 t. of lime were added.
  • the volume of propane gas amounted to Nm. /h. and the volume of oxygen to 4000 Nrn. /h. (i.e. about 5.84% by weight of the oxygen).
  • an additional 2 t. of scrap were charged from above into the blowing converter.
  • the volume of oxygen was then increased to 5000 NmP/h. while the volume of propane gas was kept constant (i.e. about 4.7% by weight of the oxygen).
  • the converter blew quietly without developing any appreciable noise and without ejection.
  • the converter was tilted and at the same time the internal pipe was charged with air, while nitrogen was fed to the external pipe.
  • the converter On the basis of a chemical analysis of a sample, the converter, as described above, was tilted back up again and was after-blown for about 60 seconds, in order to obtain the desired steel composition. The converter was then tilted to the horizontal again and the slag was removed.
  • the composition of the slag was as follows:
  • the advantages of the method according to the invention are the substantially lower iron-oxide content of the slag, which therefore attacks the converter lining less, resulting in a longer life for the lining.
  • very good de-phosphorizing is obtained, as shown by the foregoing analysis.
  • blowing times are short, the blow is quiet in spite of the high proportion of scrap, and production is therefore increased.
  • the method according to the invention is almost independent of the pig-iron composition, whereas the known oxygen-lance process requires a pig-iron analysis held within narrow limits and thus the use of pig-iron mixers to equalize fluctuations in analysis.
  • a method of refining molten metal in a refractory lined vessel comprising:
  • each such injector means is consumed at a rate substantially the same as the refractory lining of said vessel.
  • the protective fluid is a combustible gas mixed with a gas containing oxygen.
  • blowing pressure of the protective fluid is 20 to 50% less than the blowing pressure of the oxygen.
  • hydrocarbon containing protective fluid is a gas selected from the group consisting of methane, propane, butane, natural gas, coke oven gas and mixtures thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PIG-IRON IS REFINED INTO STEEL BY BLOWING OXYGEN AND A PROTECTIVE SCREEN OF AN ENCASING GAS THROUGH INJECTING MEANS LOCATED AT OR NEAR THE BOTTOM OF A CONVERTER CONTAINING A MELT OF MOLTEN METAL. THE ENCASING GAS WHILE PROTECTING THE INJECTING MEANS, ALLOWS IT TO BE CONSUMED AT SUBSTANTIALLY THE SAME RATE AS THE BOTTOM OF THE CONVERTER SO THAT THE INJECTING MEANS IS NOT LEFT PROJECTING FROM THE BOTTOM OF THE CONVERTER. DESIRABLY, THE OXYGEN JET IS CIRCULAR IN CROSS-SECTION AND THE ENCASING GAS IS IN THE FORM OF A CONCENTRIC JET. A CONVERTER FOR CARRYING OUT THE METHOD IS MADE UP OF A PEAR-SHAPED SHEET-STEEL CASING HAVING A REFRACTORY LINING AND AN INSERTED BOTTOM PROVIDED WITH NOZZLES IN THE FORM OF METAL TUBES FOR THE OXYGEN AND ENCASING GAS. PREFERABLY, A SUBSTANTIAL PORTION (FOR EXAMPLE ABOUT HALF) OF THE CONVERTER BOTTOM IS FREE OF NOZZLES. THE NOZZLES CAN BE ARRANGED IN GROUPS AND THERE CAN BE ROWS RUNNING PARALLEL WITH THE TILTING AXIS OF THE CONVERTER. THE NOZZLES MAY ALSO BE ARRANGED TO CAUSE CIRCULATION OF THE MOLTEN METAL IN THE CONVERTER. THE NOZZLES CAN BE CONSTRUCTED TO PROVIDE FOR SWIRLING MOVEMENT OF THE ENCASING GAS. EXAMPLES OF ENCASING GAS WHICH MAY BE USED ARE FURNACEMOUTH GAS, COKE-OVEN GAS, NATURAL GAS AND OTHER GASES CONTAINING HYDROCARBONS.

