WO2011049240A1 - Top lance for refining and method for refining molten iron using same - Google Patents

Top lance for refining and method for refining molten iron using same Download PDF

Info

Publication number
WO2011049240A1
WO2011049240A1 PCT/JP2010/069118 JP2010069118W WO2011049240A1 WO 2011049240 A1 WO2011049240 A1 WO 2011049240A1 JP 2010069118 W JP2010069118 W JP 2010069118W WO 2011049240 A1 WO2011049240 A1 WO 2011049240A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
refining
oxygen
supply path
lance
Prior art date
Application number
PCT/JP2010/069118
Other languages
French (fr)
Japanese (ja)
Inventor
内田祐一
小笠原太
加藤規泰
古家雅之
五十嵐佑馬
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to BR112012009231-6A priority Critical patent/BR112012009231B1/en
Priority to KR1020127010192A priority patent/KR101346726B1/en
Priority to CN201080047492.XA priority patent/CN102575306B/en
Publication of WO2011049240A1 publication Critical patent/WO2011049240A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • C21C5/4613Refractory coated lances; Immersion lances
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/32Blowing from above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/18Charging particulate material using a fluid carrier
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/305Afterburning

Definitions

  • the present invention relates to a top lance for refining suitable for applying oxidation refining such as dephosphorization treatment to hot metal or molten steel in a converter-type refining vessel. Furthermore, the present invention relates to a hot metal refining method using the top blowing lance.
  • the oxygen-containing gas supply path and the solid oxygen source supply path such as iron oxide are separated from each other, so the oxygen-containing gas is separated from these paths.
  • the solid oxygen source can be independently supplied to the hot metal or molten steel bath surface in the converter type refining vessel.
  • the top blowing lance of the present invention can supply a powder other than the solid oxygen source together with the oxygen-containing gas.
  • the top blowing lance of the invention can supply the oxygen-containing gas for secondary combustion to the in-furnace space of the converter-type refining vessel from the side surface of the lance separated from the lance tip.
  • dephosphorizing refining agent The main component of the dephosphorizing refining agent in the hot metal preliminary dephosphorization treatment is lime.
  • lime that does not flux does not contribute to the dephosphorization reaction, so to reduce the amount of lime used, promote the hatching of the added lime.
  • fluorite ore containing calcium fluoride as a main component
  • fluorite has been used in the dephosphorization treatment.
  • solvent containing fluorine has been restricted. Therefore, means for promoting the dephosphorization reaction by lime without using fluorite have been studied, and many proposals have been made.
  • Patent Document 1 proposes a hot metal preliminary dephosphorization treatment method in which a lime-based dephosphorization refining agent and an endothermic substance are added to a place where oxygen gas is supplied.
  • Patent Document 2 discloses an upper blowing lance suitable for adding a lime-based dephosphorizing refining agent to a fire spot (fire spot) region formed on the hot metal surface by supplying oxygen gas.
  • This top blowing lance is a quadruple in which a powder blowing nozzle for supplying a lime-based dephosphorizing refining agent is arranged at the axial center position, and a plurality of nozzles for supplying oxygen gas are arranged around it. It has a tube structure.
  • Patent Document 3 a supply path for supplying a lime-based dephosphorization refining agent together with an oxygen-containing gas and an iron oxide supply path are separated, and oxygen-containing gas and lime-based dephosphorization are separated from these paths.
  • An upper blowing lance for refining a five-pipe structure for supplying a refining agent and iron oxide to the hot metal bath surface and subjecting the hot metal to oxidative refining such as dephosphorization has been proposed.
  • This Patent Document 3 also proposes detecting a broken hole in the iron oxide supply path by providing a buffer space around the iron oxide supply path.
  • Patent Document 1 and Patent Document 2 disclose working temperatures of about 1300 ° C. to about 1350 ° C.
  • the free board space other than the space occupied by static molten iron in the furnace
  • the preliminary dephosphorization of hot metal is performed in a converter-type smelting vessel. Is common.