Description

Dec. 19, 1972 H. KNUPPEL ET AL METHOD FOR REFINING PIG-IRON INTO STEEL 6 Sheets-Sheet 2 Filed Feb. 20, 1969 FIG. 4
FIG
FIG. 6
INVENTORS m NB R y F A E PMF N Z O R QRE 0 AE T eVL T mB n 4.
.r e 0 7.0 e O G U 0 HKHGR H. KNUPPEL ET AL Dec. 19, 1972 METHOD FOR REFINING PIG-IRON INTO STEEL 6 Sheets-Sheet. 3
Filed Feb. 20, 1969 Helmut KNUPPEL Karl BRDTZMANN Hons-Georg FASSBINDER Guy SAVARD Robert LEE Dec. 19, 1972 KNUPPEL ET AL 3,706,549
METHOD FOR REFINING PIG-IRON INTO STEEL R E m m m t L mE s h NPAA S WPMFD QRE S .INTYAE a I l l l I wVL e h I I l 1 l I l UBSH S I HHWHI I I HI i I III l d n Yb 6 I'll euuuo H Il HKHGR Filed Feb. 20. 1969 Dec. 19, 1972 H, KNUPPEL ET AL 3,706,549
METHOD FOR REFINING PIG-IRON INTO STEEL 6 Sheets-Sheet 5 Filed Feb. 20. 1969 FIG. /4
FIG. /3
INVENTORS Helmut KNUPPEL Karl BROTZMANN Hons-Georg FASSBINDER Guy SAVARD Robert LEE A TTORNEY f Dec. 19, 1972 H. KNUPPEL ETAL 3,706,549
METHOD FOR REFINING PIG-IRON INTO STEEL Filed Feb. 20, 1969 6 Sheets-Sheet 6 FIG. 15
INVENTORS Helmut KNUPPEL Karl BROTZMANN Hans-Georg FASSBINDER Guy SAVARD Robert LEE ATTORNEY United States Patent Int. Cl. C21c 5/34 US. Cl. 75-60 16 Claims ABSTRACT OF THE DISCLOSURE Pig-iron is refined into steel by blowing oxygen and a protective screen of an encasing gas through injecting means located at or near the bottom of a converter containing a melt of molten metal. The encasing gas while protecting the injecting means, allows it to be consumed at substantially the same rate as the bottom of the converter so that the injecting means is not left projecting from the bottom of the converter. Desirably, the oxygen jet is circular in cross-section and the encasing gas is in the form of a concentric jet.
A converter for carrying out the method is made up of a pear-shaped sheet-steel casing having a refractory lining and an inserted bottom provided with nozzles in the form of metal tubes for the oxygen and encasing gas. Preferably, a substantial portion (for example about half) of the converter bottom is free of nozzles. The nozzles can be arranged in groups and there can be rows running parallel with the tilting axis of the converter. The nozzles may also be arranged to cause circulation of the molten metal in the converter. The nozzles can be constructed to provide for swirling movement of the encasing gas. Examples of encasing gas which may be used are furnacemouth gas, coke-oven gas, natural gas and other gases containing hydrocarbons.
This invention relates to a method for refining pig-iron into steel, in which oxygen is blown into the melt from below its surface.
Even about 100 years ago, the relevant literature mentioned the possibility of blowing pure oxygen instead of air through the converter bottom in the case of bottomblown converters. The unusually rapid wear in the converter bottom associated with the blowing-in of pure oxygen prevented this proposal from being realized. Moreover, the quality of steel refined with air was adequate for decades, and there was therefore no need to use oxygen instead of air. At a later date, for the purpose of eliminating the harmful action of high nitrogen contents in steel on the welding and cold-working properties of converterrefined steel, the practice of using oxygen-enriched air was initiated. The increase in oxygen-air contamination results in a considerable loss of iron in the form of brown smoke consisting mainly of iron oxide, and the yield was correspondingly low.
Failures in attempts to blow pure oxygen into bottomblown converters finally resulted in the known oxygenblowing process, in which pure oxygen is blown from above on to the iron melt by a lance. Although this process is very economical for manufacturing ordinary low-carbon steels, it has a number of disadvantages in comparison with the bottom-blown converter. For instance, it requires costly lances which are subject to considerable wear from splashes of iron and slag and from high temperatures in the region of the stream of oxygen impinging on the surface of the bath. Moreover, the mixing of the bath, and thus the equalization of concentrations, with the oxygenblowing process is not as good and intensive as with the bottom-blown converter. Another disadvantage is that a substantial portion of the oxygen passes to the melt through the slag, the iron-oxide content of which is correspondingly high. This, and the large volume of brown smoke, results in relatively high iron losses. Thus, in the oxygen-blowing (lance) process, the Fe content of the slag amounts to up to 30%, and the iron loss through brown smoke, to about 1.5% of the weight of the steel. This renders necessary costly gas-cleaning installations, to remove the large amounts of iron oxide contained in the waste gas.
Furthermore, in the oxygen-blowing (lance) process, only a portion of the oxygen issuing from the lance is utilized, while a not inconsiderable amount of oxygen reacts with the waste gas of the refining reactions. Since in the said oxygen-blowing process, the carbon contained in the pig-iron is burned only to carbon monoxide, the waste gases still contain about of the theoretical combustion heat of carbon to carbon dioxide. Although for this reason further utilization of these waste gases is advantageous, it is diflicult and costly with the said process since, due to the frequent strong ejection of these converters, the gases are hard to collect and must also be subjected to costly cleaning because of the high content of brown smoke. Additional considerable heat losses arise from vaporization of the iron in the region of the burning spot, which is the cause of the brown smoke. Other disadvantages of this process arise from the absence of the stirring motion essential to the homogenization of the melt, usually produced by the blast in conventional bottom-blown converters.
Because of the increased iron-oxide enrichment of the slag in this process, and the considerable increase in the amount of slag arising during the refining of a pig-iron rich in phosphorus (basic Bessemer pig-iron), in comparison with the refining of pig-iron poor in phosphorus, it is necessary, to ensure a quiet refining operation, to reduce the silicon and manganese content of the pigiron to be refined far below the usual limits. The manganese content which is basic Bessemer pig-iron amounts, as a rule, to 1% must be reduced to a maximum of 0.6% with the oxygen-lance process, while the silicon content must be reduced to a maximum of 3.0%. This leads to a corresponding restriction in the choice of blast-furnace charge material, and thus to increased costs.
Because of the reduced bath movement in comparison with the basic Bessemer process in the bottom-blown converter, de-phosphorizing with the oxygen-lance process, with a given slag composition, is not as effective as in the bottom-blown basic Bessemer converter. In order to obtain low phosphorus contents, two slags must therefore be used, resulting in a lengthening of the overall process and higher wear in the converter. Furthermore, varying amounts of the first slag, of varying composition, remain behind in the converter, and this aflfects the course of the second refining operation in an uncontrollable manner. The slag change also brings about considerable heat losses.
An aim of the present invention is to utilize the advantages of refining with pure oxygen in producing steel in bottom-blown converters, while eliminating the disadvantages of the oxygen-lance process, especially the large volume of brown smoke and the use of costly gascleaning installations rendered necessary thereby.
The invention is also concerned with a refining method combining quiet blowing with high yield, i.e. low iron losses in comparison with the oxygen-lance process. The new method aims also to provide for the highest possible utilization of the oxygen and to produce a relatively low FeO content in the slag.
Another aim of the invention is to provide for refining a phosphorus-containing pig-iron, which is relatively cheaper than a pig-iron poor in phosphorus, into a steel of high quality with a low nitrogen content, using pure oxygen, in a bottom-blown converter, producing a slag which may be utilized as a phosphorus-containing fertilizer.
Finally, the durability of the converter bottom, provided with nozzles, is increased by the method of the invention, and a higher proportion of scrap may be added in the charge or a higher tapping temperature may be achieved, or both.
The method of the invention is based on the principle of slowing down the violent reaction of the oxygen with the melt and the high wear in the nozzles and converter bottom, in such a manner that only a small amount of brown smoke is formed and the wear in the nozzles and bottom is reduced. According to the invention, this is accomplished by introducing a stream of oxygen into the melt through at least one nozzle located in the converter bottom, the said stream being surrounded by a haze or screen of shielding gas. The encasing gas acts as a coolant and slows down the reaction velocity of the oxygen emerging from the nozzle to such an extent that bottom wear and nozzle burning are reduced and substantially less brown smoke arises. By altering the ratio of oxygen to encasing or shielding gas, and by the choice of an appropriate gas, optimal conditions may be obtained in practice.
With a view to the desired slowing down of the reaction of the oxygen with the melt, and because of the cooling elfect, the encasing gas should surround the stream of oxygen in the form of a concentric flow. Vapour of a liquid which evaporates at the temperature of the bath may also be blown-in as an encasing or cooling gas. Hydrocarbons, for example, methane, propane, butane, or light oil in the form of vapour may also be blown-in as encasing gases. However, casing gases containing a high proportion of hydrocarbons, such as natural gas or coke-oven gas may also be used.
When using combustible encasing gases, to prevent a flow-back of oxygen into the encasing-gas ducts and to prevent possible damage to the mouth of the nozzle, the gases are introduced into the melt at a pressure at least half that of the oxygen pressure.
The above mentioned gases may be blown-in individually, side by side, mixed, or consecutively. By blowing with commercially pure oxygen and nitrogen-free encasing or cooling gases, according to the method of the invention, nitrogen contents between 0.001 and 0.002% may be obtained. These values are below the minimal nitrogen contents obtainable by the oxygen-lance process.
The use of hydrocarbons as encasing or cooling gases results in a relatively high hydrogen content in the steel, especially if the volume of encasing gas is increased at the end of the blow. To this extent, the method according to the invention is particularly suitable for producing steels semi-killed by a relatively high hydrogen content, even if the content of other elements having an aflinity for oxygen is relatively high. If a steel of this kind is killed prior to pouring in the conventional manner, e.g. with about 0.3% of silicon, and is cast into ingots, then the ingots solidify like semi-killed steels because of the relatively high hydrogen content of the melt. In addition to the pouring advantages associated therewith, a high yield of about 93% is produced in rolling.
Another advantage of the high hydrogen content arising from the encasing gas surrounding the oxygen is that with a steel having an oxygen content of 0.08%, about half of the hydrogen is burned within the melt into steam (water vapour), thus adding a large amount of heat; This makes it possible to vary the bath temperature within wide limits by adjusting the ratios of oxygen to hydrocarbon encasing gas. However, a high-temperature melt permits a correspondingly high addition of scrap and thus a more economical operation. With the method according to the invention, the addition of scrap may be up to 35%, whereas in the traditional refining of basic Bessemer pigiron with an oxygen-enriched blast or the oxygen-lance process, the scrap content runs to only about 20%.
The method according to the invention may also be carried out by blowing-in streams of oxygen through a plurality of jets, the said streams being surrounded by different encasing gases. Moreover, for the purpose of homogenizing and cleaning the melt, certain jets may be supplied with an inert scavenging gas, for example argon, instead of oxygen and an encasing gas. A scavenging gas introduced in this way may also be used to reduce the hydrogen content, too high for certain qualities, resulting from a prior blowing with a hydrogen encasing gas.
The method of the invention is of special significance in the refining of pig-irons containing phosphorus; in this case, in contrast to the known oxygen-lance process, a
single slag having an iron content of only 10 to 15% may be used. Such low slagging of the iron, and the practically ejection-free refining process of the method according to the invention, result in a high metallic yield. Thus, for example, with a scrap addition of 30%, an iron yield of 92% was obtained in refining basic Bessemer pig-iron.
The low FeO contents of the slag, in comparison with the oxygen-lance process, has a particularly favourable elfect in refining alloy pig-irons by the method of the invention. For example, when refining a chromium-alloy pig-iron, a lower final carbon content can be obtained than by the oxygen-lance process, and even a lower proportion of the chromium contained in the iron is slagged.
The quiet course of the blow also permits better utilization of the converter since, in comparison with a bottomblown converter operated with oxygen-enriched air, may be increased by about 50%. In contrast to the oxygenlance process or conventional refining in a bottom-blown converter, the quiet blow is not disturbed even when the pig-iron is at a relatively low temperature or has a high silicon and manganese content. Another advantage of the quiet blow is that the mouth of the converter no longer builds up with steel and slag deposits. For these reasons, and due to the elimination of the slag change, the frequency of charges may be increased which results in, among other things, a highly economical process.