  • the hot metal scattered during the dephosphorization process adheres to and solidifies on the side walls and furnace opening of the converter-type smelting vessel and deposits the metal, resulting in a reduction in the hot metal yield and the production of the metal. It was causing a decline in sex.
  • This problem of metal adhesion is not limited to hot metal preliminary dephosphorization, but also to hot metal decarburization and refining in converters.
  • the inner wall of the converter and the furnace port are scattered by metal splattering (referred to as “spitting”) and slag ejection (referred to as “slipping”) during blowing. Ingots accumulate, causing problems such as hindering hot metal and iron scrap charging into the furnace.
  • a horizontal or downward secondary combustion nozzle is disposed on a side surface of an upper blowing lance that is spaced a predetermined distance from a distal end portion of an upper blowing lance having a main hole nozzle at the distal end portion.
  • a refining method is proposed in which oxygen gas is supplied from the main hole nozzle to oxidize and refine hot metal or molten steel in the converter, and at the same time, oxygen gas is supplied from the secondary combustion nozzle to melt the metal attached to the converter.
  • a gaseous oxygen source such as an oxygen-containing gas and a solid oxygen source such as iron oxide are used together as an oxygen source, and these are located at the same location or in close proximity.
  • the oxidation refining method added to the mainstream has become the mainstream.
  • the gaseous oxygen source is used as a carrier gas, and a flux such as a dephosphorizing refining agent is carried together with the gaseous oxygen source (see Patent Document 3).
  • a refining method for adding to the addition position is also performed.
  • top blowing lances are verified as a top blowing lance for carrying out such refining. None of the above top blowing lances can be employed. Moreover, even if the conventional top blowing lance is combined, it cannot be a satisfactory top blowing lance. For example, even if the secondary combustion nozzle proposed in Patent Document 4 is installed by connecting to the oxygen-containing gas supply path of the top blowing lance proposed in Patent Document 3, oxygen is supplied through the oxygen-containing gas supply path. When the flux is transported together with the contained gas, there arises a problem that the secondary combustion nozzle is blocked by the flux.
  • the present invention has been made in view of such circumstances, and the object thereof is to efficiently perform hot metal or hot steel in an oxidizing refining vessel in a converter-type refining vessel, such as preliminary dephosphorization of hot metal. It is to provide an upper blowing lance for refining that can efficiently oxidize and refining ingots adhering to a converter type refining vessel. The object of the present invention is also to provide a hot metal refining method using this top blowing lance.
  • the gist of the present invention for solving the above problems is as follows.
  • a secondary combustion nozzle in a horizontal or obliquely downward direction on the side surface of the upper blowing lance at a position separated upward from the tip A powder different from the solid oxygen source is supplied to the inside of the blowing lance with the oxygen-containing gas for blowing through the main hole nozzle, or an oxygen-containing gas for blowing is supplied through the main hole nozzle.
  • the first supply path includes a refining flux introduction section that introduces a powder (hereinafter also referred to as “refining flux”) different from the solid oxygen source, and an oxygen-containing gas that introduces an oxygen-containing gas into the path.
  • refining flux introduction part may be an introduction part for introducing the refining flux together with the carrier gas, and this carrier gas is also preferably an oxygen-containing gas.
  • the refining flux and the oxygen-containing gas are introduced from the same introduction portion (that is, the refining flux and the oxygen-containing gas previously mixed in the ratio when supplying the refining flux and the oxygen-containing gas through the main hole nozzle).
  • the introduction of the refining flux may be stopped, and only the oxygen-containing gas may be introduced into the first supply path from the oxygen-containing gas introduction section.
  • the second supply path has an oxygen-containing gas introduction unit that introduces the oxygen-containing gas into the path.
  • the third supply path has a solid oxygen source introduction part that introduces a solid oxygen source into the path together with the carrier gas.
  • the supply of the solid oxygen source may be stopped and only the carrier gas may be introduced into the third supply path from the introduction unit.