It is an essential constituent of the method according to the invention that the volume and type of encasing gas and the type of material used for the oxygen feed pipe are matched in such a manner that the nozzles wear away at approximately the same rate as the refractory compound of the converter bottom in which the said nozzles are embedded. At the same time, care must be taken to ensure that solid deposits on the mouths of the nozzles, which may build up from the melt to be refined, are avoided. Such a combination of encasing gas and oxygen feed-pipe material, by means of which the etfect according to the present invention may be obtained, consists in using about 3% by volume of propane (4%% by weight) as the encasing gas, related to the throughput of oxygen, and a 15% chromium steel for the oxygen feed pipe. If a copper pipe, for example, is used in place of the 15 chromium steel, the amount of propane must be reduced to about one-half, which leads to a substantial increase in the formation of brown smoke. Another combination consists, for example, in using about 10% of coke-oven gas as the encasing gas (approximate composition: 55% H 25% CH 10% CO, remainder inert gases) and an oxygen feed pipe of 15% chromium steel. By using a steel with about 25% of chromium and 2% of molybdenum, the percentage of coke-oven gas may be reduced by about but this again leads to increased formation of brown smoke If on the other hand, for example, 20% by volume of methane (10% by weight) or 10% by volume of propane (13.75% by weight) and a copper oxygen feed pipe are used, heavy deposits are formed within a short time on the nozzle mouths, which reduce the throughput of oxygen and result in a substantial lengthening of the refining time. Furthermore, while the scrap is being chargedin or during the blow, the deposits on the converter bottom may be so deformed by the lumps of scrap, already present in the bath, that the flow of gases is largely cut oif, which may endanger operational safety.
It has been found, surprisingly enough, that with extreme requirements for the suppression of brown smoke, higher proportions of reactive encasing gases may be used if these are admixed to an oxygen-containing gas, e.g. air.
On the other hand, there is no particular significance in the material used for the outer and encasing-gas pipe; simple steel pipes generally suflice. If the above mentioned conditions relating to the combination of nozzle material and encasing-gas proportions are adhered to, the life of the converter bottom with the method according to the invention is about 200 melts, whereas the bottom of the traditional bottom-blown converter has to be renewed after about 50 melts. Since the converter lining itself usually withstands 400 melts, only one bottom change is necessary with the method and converter according to the in vention. However, if by chance, for example due to nonuniform distribution of the encasing gas to individual nozzles, deposits are formed on the nozzle outlet openings, such deposits may, within the scope of the method according to the invention, be melted away by brief blowing with a mixture of nitrogen and oxygen, the oxygen content of which is preferably between 10 and 20%. If the oxygen content is kept to within 10 to 20%, the said deposits are usually removed within about one minute. This is preferably accomplished by after-blowing at the end of the refining time. If the nozzles are individually adjustable, the cleaning blow according to the invention may be restricted to those nozzles on which deposits are observed. The mixture is preferably blown through both the oxygen pipe and the encasing-gas pipe.
A quiet refining operation in the converter is of critical importance for the economics of the method. It was found, surprisingly enough, that quiet refining is greatly influenced by the number of nozzles in relation to the filling level of the converter. For reasons of economics, and for the simplest possible supervision of the process, it is naturally of interest to keep the number of nozzles as small as possible. The minimal number of nozzles and the maximal permissible nozzle diameter may be calculated from the following relationships.
The total nozzle area in cm. should correspond approximately to the weight of the pig-iron to be refined in tons. Moreover, the maximal nozzle diameter is determined by the height of the bath; it should amount, at the most to of the depth of the bath in the refining vessel. These data are valid for the oxygen pressure of about 5 to atm. normally used in refining, but are also approximately correct in other pressure ranges. By way of example, it may be stated here that the converter used had an average capacity of 30 t. and a. bath depth of 70 cm. This gives a maximal nozzle diameter for the oxygen feed pipe of mm.; the number of nozzles is then calculated from the overall nozzle area of 30 cm. as being 10.
Nozzles larger than those calculated from the foregoing relationships may be used if the axis of the nozzles is, rather than being perpendicular to the surface of the bath, is at a certain angle of inclination to the longitudinal axis of the converter, or is built into the wall of the converter parallel with the surface of the bath. If the nozzles are incorporated obliquely, e.g. at an angle of about 30 to the vertical arrangement, the maximal nozzle diameter may be increased by about 20%. If the nozzles are incorporated horizontally into the side wall of the converter, the nozzle diameter calculated in accordance with the above relationship may even be doubled. In this case, therefore, only 3 nozzles with a diameter of 36 mm. are needed for the oxygen feed pipe for a 30 t. melt.
The oxygen and the encasing gas may be blown-in at one or at two opposing locations in the converter bottom. This imparts to the melt a definite circulating movement, which is of considerable significance for the thorough mixing of the melt, in view of the small volume of gas as compared with the traditional bottom-blown converter. When blowing-in takes place on one side, the flow of metal above the nozzles is in an upward direction and, in the remainder of the converter, in a downward direction, whereas if the blowing-in is on two sides, the outside of the melt rises while the melt at the center of the converter flows downwards. The cooperation of the oxygen and the encasing gas with the circulating movement induced by the type of gas supply over the converter bottom leads to a rapid exchange of material, lower ironoxide contents in the slag, and thus to very low iron losses.
The method according to the invention is preferably carried out in a converter having the following characteristics. It has a pear-shaped steel casing with an inserted bottom and a refractory lining. The nozzles are located in the converter bottom, a substantial portion of which is free of nozzles. The result of this is that the melt rises in the nozzle region, sweeps partly through the layer of slag, and is drawn down again in the nozzle-free area of the bottom. The nozzles are preferably arranged entirely in one-half of the bottom, and may be arranged in groups so that a strong suction arises at the converter bottom. Satisfactory mixing of the gases introduced and the melt also leads to a sort of gas-lift efiect and thus to rapid rising of the melt above the nozzles. The distance between individual groups of nozzles is preferably selected in such a manner that the funnel-shaped upward currents intersect to some extent just below the surface of the bath, thus ensuring near the surface of the melt a uniform distribution of gases which contributes to a reduction in ejection;
Special advantages are obtained when all of the nozzles on the diameter of the bottom lie parallel with the tilting axis of the converter. A converter of this kind, in which the nozzles are arranged along a central strip on the bottom, may be made rotationally symmetrical with its longitudinal axis, the rows of nozzles terminating at a distance from the side walls of the converter which is dependent, in the individual case, upon the number of nozzles. The rotationally symmetrical converter with a row of nozzles lying, for example, parallel with the axis of rotation (tilting axis) and along the diameter, makes it possible to tilt the converter in both directions. In this way, slag may be removed by tilting in one direction, while the melt may be tapped by tilting in the other direction. During the tilting, gas is fed continuously through the nozzles to prevent them from becoming blocked and, above all, to prevent them from coming into contact with the steel and the highly aggressive slag.
If the nozzles are arranged obliquely, it then becomes possible, with the method to remove the refining slag by means of jets of gas impinging obliquely on the surface of the bath when the converter is in the horizontal position. Slag removal may then be effected by means of hot gases, for example, the combustible gases of an oxygen/ hydrocarbon-gas mixture which forms at the outlet apertures of the nozzles when the oxygen is blown through the inside pipe and hydrocarbon gas through the outside pipe.
For the purpose of slag removal, the converter need merely be tilted beyond the horizontal position, so that the level of the bath is at an acute angle to the longitudinal axis of the converter and to the jet of gas issuing from the nozzles. The degree of tilt is determined in the individual case by the curvature of the converter lining or casing and, is greater in the case of a non-rotationally symmetrical converter than in the case of a rotationally symmetrical converter.
Particularly satisfactory slag removal conditions are obtained if the longitudinal axes of some or all of the nozzles are at an angle to the longitudinal axis of the converter so that the emerging jets of gas impinge upon the slag cover or bath surface at an acute angle when the rotationally symmetrical converter is in the horizontal position. Individual nozzles among those arranged along a central strip may be inclined, or several nozzles with inclined axes may be located in one half of the bottom. The said nozzles may also be inclined at different angles. Tests have shown that the nozzles may, with advantage, be inclined in such a manner that their longitudinal axes intersect in the upper part of the converter with the 1ongitudinal axis thereof, so that, when the converter is on its side, the gas jets impinge on the slag or on the surface of the bath approximately between the center of the bath surface and the mouth of the converter. If only a few nozzles are inclined in relation to the longitudinal axis of the converter, these nozzles may have a separate gas connection, so that they may be supplied with gas independ ently of the other nozzles. The slag-removal nozzles arranged at an angle to the longitudinal axis of the converter may also be operated at a pressure which is substantially higher than the gas pressure during refining and which may amount, for example, to 60 atm., whereas the gas pressure for refining is only 6 atm. If the nozzles are at different angles of inclination, this produces a more or less widely fanned-out jet which, at a correspondingly high pressure, provides effortless and rapid slag removal.
Commercially pure oxygen is generally used for the execution of the method. At 99.7% purity, and with nitrogen-free encasing gases, nitrogen contents of less than 0.002% are obtained in the finished steel. However, a higher nitrogen content is required for certain qualities of steel. In contrast to the oxygen-lance process, the method according to the invention offers the advantage of producing higher nitrogen contents in the steel by mixing nitrogen with the oxygen. The simplest way of doing this, of course, is to mix air with the oxygen. If, for example, nitrogen contents between 0.008 and 0.10% are required in the liquid steel, this can be obtained with 4% of nitrogen in the oxygen. It is also within the scope of the present invention to add the additional nitrogen only towards the end of the refining, approximately during the last /3 of the process. The increase in nitrogen may also be obtained by using ammonia as the encasing gas.
The invention is explained in greater detail hereinafter with the aid of practical examples illustrating preferred embodiments. In the drawings:
FIG. 1 is a plan view of a horizontally sectioned converter with an example of the construction of a converter bottom according to the invention;
FIG. 2 is a vertical section through the converter in FIG. 1, along the line IIII;
FIGS. 3 to 6 are converter bottoms with differently arranged nozzles;
FIG. 7 shows nozzles according to the invention for oxygen and encasing or cooling gas, on an enlarged scale incorporating a non-return valve;
FIG. 8 is a vertical longitudinal section through a rotationally symmetrical converter according to the invention;
FIG. 9 is a horizontal section along the line XX in FIG. 8;
FIG. 10 shows a converter according to the invention with nozzles inclined to the longitudinal axis of the converter;
FIG. 11 shows a converter, with a plurality of nozzles at different angles, in the tilted position during slag removal;
FIG. 12 is an enlarged representation of a nozzle according to the invention with a wire spiral used as a spacer between the nozzle pipes;
FIG. 13 is a cross-section through a nozzle according to the invention with spacer ribs;
FIG. 14 is a cross-section of a nozzle according to the invention with porous refractory material in the annular space between the two nozzle pipes;
FIG. 15 is a schematic illustration of a converter according to the invention, having a common oxygen line for the oxygen pipes and individual connections for the encasing-gas pipes.
The converter according to the invention (FIG. 2) consists of the usual steel casing 1 having a refractory lining 2 and a refractory bottom 3 on a bottom plate 13. The one-sided arrangement of nozzles 4 in bottom 3 has the advantage that when the converter is tilted to the right in the drawingfor charging, the nozzles are not damaged and the scrap can be accommodated in the nozle-free half of the bottom. Moreover, when the converter is on its side, it can be filled up to the level of the first row of nozzles. Finally, and again when the converter is on its side, the scrap in the lower, nozzle-free half of the converter may be pre-heated by introducing oxygen and hydrocarbon through nozzles 4, as in an open-hearth furnace. When the converter is on its side, the nozzles are protected from melting by the introduction of a gas, preferably an inert gas.
In the converter according to the invention, the bottom half provided with nozzles 4 may also be made interchangeable, while the other half of the bottom is a fixed part of the lining.
The nozzles may also be arranged in circular or triangular groups (FIGS. 3, 4) in several rows of two (FIG. 6) or may also be distributed uniformly over one half of the bottom (FIG. 5). The relatively great distance between individual nozzles or groups of nozzles results in a nozzle-free space in the converter bottom, allowing unimpeded access of the metal to the nozzles and to the gas/metal jets forming above the nozzles. The nozzles (FIG. 7) consist of an internal pipe 6 for oxygen and a concentric external pipe 7 for the encasing or cooling gas. The pipe ends projecting from the converter bottom carry a T-shaped connecting piece 8 with an adaptor 9 for the encasing or cooling gas and a connection 11 for the oxygen.
The converter illustrated in FIG. 8 is rotationally symmetrical in relation to the longitudinal axis 12 of the converter and also consists of a steel-plate casing 1 and a refractory lining 2. Inserted into the converter 1, 2, and resting upon a bottom plate 13, is a bottom 3 of refractory material, for example burned coal-tar dolomite. The converter bottom 3 has a plurality of nozzles 4 arranged in a row along bottom diameter 15 and parallel with the tilting axis (not shown) of the converter. Nozzles 4 consist of an external pipe 7 and a concentric internal pipe 6 which are connected to a gasline for the encasing gas 19 and a common oxygen line 21.
The refining of pig-iron with the converter shown in FIGS. 8, 9 is accomplished by blowing pure oxygen through internal pipe 6, and an encasing gas, for example propane, through external pipe 7 into the converter which is approximately half full of pig-iron. The hydrocarbon gas acts as an encasing gas and prevents rapid melting away of the nozzles mouths and thus premature wear of converter bottom 3. When the refining slag resulting from the oxidation products and the additives is to be removed, the converter is tilted out of the position shown in FIG. 8 to beyond the horizontal, so that the level of the bath, as shown in FIG. 11 for another converter, is at an acute angle to the longitudinal axis 12 of the converter. During the tilting, blowing with oxygen and propane is continued in order to prevent damage to nozzles 4 by the melt of the slag.
Since hydrocarbons are gases which burn with a high development of heat, a very hot flame is produced. In accordance with the arrangement of the nozzles, a widely fanned-out jet of gas is produced which, at the high blow ing pressure, forces the slag from the surface of the bath to the mouth of the converter. The high temperature of the jet of combustion gas produces a very liquid slag which easily runs out of the converter.
The example illustrated in FIG. contains a plurality of nozzles 4 in converter bottom 3, these nozzles being at an angle to the longitudinal axis 12 of the converter. A main advantage of these inclined nozzles 4 is that they produce a relatively deeply staggered jet of combustion gas during slag removal in the tilted position, which, as shown in FIG. 11, moves the slag towards the mouth of the converter and then out of the converter. However, in addition to nozzles 4 running at an angle to the axis of the converter, but parallel with each other, the converter bottom 3 may also contain a plurality of nozzles running parallel with the longitudinal axis 12 of the converter. In this case, however, it is advisable to provide the inclined nozzles with their own gas connections, in order to be able to vary the pressure, and if necessary the type, of the gases issuing from the inclined nozzles independently of the other nozzles.
Another improvement in slag removal is obtained if the inclined nozzles do not run parallel with each other, but are at different angles to longitudinal axis 12 of the converter. In this case, the jets of gas, issuing from individual nozzles 4, cover most of the slag and bath surfaces in the tilted position according to FIG. 11, so that the slag may be very quickly removed from the converter. Individual adjustment of individual nozzles, or rows of nozzles, allows very rapid slag removal without any assistance from mechanical means. Furthermore, the converter is in a tilted position in which, as may be seen in FIG. 11, there is no longer any danger of steel running out of the converter with the slag, whereas in removing the slag from the traditional converter, the said converter must be tilted until the level of the bath reaches at least the upper edge of the lower part of the converter mouth, if the slag is to be poured off the surface of the bath as far as possible under the influence of gravity. In this way, considerable steel losses cannot be avoided.
As already mentioned in connection with FIG. 7, the nozzles consist of an internal pipe 6 for oxygen and an external pipe 7 for encasing gas. Located between the tWo pipes 6, 7 is a wire spiral which maintains a constant annular space 26 between the two pipes 6 and 7 (FIG. 12). The said wire spirals also cause the encasing or cooling gas to enclose the oxygen jet, closely and uniformly, when it leaves oxygen pipe 6, since the said wire spirals 25 impart a twist to the said encasing gas. Instead of a separate wire spiral 25, encasing-gas pipe 7 may also be provided with internal ribs 27 acting as spacers (FIG. 13).
The annular space 26 between the oxygen pipe and the encasing gas-pipe may also be filled, as shown in FIG. 14, with a porous material 28, for example, a porous sintered metal or a refractory substance.
For the purpose of increasing operational safety and preventing the entry of oxygen into the encasing-gas systern in the event of one or more oxygen pipes becoming blocked, a non-return valve (FIGS. 7, 15) is located in line 19 to encasing-gas pipe 7. This non-return valve is set to a specific pressure at which it closes immediately. While the oxygen pipes are generally connected to a common oxygen line, the encasing-gas pipes preferably have their own supply lines with flow meters gen pipes were made of a steel consisting of 18% chromium, 10% nickel, and the remainder mainly iron. The wall thickness was about 1 mm. This left a concentric annular gap of about 1 mm. between the internal and external pipe for the introduction of the propane. The encasing-gas pipe was a steel pipe having a wall thickness of about 2 mm. The encasing-gas pipes were connected to a nitrogen line, a propane line, and an air line.
6 tons of scrap and then 21 tons of liquid basic Bessemer pig-iron at 1250 C. and with the following analysis were charged into the converter in the tilted position:
3.5% carbon 0.6% silicon 1.7% phosphorus 1.0% manganese 0.50% sulphur Remainder mainly iron.
During charging, both nozzle tubes were supplied with atmospheric air at 3 atm.
After charging, the air supply was shut off and propane was fed to the encasing-gas pipe and oxygen to the oxygen pipe. After the propane had ignited, the converter was returned to the vertical position and 3 t. of lime were added. The volume of propane gas amounted to Nm. /h. and the volume of oxygen to 4000 Nrn. /h. (i.e. about 5.84% by weight of the oxygen). After about 10 minutes, an additional 2 t. of scrap were charged from above into the blowing converter. The volume of oxygen was then increased to 5000 NmP/h. while the volume of propane gas was kept constant (i.e. about 4.7% by weight of the oxygen). During the entire blowing time, the converter blew quietly without developing any appreciable noise and without ejection. After about 17 minutes of blowing time, the converter was tilted and at the same time the internal pipe was charged with air, while nitrogen was fed to the external pipe. On the basis of a chemical analysis of a sample, the converter, as described above, was tilted back up again and was after-blown for about 60 seconds, in order to obtain the desired steel composition. The converter was then tilted to the horizontal again and the slag was removed. The composition of the slag was as follows:
Percent Fe (in the form of FeO) 14 CaO 45 P 0 16 MnO, SiO Remainder The steel was tapped at 1620" C. and analyzed as follows:
The advantages of the method according to the invention, as compared with the known oxygen-lance process, are the substantially lower iron-oxide content of the slag, which therefore attacks the converter lining less, resulting in a longer life for the lining. In spite of the low FeO content of the slag, very good de-phosphorizing is obtained, as shown by the foregoing analysis. As a result of optimal utilization of the oxygen introduced into the melt, blowing times are short, the blow is quiet in spite of the high proportion of scrap, and production is therefore increased. Finally, because of the quiet blow, the method according to the invention is almost independent of the pig-iron composition, whereas the known oxygen-lance process requires a pig-iron analysis held within narrow limits and thus the use of pig-iron mixers to equalize fluctuations in analysis.
1 1 We claim: 1. A method of refining molten metal in a refractory lined vessel comprising:
introducing at least one stream of oxygen through at least one injector extending through the refractory lining of said vessel and having an opening communicating with the interior of the vessel beneath the surface of the molten metal and terminating at the exposed surface of the refractory lining; protecting said injector and said refractory lining during introduction of oxygen into the molten metal while maintaining the opening of each such injector substantially unobstructed for the flow of fluid therefrom into the vessel by surrounding each such oxygen stream with a protective fluid containing hydrocarbon in an effective amount up to about 5.8% by weight of the oxygen in each such oxygen stream;
and blowing the oxygen and the protective fluid in such relative amounts within the aforesaid proportions that each such injector means is consumed at a rate substantially the same as the refractory lining of said vessel.
2. A method as defined in claim 1, in which the protective fluid is a combustible gas mixed with a gas containing oxygen.
3. A method as defined in claim 1, in which several different protective fluids are blownin consecutively during the refining.
4. A method according to claim 1, in which the blowing pressure of the protective fluid is 20 to 50% less than the blowing pressure of the oxygen.
5. A method according to claim 1, in which the ratio of oxygen to protective fluid varies during the refining.
6. A method as defined in claim 1, in which deposits forming on the nozzles during refining are melted away by blowing with an oxygen/nitrogen mixture containing from to of oxygen.
7. The method of claim 1 wherein the injector means is located in the bottom of the refining vessel.
8. The method of claim 1 wherein the protective fluid is a hydrocarbon gas.
9. The process of claim 1 wherein the metal being refined is molten pig iron and the protective fluid comprises propane.
10. The process of claim 1 wherein the hydrocarbon containing protective fluid is a gas selected from the group consisting of methane, propane, butane, natural gas, coke oven gas and mixtures thereof.
11. The process of claim 1 wherein the oxygen stream is introduced at a pressure between about 5 and 10 atmospheres.
12. The process as defined in claim 1 in which the protective fluid surrounds the oxygen stream in the form of a stream of uniform thickness.
13. The process of claim 1 in which the protective fluid is a liquid which vaporizes when injected into the metal.
14. The process of claim 13 in which the protective fluid is a light oil.
' 15. A method as defined in claim 9, in which the protective fluid is 3% by volume of propane based on the volume of the oxygen, and the oxygen feed pipe is made of a steel having 15% of chromium.
16. The process of claim 9 in which the volume of propane is 3% 0f the volume of oxygen.
References Cited UNITED STATES PATENTS 1,968,917 8/1934 ,Soldatof't' 7560 2,203,778 6/ 1940 Ditto 7560 2,529,387 11/1950 Haglund 7560 2,562,813 7/ 195 1 Ogorzaly et a1 7559 X 3,112,194 11/1963 De Vries 7559 X 3,427,151 2/ 1969 Koudelka et al. 7559 2,333,654 11/1943 Lellep 75-60 2,855,293 10/ 195 8 Savard et al 7560 3,330,645 7/ 1967 De Moustier et al 7560 FOREIGN PATENTS 745,047 2/ 1956 Great Britain 7560 882,676 11/ 1961 Great Britain 755 9 952,507 3/ 1964 Great Britain 75 985,586 3/1965 Great Britain 60 1,450,718 7 1966 France 7560 L. DEWAYNE RUTLEDGE, Primary Examiner G. K. WHITE, Assistant Examiner U.S. Cl. X.R. 7559; 266-35
US800892A 1968-02-24 1969-02-20 Method for refining pig-iron into steel Expired - Lifetime US3706549A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US05/153,277 US3938790A (en) 1969-02-20 1971-06-15 Method and converter for refining pig-iron into steel
US05/315,377 US3932172A (en) 1969-02-20 1972-12-15 Method and converter for refining pig-iron into steel