  • the first supply path and the second supply path may share the oxygen-containing gas introduction part.
  • a partition structure is provided to prevent the refining flux from entering the second supply path.
  • the terminal of the second supply path is closed, and the oxygen-containing gas supplied through the second supply path is configured not to join the first supply path and the third supply path.
  • the top blowing lance for refining as described in said (1) characterized by the above-mentioned.
  • the end of the second supply path means a portion of the path ahead of the nozzle for secondary combustion closest to the lance tip (on the lance tip).
  • It is configured to supply any one or more of reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas to the second supply path.
  • a buffer space in which any one or more of air, reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas is present is provided around the third supply path.
  • the broken hole in the third supply path is detected based on the change in the pressure or flow rate of the gas existing in the buffer space.
  • the top blow lance for refining according to any one of the above.
  • the first supply path, the second supply path, and the third supply path are arranged concentrically, as described in any one of (1) to (4) above Top blow lance for refining.
  • the top blowing lance is supplied with a powder different from the solid oxygen source, such as a lime-based dephosphorizing refining agent, together with the oxygen-containing gas for blowing through the main hole nozzle.
  • a first supply path for supplying the oxygen-containing gas for blowing through the main hole nozzle, and a second supply path for supplying the oxygen-containing gas for secondary combustion through the nozzle for secondary combustion And a third supply path for supplying the powdered solid oxygen source together with the carrier gas through the sub-hole nozzle. Therefore, even if powder is supplied from the first supply path and the third supply path, only the oxygen-containing gas is injected from the secondary combustion nozzle, and the secondary combustion nozzle is not blocked for a long period of time.
  • the oxygen-containing gas for secondary combustion is stably injected over the entire area.
  • adhesion of bullion to the converter-type smelting vessel is suppressed, adverse effects due to adhesion of bullion are prevented, and iron yield and productivity are improved.
  • fluxes such as oxygen-containing gas, solid oxygen source, and lime-based dephosphorizing refining agent can be supplied to the same location or in the vicinity of each, enabling efficient smelting of hot metal and molten steel. Is done.
  • FIG. 1 is a schematic cross-sectional view showing an example of a refining top blowing lance according to the present invention.
  • FIG. 2 is a diagram showing a buffer gas supply path to the buffer space in the refining top blow lance according to the present invention.
  • FIG. 3 is a schematic sectional view showing another example of the refining top blow lance according to the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an example of a refining top blowing lance according to the present invention.
  • an upper blowing lance 1 according to the present invention includes a cylindrical lance main body 2, a lance nozzle 3 connected to the lower end of the lance main body 2 by welding, and the upper end of the lance main body 2.
  • the lance body 2 is composed of six kinds of concentric steel pipes, that is, a six-fold pipe, that is, an outermost pipe 5, an outer pipe 6, an intermediate pipe 7, a partition pipe 8, an inner pipe 9, and an innermost pipe 10.
  • the copper lance nozzle 3 is provided with a vertically downward sub-hole nozzle 12 at the axial center thereof, and around the sub-hole nozzle 12, a plurality of main hole nozzles whose discharge direction is a vertically oblique downward direction. 11 is installed.
  • a plurality of secondary combustion nozzles 13 whose discharge direction is horizontal or obliquely downward is provided on the side surface of the lance body 2 at a position separated upward from the tip of the lance nozzle 3. It is installed at almost equal intervals in the circumferential direction. In FIG. 1, although there are two stages in the vertical direction, it may be one stage or three stages or more.
  • the horizontal or obliquely downward secondary combustion nozzle 13 is provided on the side surface portion at a position separated upward from the tip of the upper blow lance 1 when the injection direction from the secondary combustion nozzle is the furnace of the refining vessel. It means selecting the position and direction (angle) on the side surface of the lance so as to face the wall.
  • the distance from the tip of the lance of the secondary combustion nozzle 13 closest to the tip of the lance is 300 mm from the tip of the lance in consideration of design restrictions such as a cooling water channel in a general converter top blowing lance nozzle 3. It is preferable that they are separated from each other.