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE1583968 1968-02-24
DE1758816 1968-08-13
DE19691901563 DE1901563A1 (en) 1968-08-13 1969-01-14 Process for refining pig iron to steel
DE19691904382 DE1904382A1 (en) 1968-02-24 1969-01-30 Process and converter for refining pig iron
DE19691904383 DE1904383C3 (en) 1968-02-24 1969-01-30 Bottom-blowing converter for refining pig iron to steel

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US05/153,277 Division US3938790A (en) 1969-02-20 1971-06-15 Method and converter for refining pig-iron into steel
US05/315,377 Division US3932172A (en) 1969-02-20 1972-12-15 Method and converter for refining pig-iron into steel

Publications (1)

Publication Number Publication Date
US3706549A true US3706549A (en) 1972-12-19

Family

ID=27509900

Family Applications (1)

Application Number Title Priority Date Filing Date
US800892A Expired - Lifetime US3706549A (en) 1968-02-24 1969-02-20 Method for refining pig-iron into steel

Country Status (10)

Country Link
US (1) US3706549A (en)
AT (1) AT315216B (en)
BE (1) BE728859A (en)
CA (1) CA934165A (en)
DD (2) DD122105A5 (en)
FR (1) FR2002577A1 (en)
GB (1) GB1253581A (en)
LU (1) LU58073A1 (en)
NL (1) NL155051B (en)
SE (1) SE355197B (en)

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779534A (en) * 1969-07-08 1973-12-18 Creusot Loire Device for cooling a tuyere of a refining converter
US3791814A (en) * 1972-02-22 1974-02-12 Centre Rech Metallurgique Process for oxygen refining of pig iron
US3796421A (en) * 1970-02-18 1974-03-12 Maximilianshuette Eisenwerk Process for producing chrome steels and a converter for carrying out the process
US3796420A (en) * 1972-03-30 1974-03-12 Pennsylvania Engineering Corp Steel conversion apparatus
US3801084A (en) * 1971-09-21 1974-04-02 Creusot Loire Process for the protection of a tuyere of a refining converter
US3802685A (en) * 1972-08-29 1974-04-09 Steel Corp Q-bop vessel construction
US3802681A (en) * 1971-04-10 1974-04-09 Messer Griesheim Gmbh Self-cooling lance for oxygen blowing
US3802684A (en) * 1972-08-29 1974-04-09 Steel Corp Tuyere construction
US3804393A (en) * 1971-08-09 1974-04-16 Pennsylvania Engineering Corp Steel conversion apparatus
US3817505A (en) * 1971-07-29 1974-06-18 Creusot Loire Device for injecting fluids in tuyeres with separate multiple feeds
US3819164A (en) * 1972-10-13 1974-06-25 Sydney Steel Corp Operation of a blast furnace
US3819165A (en) * 1972-12-08 1974-06-25 Maximilianshuette Eisenwerk Device for blowing-in oxygen through the refractory lining of a metallurgical converter
US3823931A (en) * 1972-10-25 1974-07-16 Sydney Steel Corp Tapping of a blast furnace
US3839017A (en) * 1972-01-04 1974-10-01 Pennsylvania Engineering Corp Apparatus and method for converting impure ferrous metal to steel
US3841617A (en) * 1972-08-18 1974-10-15 Pennsylvania Engineering Corp Adjustable tuyere for metallurgical vessels
US3844768A (en) * 1971-05-28 1974-10-29 Creusot Loire Process for refining alloy steels containing chromium and including stainless steels
US3852062A (en) * 1971-12-09 1974-12-03 Maximilianshuette Eisenwerk Process and a device for even distribution and alternating supply of liquid and gaseous protective media for the refining gas tuyeres of a converter
US3851866A (en) * 1971-12-09 1974-12-03 H Knuppel Process and a device for even distribution and alternating supply of liquid and gaseous protective media for the refining gas tuyeres of a converter
US3856510A (en) * 1972-04-14 1974-12-24 Maximilianshuette Eisenwerk Pig iron refining process
US3859078A (en) * 1972-10-30 1975-01-07 Sydney Steel Corp Method of operating a basic open hearth furnace
US3861888A (en) * 1973-06-28 1975-01-21 Union Carbide Corp Use of CO{HD 2 {B in argon-oxygen refining of molten metal
US3865579A (en) * 1970-01-05 1975-02-11 Koppers Co Inc Method and apparatus for the production of steel
US3867135A (en) * 1971-10-06 1975-02-18 Uddeholms Ab Metallurgical process
US3867136A (en) * 1972-10-06 1975-02-18 Uddeholms Ab Decarburisation of chromium containing iron, cobalt or nickel based alloys
US3868096A (en) * 1973-06-21 1975-02-25 Pennsylvania Engineering Corp Tuyere support means for metallurgical vessels
US3873074A (en) * 1973-03-26 1975-03-25 Berry Metal Co Converter-bottom for bottom-blow steel making process
US3873073A (en) * 1973-06-25 1975-03-25 Pennsylvania Engineering Corp Apparatus for processing molten metal
US3891429A (en) * 1973-06-07 1975-06-24 Koppers Co Inc Method for selective decarburization of alloy steels
US3895785A (en) * 1972-08-01 1975-07-22 United States Steel Corp Method and apparatus for controlling the operation of a steel refining converter
US3897048A (en) * 1973-06-15 1975-07-29 Pennsylvania Engineering Corp Metallurgical vessel and method of operating same
US3898079A (en) * 1972-10-06 1975-08-05 Uddeholms Ab Refining of stainless steels
US3898077A (en) * 1972-01-05 1975-08-05 Maximilianshuette Eisenwerk Process for refining metal melts
US3898078A (en) * 1973-03-29 1975-08-05 Youngstown Sheet And Tube Co Method and apparatus for injecting refining oxygen in steelmaking processes
US3900311A (en) * 1971-11-03 1975-08-19 Centre Rech Metallurgique Conversion of pig iron into steel
US3902889A (en) * 1972-11-30 1975-09-02 United States Steel Corp Electric arc melting furnace
US3905589A (en) * 1972-03-27 1975-09-16 Pennsylvania Engineering Corp Steel production method and apparatus
US3907549A (en) * 1972-08-29 1975-09-23 United States Steel Corp Method of refining in improved Q-BOP vessel
US3909245A (en) * 1973-03-30 1975-09-30 Maximilianshuette Eisenwerk Process for lowering the iron content in nickel melts
US3908969A (en) * 1971-12-20 1975-09-30 Pennsylvania Engineering Corp Method and apparatus for air pollution control combined with safe recovery and control of gases from a bottom-blown steel converter vessel
US3912243A (en) * 1973-04-04 1975-10-14 Berry Metal Co Apparatus and process for refining hot metal to steel
US3920447A (en) * 1972-02-28 1975-11-18 Pennsylvania Engineering Corp Steel production method
US3926619A (en) * 1973-07-10 1975-12-16 Centre Rech Metallurgique Refining process
US3929458A (en) * 1973-02-07 1975-12-30 Creusot Loire Process for the elaboration of chrome steels
US3930843A (en) * 1974-08-30 1976-01-06 United States Steel Corporation Method for increasing metallic yield in bottom blown processes
DE2538159A1 (en) * 1974-08-30 1976-03-11 Uss Eng & Consult METHOD OF REFRESHING BIG IRON
US3945820A (en) * 1973-03-03 1976-03-23 Eisenwerk-Gesellschaft Maximilianshutte Mbh Process and immersion lances for introducing oxygen into a metal melt
US3951643A (en) * 1973-02-26 1976-04-20 Pennsylvania Engineering Corporation Steel production method
US3953199A (en) * 1973-02-12 1976-04-27 Vereinigte Osterreichische Eisenund Stahlwerke Process for refining pig iron
US3955965A (en) * 1973-04-04 1976-05-11 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Refining metals
US3982927A (en) * 1974-11-13 1976-09-28 Creusot-Loire Method of blowing to obtain a very low amount of carbon in chrome steels
US3985550A (en) * 1975-01-23 1976-10-12 United States Steel Corporation Method of producing low sulfur steel
US3990890A (en) * 1972-05-17 1976-11-09 Creusot-Loire Process for refining molten copper matte with an enriched oxygen blow
US3992194A (en) * 1974-04-11 1976-11-16 Creusot-Loire Method and apparatus for use in the treatment of metals in the liquid state
US4002467A (en) * 1974-01-30 1977-01-11 Verfahrenstechnik Dr.-Ing. Kurt Baum Method for recovering reaction gases from steel converters which are bottom blown with oxygen and cooled with hydrocarbons
US4004920A (en) * 1975-05-05 1977-01-25 United States Steel Corporation Method of producing low nitrogen steel
US4045215A (en) * 1973-07-16 1977-08-30 Creusot-Loire Method of refining mattes containing nickel
US4047707A (en) * 1972-10-03 1977-09-13 Eisenwerk-Gesellschaft Maximilianshutte Mbh Process and converter for refining liquid metals
US4050681A (en) * 1973-05-25 1977-09-27 Eisenwerk-Gesellschaft Maximilianshutte Mbh Apparatus for the controlled feeding of a refining gas and of a fluid protective medium
US4052197A (en) * 1975-02-25 1977-10-04 Stahlwerke Peine-Salzgitter Ag Process for making steel from pig iron
US4081268A (en) * 1976-04-28 1978-03-28 Creusot-Loire Method of protecting tuyeres for upwardly blowing pure oxygen through the bottom of steel converters
US4097028A (en) * 1975-02-06 1978-06-27 Klockner-Werke Ag Method of melting and apparatus therefor
US4123259A (en) * 1977-05-20 1978-10-31 Eisenwerk-Gesellschaft Maximilianshutte Mbh Method for supplying thermal energy to steel melts
US4138098A (en) * 1975-08-14 1979-02-06 Creusot-Loire Method of blowing smelting shaft furnaces and tuyeres used for said blowing
US4139368A (en) * 1977-10-11 1979-02-13 Pennsylvania Engineering Corporation Metallurgical method
US4149878A (en) * 1977-01-11 1979-04-17 Union Carbide Corporation Use of argon to prepare low-carbon steels by the basic oxygen process
US4165980A (en) * 1972-01-13 1979-08-28 Gfe Gesellschaft Fur Elektrometallurgie Mit Beschrankter Haftung Method of rapidly decarburizing ferro- alloys with oxygen
US4174212A (en) * 1978-03-10 1979-11-13 A. Finkl & Sons Co. Method for the refining of steel
US4178173A (en) * 1977-08-22 1979-12-11 Fried. Krupp Huttenwerke Aktiengesellschaft Process for producing stainless steels
US4192675A (en) * 1978-01-17 1980-03-11 S.A. Manganese Amcor Ltd. Process for decarburizing ferro-manganese
US4196159A (en) * 1973-03-07 1980-04-01 Eisenwerk-Gesellschaft Maximilianshutte Mbh. Process for increasing the life of the refractory masonry of metallurgical vessels
US4198230A (en) * 1977-05-04 1980-04-15 Eisenwerk-Gesellschaft Maximilianshutte Mbh Steelmaking process
US4208206A (en) * 1977-03-31 1980-06-17 Union Carbide Corporation Method for producing improved metal castings by pneumatically refining the melt
US4225341A (en) * 1978-03-29 1980-09-30 Centre De Recherches Metallurgiques-Centrum Voor Research In De Metallurgie Refining iron in a converter
US4248409A (en) * 1978-10-16 1981-02-03 Mannesmann Demag A.G. Wolfgang-Reuter-Platz Steel furnace nozzle arrangement
US4249719A (en) * 1974-08-08 1981-02-10 Eisenwerk-Gesellschaft Maximilianshutte Mbh Tuyere for the injection of reaction gas
US4261551A (en) * 1978-06-13 1981-04-14 Eisenwerk-Gesellschaft Maximilianshutte Mbh. Method and means for supplying nozzles with gaseous and/or liquid hydrocarbons
FR2515211A1 (en) * 1981-10-26 1983-04-29 Nippon Steel Corp PROCESS FOR REFINING METAL
US4382817A (en) * 1980-01-02 1983-05-10 Institute De Recherches De La Siderurgie Francaise Process for periodically and pneumatically stirring a bath of molten metal
JPS58147509A (en) * 1982-02-26 1983-09-02 Kawasaki Steel Corp Refining method of stainless steel
US4405366A (en) * 1979-06-20 1983-09-20 Klockner-Humboldt-Deutz Ag Method and device for generating a convective reaction system between a reaction agent and a molten bath
US4780133A (en) * 1986-11-10 1988-10-25 Lazcano Navarro Arturo Process to improve the refining of liquid metals by natural gas injection
EP0644269A1 (en) * 1993-09-21 1995-03-22 The Gas Research Institute Process for controlling the forming of an accretion on an oxy-fuel tuyere
US5413623A (en) * 1992-08-26 1995-05-09 Nippon Steel Corporation Process and apparatus for vacuum degassing molten steel
US5444733A (en) * 1993-05-17 1995-08-22 Danieli & C. Officine Meccaniche Spa Electric arc furnace with alternative sources of energy and operating method for such electric furnace
US5615626A (en) * 1994-10-05 1997-04-01 Ausmelt Limited Processing of municipal and other wastes
US5866095A (en) * 1991-07-29 1999-02-02 Molten Metal Technology, Inc. Method and system of formation and oxidation of dissolved atomic constitutents in a molten bath
US6066771A (en) * 1993-04-06 2000-05-23 Ausmelt Limited Smelting of carbon-containing material
US6461404B1 (en) * 1999-05-31 2002-10-08 Mcmaster University Ladle for enhanced steel vacuum decarburization
US6923843B1 (en) 2001-11-13 2005-08-02 Nupro Corporation Method for oxygen injection in metallurgical process requiring variable oxygen feed rate