  • the main hole nozzle 11 is an oxygen-containing gas that is a blowing gas, or a powder ("refining flux") such as a flux other than a solid oxygen source together with the oxygen-containing gas using the oxygen-containing gas as a carrier gas, that is,
  • This is a nozzle for blowing powder such as a lime-based dephosphorizing refining agent into a refining vessel (not shown) such as a converter.
  • the sub-hole nozzle 12 is a nozzle for blowing a solid oxygen source such as iron ore and mill scale into the smelting vessel together with the carrier gas.
  • the secondary combustion nozzle 13 is a nozzle for blowing an oxygen-containing gas for secondary combustion into the internal space of the refining vessel. As shown in FIG.
  • the main hole nozzle 11 has a so-called Laval nozzle that has a cross-section that expands toward the tip.
  • the sub-hole nozzle 12 and the secondary combustion nozzle 13 have a straight shape, but the sub-hole nozzle 12 and the secondary combustion nozzle 13 may also take the shape of a Laval nozzle.
  • the upper blowing lance 1 is supported by a support device (not shown) above the refining vessel so that it can be moved up and down inside the refining vessel.
  • the oxygen-containing gas is a gas having oxygen gas (pure oxygen gas), oxygen-enriched air, a mixed gas of oxygen gas and rare gas, and the oxygen gas concentration is higher than that of air. is there.
  • dust collection dust is dust containing FeO or Fe 2 O 3 that is recovered from exhaust gas in a blast furnace, converter, and sintering process.
  • a flux such as quick lime which is a kind of lime-based dephosphorizing refining agent, blows oxygen-containing gas from the main hole nozzle 11 as a carrier gas.
  • a flux such as quick lime may be blown in combination with the oxygen source.
  • the flow rate ejected from the sub hole nozzle 12 and the flow rate ejected from the main hole nozzle 11 are independently controlled by independent flow meters (not shown).
  • the gap between the outermost pipe 5 and the outer pipe 6 and the gap between the outer pipe 6 and the middle pipe 7 serve as cooling water flow paths for cooling the upper blowing lance 1. Cooling water supplied from a water supply pipe (not shown) provided at the lance top 4 reaches the site of the lance nozzle 3 through the gap between the outer tube 6 and the middle tube 7 and is reversed at the site of the lance nozzle 3. Then, the water is discharged from a drain pipe (not shown) provided on the lance top 4 through a gap between the outermost pipe 5 and the outer pipe 6. The water supply / drainage route may be reversed.
  • the gap between the middle tube 7 and the partition tube 8 is a second supply path for supplying the oxygen-containing gas to the secondary combustion nozzle 13.
  • the oxygen-containing gas introduced into the inside of the intermediate pipe 7 from the oxygen-containing gas supply pipe 14 that communicates with the intermediate pipe 7 provided at the lance top 4 passes through the second supply path and becomes the secondary combustion nozzle 13.
  • the secondary combustion nozzle 13 is ejected.
  • the upper end portion of the partition tube 8 does not reach the installation site of the oxygen-containing gas supply tube 14 (the introduction portion of the oxygen-containing gas).
  • the oxygen-containing gas introduced from the oxygen-containing gas supply pipe 14 into the middle pipe 7 is a gap between the partition pipe 8 and the inner pipe 9 (as described later, the gap between the partition pipe 8 and the inner pipe 9 is Also flows into the first supply path), and is ejected to the main hole nozzle 11 through this gap. Also, the lower end of the partition tube 8 does not reach the lance nozzle 3 part. That is, the oxygen-containing gas that has passed through the gap between the intermediate pipe 7 and the partition pipe 8, that is, the second supply path, but has not been ejected from the secondary combustion nozzle 13 joins the first supply path, It ejects from the hole nozzle 11.
  • the gap between the partition pipe 8 and the inner pipe 9 is an oxygen-containing gas for blowing or a powder different from solid oxygen together with this oxygen-containing gas (“refining flux”), for example, a lime-based dephosphorizing agent.
  • the first supply path for supplying the powder such as to the main hole nozzle 11.
  • the lance top 4 is provided with a powder supply pipe 15 for supplying a refining flux using oxygen-containing gas as a carrier gas (a portion where the supply pipe is installed serves as a refining flux introduction part).
  • 8 and the oxygen-containing gas supply pipe 14 (the portion where the supply pipe is installed serves as the oxygen-containing gas introduction part) is provided in communication with the middle pipe 7 as described above.
  • the partition pipe 8 functions as a partition structure for preventing the refining flux from being mixed into the second supply path.
  • the refining flux that is, the powder different from the solid oxygen source
  • all known (or foreseeable) solid substances that are added to efficiently realize refining other than the solid oxygen source can be applied.
  • the lime-based dephosphorizing refining agent quick lime (CaO), limestone (CaCO 3 ), dolomite (CaCO 3 .MgCO 3 ), decarburized slag, secondary refining slag, etc.
  • raw materials for slag examples thereof include silica (SiO 2 ), brick scraps containing magnesium oxide, etc., hatching accelerators (including fluorite, titanium oxide, aluminum oxide, etc.) and the like.
  • at least a lime-based dephosphorizing refining agent is supplied as a refining flux.
  • the inside of the innermost pipe 10 is a third supply path for supplying a solid oxygen source to the sub-hole nozzle 12 together with the carrier gas. That is, the solid oxygen source supplied to the inside of the innermost pipe 10 together with the carrier gas from a supply pipe (not shown) provided at the lance top 4 and communicating with the innermost pipe 10 is the inside of the innermost pipe 10. It passes through to the sub-hole nozzle 12 and is ejected from the sub-hole nozzle 12.
  • the installation section (not shown) of the supplier is a solid oxygen source introduction section.
  • a gas having an oxygen content equal to or lower than air is suitable, and in particular, any one of air, reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas or It is preferable to use two or more gases.
  • the reason for using air, reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas as the carrier gas for the solid oxygen source is as follows.
  • the air contains less oxygen gas than the oxygen-containing gas blown from the main hole nozzle 11, and the reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas substantially contain oxygen gas. Not in. Therefore, it is possible to prevent combustion during the transportation of a small amount of metallic iron contained in the solid oxygen source, and the innermost due to the spark generated by the contact between the solid oxygen source and the innermost tube 10 during the transportation.
  • the combustion of the tube 10 can be prevented.
  • the reducing gas is a hydrocarbon gas such as propane gas and CO gas
  • the non-oxidizing gas is a gas having no oxidizing ability such as nitrogen gas
  • the rare gas is Ar gas or He.
  • An inert gas such as a gas.
  • the gap between the inner tube 9 and the innermost tube 10 is sealed at the tip portion of the lance nozzle 3 to make a dead end, and is supplied from a buffer gas supply tube 16 provided on the lance top 4.
  • the gas present in the buffer space is referred to as “buffer gas”.
  • a buffer gas supply pipe 16 provided at the lance top 4 includes a detector 20, a remote control valve 21, a flexible hose 22, and a plurality of manual shut-off valves 23.
  • a gas introduction device 19 is connected.
  • the buffer gas is supplied to the buffer space via the buffer gas introducing device 19.
  • a pressure gauge or a flow meter, or both a pressure gauge and a flow meter are installed.
  • the remote control valve 21 may be shut off and the buffer gas may be sealed in the buffer space, or the remote control valve 21 may be opened to buffer the buffer space.
  • the gas pressure may always be applied.
  • FIG. 1 In the example of FIG.
  • the flexible hose 22 is a margin when the upper blowing lance 1 moves up and down.
  • the detector 20 is installed closer to the upper blowing lance 1 than the flexible hose 22, but it may be installed closer to the supply side than the flexible hose 22. It can be installed anywhere.