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1277083A (en) * 1968-06-25 1972-06-07 Columbia Gas Syst Improvements in method for refining solid ferrous metal to steel
LU60723A1 (en) * 1969-04-16 1970-06-15
BE752893A (en) * 1969-07-08 1970-12-16 Forges De La Loire St Chamond METHOD AND DEVICE FOR COOLING A REFINING CONVERTER TUBE
BE735889A (en) * 1969-07-09 1970-01-09
BE741203A (en) * 1969-11-03 1970-05-04
IT944546B (en) * 1969-12-27 1973-04-20 Maximilianshuette Eisenwerk PROCEDURE AND CONVERTER TO TRANSFORM CAST IRON IN STEEL BY REFINING
BE747966A (en) * 1970-03-25 1970-09-25 Centre Rech Metallurgique IMPROVEMENTS IN CAST IRON REFINING PROCESSES AND DEVICES.
LU62356A1 (en) * 1971-01-04 1972-08-23
MX5384E (en) * 1977-03-31 1983-07-04 Union Carbide Corp IMPROVED METHOD FOR PRODUCING METALLIC FOUNDRIES FROM A PNEUMATICALLY REFINED METAL
EP0045658A1 (en) * 1980-08-06 1982-02-10 British Steel Corporation Gas inlet orifice monitoring
US4436287A (en) * 1982-07-12 1984-03-13 Kawasaki Steel Corporation Method for protecting tuyeres for refining a molten iron
GB9307606D0 (en) * 1993-04-13 1993-06-02 Sanderson Kayser Limited Improvements relating to reaction chambers

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779534A (en) * 1969-07-08 1973-12-18 Creusot Loire Device for cooling a tuyere of a refining converter
US3865579A (en) * 1970-01-05 1975-02-11 Koppers Co Inc Method and apparatus for the production of steel
US3796421A (en) * 1970-02-18 1974-03-12 Maximilianshuette Eisenwerk Process for producing chrome steels and a converter for carrying out the process
US3802681A (en) * 1971-04-10 1974-04-09 Messer Griesheim Gmbh Self-cooling lance for oxygen blowing
US3844768A (en) * 1971-05-28 1974-10-29 Creusot Loire Process for refining alloy steels containing chromium and including stainless steels
US3817505A (en) * 1971-07-29 1974-06-18 Creusot Loire Device for injecting fluids in tuyeres with separate multiple feeds
US3804393A (en) * 1971-08-09 1974-04-16 Pennsylvania Engineering Corp Steel conversion apparatus
US3801084A (en) * 1971-09-21 1974-04-02 Creusot Loire Process for the protection of a tuyere of a refining converter
US3867135A (en) * 1971-10-06 1975-02-18 Uddeholms Ab Metallurgical process
US3900311A (en) * 1971-11-03 1975-08-19 Centre Rech Metallurgique Conversion of pig iron into steel
US3851866A (en) * 1971-12-09 1974-12-03 H Knuppel Process and a device for even distribution and alternating supply of liquid and gaseous protective media for the refining gas tuyeres of a converter
US3852062A (en) * 1971-12-09 1974-12-03 Maximilianshuette Eisenwerk Process and a device for even distribution and alternating supply of liquid and gaseous protective media for the refining gas tuyeres of a converter
US3908969A (en) * 1971-12-20 1975-09-30 Pennsylvania Engineering Corp Method and apparatus for air pollution control combined with safe recovery and control of gases from a bottom-blown steel converter vessel
US3839017A (en) * 1972-01-04 1974-10-01 Pennsylvania Engineering Corp Apparatus and method for converting impure ferrous metal to steel
US3898077A (en) * 1972-01-05 1975-08-05 Maximilianshuette Eisenwerk Process for refining metal melts
US4165980A (en) * 1972-01-13 1979-08-28 Gfe Gesellschaft Fur Elektrometallurgie Mit Beschrankter Haftung Method of rapidly decarburizing ferro- alloys with oxygen
US3791814A (en) * 1972-02-22 1974-02-12 Centre Rech Metallurgique Process for oxygen refining of pig iron
US3920447A (en) * 1972-02-28 1975-11-18 Pennsylvania Engineering Corp Steel production method
US3905589A (en) * 1972-03-27 1975-09-16 Pennsylvania Engineering Corp Steel production method and apparatus
US3796420A (en) * 1972-03-30 1974-03-12 Pennsylvania Engineering Corp Steel conversion apparatus
US3856510A (en) * 1972-04-14 1974-12-24 Maximilianshuette Eisenwerk Pig iron refining process
US3990890A (en) * 1972-05-17 1976-11-09 Creusot-Loire Process for refining molten copper matte with an enriched oxygen blow
US3895785A (en) * 1972-08-01 1975-07-22 United States Steel Corp Method and apparatus for controlling the operation of a steel refining converter
US3841617A (en) * 1972-08-18 1974-10-15 Pennsylvania Engineering Corp Adjustable tuyere for metallurgical vessels
US3802684A (en) * 1972-08-29 1974-04-09 Steel Corp Tuyere construction
US3802685A (en) * 1972-08-29 1974-04-09 Steel Corp Q-bop vessel construction
US3907549A (en) * 1972-08-29 1975-09-23 United States Steel Corp Method of refining in improved Q-BOP vessel
US4047707A (en) * 1972-10-03 1977-09-13 Eisenwerk-Gesellschaft Maximilianshutte Mbh Process and converter for refining liquid metals
US3867136A (en) * 1972-10-06 1975-02-18 Uddeholms Ab Decarburisation of chromium containing iron, cobalt or nickel based alloys
US3898079A (en) * 1972-10-06 1975-08-05 Uddeholms Ab Refining of stainless steels
US3819164A (en) * 1972-10-13 1974-06-25 Sydney Steel Corp Operation of a blast furnace
US3823931A (en) * 1972-10-25 1974-07-16 Sydney Steel Corp Tapping of a blast furnace
US3859078A (en) * 1972-10-30 1975-01-07 Sydney Steel Corp Method of operating a basic open hearth furnace
US3902889A (en) * 1972-11-30 1975-09-02 United States Steel Corp Electric arc melting furnace
US3819165A (en) * 1972-12-08 1974-06-25 Maximilianshuette Eisenwerk Device for blowing-in oxygen through the refractory lining of a metallurgical converter
US3929458A (en) * 1973-02-07 1975-12-30 Creusot Loire Process for the elaboration of chrome steels
US3953199A (en) * 1973-02-12 1976-04-27 Vereinigte Osterreichische Eisenund Stahlwerke Process for refining pig iron
US3951643A (en) * 1973-02-26 1976-04-20 Pennsylvania Engineering Corporation Steel production method
US3945820A (en) * 1973-03-03 1976-03-23 Eisenwerk-Gesellschaft Maximilianshutte Mbh Process and immersion lances for introducing oxygen into a metal melt
US4196159A (en) * 1973-03-07 1980-04-01 Eisenwerk-Gesellschaft Maximilianshutte Mbh. Process for increasing the life of the refractory masonry of metallurgical vessels
US3873074A (en) * 1973-03-26 1975-03-25 Berry Metal Co Converter-bottom for bottom-blow steel making process
US3898078A (en) * 1973-03-29 1975-08-05 Youngstown Sheet And Tube Co Method and apparatus for injecting refining oxygen in steelmaking processes
US3909245A (en) * 1973-03-30 1975-09-30 Maximilianshuette Eisenwerk Process for lowering the iron content in nickel melts
US3912243A (en) * 1973-04-04 1975-10-14 Berry Metal Co Apparatus and process for refining hot metal to steel
US3955965A (en) * 1973-04-04 1976-05-11 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Refining metals
US4050681A (en) * 1973-05-25 1977-09-27 Eisenwerk-Gesellschaft Maximilianshutte Mbh Apparatus for the controlled feeding of a refining gas and of a fluid protective medium
US3891429A (en) * 1973-06-07 1975-06-24 Koppers Co Inc Method for selective decarburization of alloy steels
US3897048A (en) * 1973-06-15 1975-07-29 Pennsylvania Engineering Corp Metallurgical vessel and method of operating same
US3868096A (en) * 1973-06-21 1975-02-25 Pennsylvania Engineering Corp Tuyere support means for metallurgical vessels
US3873073A (en) * 1973-06-25 1975-03-25 Pennsylvania Engineering Corp Apparatus for processing molten metal
USRE29584E (en) * 1973-06-28 1978-03-21 Union Carbide Corporation Use of CO2 in argon-oxygen refining of molten metal
US3861888A (en) * 1973-06-28 1975-01-21 Union Carbide Corp Use of CO{HD 2 {B in argon-oxygen refining of molten metal
US3926619A (en) * 1973-07-10 1975-12-16 Centre Rech Metallurgique Refining process
US4045215A (en) * 1973-07-16 1977-08-30 Creusot-Loire Method of refining mattes containing nickel
US4002467A (en) * 1974-01-30 1977-01-11 Verfahrenstechnik Dr.-Ing. Kurt Baum Method for recovering reaction gases from steel converters which are bottom blown with oxygen and cooled with hydrocarbons
US3992194A (en) * 1974-04-11 1976-11-16 Creusot-Loire Method and apparatus for use in the treatment of metals in the liquid state
US4249719A (en) * 1974-08-08 1981-02-10 Eisenwerk-Gesellschaft Maximilianshutte Mbh Tuyere for the injection of reaction gas
US3930843A (en) * 1974-08-30 1976-01-06 United States Steel Corporation Method for increasing metallic yield in bottom blown processes
DE2538159A1 (en) * 1974-08-30 1976-03-11 Uss Eng & Consult METHOD OF REFRESHING BIG IRON
US3982927A (en) * 1974-11-13 1976-09-28 Creusot-Loire Method of blowing to obtain a very low amount of carbon in chrome steels
US3985550A (en) * 1975-01-23 1976-10-12 United States Steel Corporation Method of producing low sulfur steel
US4097028A (en) * 1975-02-06 1978-06-27 Klockner-Werke Ag Method of melting and apparatus therefor
US4052197A (en) * 1975-02-25 1977-10-04 Stahlwerke Peine-Salzgitter Ag Process for making steel from pig iron
US4004920A (en) * 1975-05-05 1977-01-25 United States Steel Corporation Method of producing low nitrogen steel
US4138098A (en) * 1975-08-14 1979-02-06 Creusot-Loire Method of blowing smelting shaft furnaces and tuyeres used for said blowing
US4081268A (en) * 1976-04-28 1978-03-28 Creusot-Loire Method of protecting tuyeres for upwardly blowing pure oxygen through the bottom of steel converters
US4149878A (en) * 1977-01-11 1979-04-17 Union Carbide Corporation Use of argon to prepare low-carbon steels by the basic oxygen process
US4208206A (en) * 1977-03-31 1980-06-17 Union Carbide Corporation Method for producing improved metal castings by pneumatically refining the melt
US4198230A (en) * 1977-05-04 1980-04-15 Eisenwerk-Gesellschaft Maximilianshutte Mbh Steelmaking process
US4123259A (en) * 1977-05-20 1978-10-31 Eisenwerk-Gesellschaft Maximilianshutte Mbh Method for supplying thermal energy to steel melts
US4178173A (en) * 1977-08-22 1979-12-11 Fried. Krupp Huttenwerke Aktiengesellschaft Process for producing stainless steels
US4139368A (en) * 1977-10-11 1979-02-13 Pennsylvania Engineering Corporation Metallurgical method
US4192675A (en) * 1978-01-17 1980-03-11 S.A. Manganese Amcor Ltd. Process for decarburizing ferro-manganese
US4174212A (en) * 1978-03-10 1979-11-13 A. Finkl & Sons Co. Method for the refining of steel
US4225341A (en) * 1978-03-29 1980-09-30 Centre De Recherches Metallurgiques-Centrum Voor Research In De Metallurgie Refining iron in a converter
US4261551A (en) * 1978-06-13 1981-04-14 Eisenwerk-Gesellschaft Maximilianshutte Mbh. Method and means for supplying nozzles with gaseous and/or liquid hydrocarbons
US4248409A (en) * 1978-10-16 1981-02-03 Mannesmann Demag A.G. Wolfgang-Reuter-Platz Steel furnace nozzle arrangement
US4494736A (en) * 1979-06-20 1985-01-22 Klockner-Humboldt-Deutz Ag Device for generating a convective reaction system between a reaction agent and a molten bath
US4405366A (en) * 1979-06-20 1983-09-20 Klockner-Humboldt-Deutz Ag Method and device for generating a convective reaction system between a reaction agent and a molten bath
US4382817A (en) * 1980-01-02 1983-05-10 Institute De Recherches De La Siderurgie Francaise Process for periodically and pneumatically stirring a bath of molten metal
FR2515211A1 (en) * 1981-10-26 1983-04-29 Nippon Steel Corp PROCESS FOR REFINING METAL
US4450005A (en) * 1981-10-26 1984-05-22 Nippon Steel Corporation Metal refining method
JPS58147509A (en) * 1982-02-26 1983-09-02 Kawasaki Steel Corp Refining method of stainless steel
JPS6156288B2 (en) * 1982-02-26 1986-12-02 Kawasaki Steel Co
US4780133A (en) * 1986-11-10 1988-10-25 Lazcano Navarro Arturo Process to improve the refining of liquid metals by natural gas injection
US5866095A (en) * 1991-07-29 1999-02-02 Molten Metal Technology, Inc. Method and system of formation and oxidation of dissolved atomic constitutents in a molten bath
US5413623A (en) * 1992-08-26 1995-05-09 Nippon Steel Corporation Process and apparatus for vacuum degassing molten steel
US6066771A (en) * 1993-04-06 2000-05-23 Ausmelt Limited Smelting of carbon-containing material
US5444733A (en) * 1993-05-17 1995-08-22 Danieli & C. Officine Meccaniche Spa Electric arc furnace with alternative sources of energy and operating method for such electric furnace
EP0644269A1 (en) * 1993-09-21 1995-03-22 The Gas Research Institute Process for controlling the forming of an accretion on an oxy-fuel tuyere
US5431709A (en) * 1993-09-21 1995-07-11 Gas Research Institute Accretion controlling tuyere
US5615626A (en) * 1994-10-05 1997-04-01 Ausmelt Limited Processing of municipal and other wastes
US6461404B1 (en) * 1999-05-31 2002-10-08 Mcmaster University Ladle for enhanced steel vacuum decarburization
US6923843B1 (en) 2001-11-13 2005-08-02 Nupro Corporation Method for oxygen injection in metallurgical process requiring variable oxygen feed rate