  • the detector 20 needs to be arranged on the upper blowing lance 1 side than the remote control valve 21. Therefore, from the viewpoint of operational flexibility, the detector 20 is preferably disposed on the upper blowing lance 1 side than the remote control valve 21.
  • the reason for using air, reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas as the buffer gas is the same as the reason for using these gas types as the carrier gas for the solid oxygen source.
  • the buffer gas and the solid oxygen source come into contact with each other even if a hole is generated in the innermost tube 10 which is the supply path of the solid oxygen source, that is, the third supply path, due to the transport of the solid oxygen source
  • this gas species is used as a buffer gas
  • combustion of metallic iron in the solid oxygen source and combustion of the innermost tube 10 due to sparks generated by contact between the solid oxygen source and the innermost tube 10 can be prevented. Because it can. Therefore, any gas other than the above can be used as a buffer gas as long as the oxygen content is less than air.
  • Detecting broken holes during refining of the innermost pipe 10 can be performed as follows. That is, if a hole breaks in the innermost pipe 10 during refining, the buffer space communicates with the inside of the innermost pipe 10, the pressure in the buffer space changes, or the flow rate of the buffer gas supplied to the buffer space Changes, so a hole is detected based on the change.
  • the following two methods can be taken as specific detection methods.
  • One method is to install a pressure gauge or both a pressure gauge and a flow meter as the detector 20, introduce a buffer gas into the buffer space, shut off the remote control valve 21, and buffer the gas into the buffer space. And the pressure in the buffer space is measured by the detector 20 during refining to detect a broken hole.
  • a flow meter is installed as the detector 20, the remote control valve 21 is opened, and the pressure of the buffer gas is constantly applied to the buffer space. In this state, the flow rate is measured by the detector 20, and the hole is broken. This is a method for detecting a broken hole from a change in flow rate.
  • the upper blowing lance 1 is disposed at a predetermined position above the hot metal in the converter, and oxygen gas is blown from the main hole nozzle 11 toward the hot metal bath surface as an oxygen-containing gas.
  • a solid oxygen source is used as a hot metal bath by using any one or more of air, reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas as a carrier gas. Spray toward the surface.
  • the solid oxygen source sprayed from the sub-hole nozzle 12 is supplied to or near the hot metal bath surface where the oxygen gas is supplied.
  • the dephosphorization treatment requires a slag for dephosphorization and refining for absorbing the phosphorus oxide (P 2 O 5 ) produced by the dephosphorization reaction, and the lime-based dephosphorization for slag to be the slag for dephosphorization and refining.
  • Add agent
  • the refining agent for lime-based dephosphorization is not particularly limited as long as it contains CaO and can be dephosphorized as intended in the present case. Usually, it consists of CaO alone, or contains 50 mass% or more of CaO, and contains other components as necessary. As specific examples, quick lime (CaO), limestone (CaCO 3 ), or dolomite (CaCO 3 .MgCO 3 ) can be used. Further, as a hatching accelerator for these substances, titanium oxide, oxidation A mixture of materials containing aluminum and magnesium oxide can also be used. In addition, decarburization slag and ladle refining slag are mainly composed of CaO and have a low phosphorus content, so that they can be sufficiently used as a refining agent for lime-based dephosphorization. .
  • the location where the oxygen gas collides with the hot metal bath surface (referred to as “fire point”) is heated due to the reaction between the oxygen gas and the carbon in the hot metal, and is supplied to or near the fire point.
  • the resulting solid oxygen source melts rapidly and increases the FeO component in the slag. This increases the oxygen potential of the slag, that is, the slag optimum for the dephosphorization reaction is rapidly formed, and the dephosphorization treatment is possible even at a small amount of slag or at a high temperature.
  • the hatching of the lime-based dephosphorization refining agent is promoted, and the dephosphorization refining slag is formed at an early stage.
  • the reaction is further promoted. Therefore, it is preferable to add the lime-based dephosphorizing refining agent to the fire point or the vicinity of the fire point through the main hole nozzle 11 or the main hole nozzle 11 and the sub hole nozzle 12.