Also Published As

Publication number Publication date
BE728859A (en) 1969-08-01
DD122105A5 (en) 1976-09-12
DD160233A8 (en) 1983-05-18
AT315216B (en) 1974-05-10
NL6902839A (en) 1969-08-26
FR2002577B1 (en) 1973-11-16
CA934165A (en) 1973-09-25
GB1253581A (en) 1971-11-17
LU58073A1 (en) 1969-06-03
SE355197B (en) 1973-04-09
FR2002577A1 (en) 1969-10-17
NL155051B (en) 1977-11-15

Similar Documents

Publication Publication Date Title
US3706549A (en) Method for refining pig-iron into steel
US3932172A (en) Method and converter for refining pig-iron into steel
US4195985A (en) Method of improvement of the heat-balance in the refining of steel
US4657586A (en) Submerged combustion in molten materials
AU676203B2 (en) A method for intensifying the reactions in metallurgical reaction vessels
CA2264665A1 (en) Installation and method for producing molten metal
CA1115962A (en) Steelmaking process
US4198230A (en) Steelmaking process
EP0056644A2 (en) Supersonic injection of oxygen in cupolas
CZ278679B6 (en) Process for producing steel from a charge of liquid pig iron and steel scrap in a converter
US4702462A (en) Water-cooled lance for blowing oxidizing gas onto a metal melt
KR970043113A (en) How to use chromite ore directly in the manufacture of stainless steel
CA2555472C (en) Method for producing low carbon steel
US3938790A (en) Method and converter for refining pig-iron into steel
US3772000A (en) Method for converting solid ferrous metal to steel
US4302244A (en) Steel conversion method
US3912243A (en) Apparatus and process for refining hot metal to steel
US3859078A (en) Method of operating a basic open hearth furnace
EP0090452B1 (en) Process for producing steel in a converter from pig iron and ferrous scrap
US4330108A (en) Method for cooling tuyeres
US3259484A (en) Method and apparatus for producing steel from pig iron
US4347079A (en) Method of operating an open-hearth furnace
EP0140541B1 (en) Apparatus of gasifying carbonaceous material
US4462825A (en) Method for increasing the scrap melting capability of metal refining processes
US3232595A (en) Shaft type furnace for smelting scrap and producing steel

Legal Events

Date Code Title Description
AS Assignment

Owner name: KLOCKNER CRA TECHNOLOGIE GMBH, DUISBURG, GERMANY A

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:EISENWERK GESELLSCHAFT MIXIMILIANSHUTTE MBH;REEL/FRAME:004181/0525

Effective date: 19831006

Owner name: KLOCKNER CRA TECHNOLOGIE GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EISENWERK GESELLSCHAFT MIXIMILIANSHUTTE MBH;REEL/FRAME:004181/0525

Effective date: 19831006