  • oxygen gas for secondary combustion is supplied from the secondary combustion nozzle 13 to melt the ingot from the furnace body in parallel with the dephosphorization or prevent the adhesion of the ingot.
  • the oxygen gas supply amount (Q) from the secondary combustion nozzle 13 is preferably in the range of 5 to 30% of the oxygen gas supply amount (Q O ) from the main hole nozzle 11.
  • the amount of oxygen gas for secondary combustion is too small, and the calorific value of secondary combustion is insufficient, so that the adhered metal cannot be dissolved.
  • 100 Q / Q 2 O exceeds 30%, the secondary combustion exothermic heat becomes excessive and the melting loss of the furnace refractory is promoted.
  • V 0 the flow velocity (m / sec) of the oxygen gas jet at the outlet of the secondary combustion nozzle, de: the outlet diameter (mm) of the secondary combustion nozzle
  • C 0.016 + 0. 19 / (P 0 -P e )
  • P 0 Oxygen back pressure (kgf / cm 2 ) expressed in absolute pressure of the secondary combustion nozzle
  • P e Atmospheric pressure (absolute pressure displayed in the converter type refining vessel) kgf / cm 2 ).
  • top blowing lance and controlling the blowing conditions within an appropriate range so that this distance X does not reach the furnace wall, local melting of the metal and melting of the furnace wall refractory can be avoided.
  • the heat of combustion reaction can be uniformly distributed in the furnace.
  • the flow rate of the oxygen-containing gas ejected from the secondary combustion nozzle 13 depends on the ratio of the total cross-sectional area of the main hole nozzle 11 and the total cross-sectional area of the secondary combustion nozzle 13, and the secondary combustion nozzle
  • the amount of ejection from 13 cannot be controlled independently. That is, the total amount of oxygen-containing gas supplied from the oxygen-containing gas supply pipe 14 and the powder supply pipe 15 is distributed according to the ratio of the total cross-sectional area of both.
  • the oxygen-containing gas flow rate for secondary combustion can be controlled independently. However, in this case, it is necessary to change the internal structure of the upper blowing lance from the upper blowing lance 1 shown in FIG.
  • FIG. 3 shows an example of an upper blowing lance that can control the flow rate of the oxygen-containing gas for secondary combustion independently of the oxygen-containing gas for blowing.
  • the lower end of the partition pipe 8 reaches the portion of the lance nozzle 3, where the gap between the middle tube 7 and the partition tube 8 is the second supply path. Sealed. Further, in the lance top 4, the upper end of the partition pipe 8 is located above the upper end position of the middle pipe 7, and a sealing material for sealing is installed between the middle pipe 7 and the partition pipe 8, so that the second The supply path is sealed.
  • the oxygen-containing gas supply pipe 18 communicates with the middle pipe 7 (the installation section of the supply pipe is an oxygen-containing gas introduction section). That is, the oxygen-containing gas supplied from the oxygen-containing gas supply pipe 18 to the inside of the middle pipe 7 passes through the gap between the middle pipe 7 and the partition pipe 8, that is, the second supply path, from the secondary combustion nozzle 13. It comes to erupt.
  • an oxygen-containing gas / powder supply pipe 17 communicates with the partition pipe 8 (the installation section of the supply pipe serves as a refining flux introduction section and an oxygen-containing gas introduction section). .
  • the oxygen-containing gas for blowing supplied from the oxygen-containing gas / powder supply pipe 17 to the inside of the partition pipe 8 or the refining flux using the oxygen-containing gas as the transport gas is separated from the partition pipe 8 and the inside.
  • the gas is ejected from the main hole nozzle 11 through the gap with the pipe 9, that is, through the first supply path.
  • the top blowing lance 1A is the same as that of the top blowing lance 1 shown in FIG. 1, and the same parts are denoted by the same reference numerals, and the description thereof is omitted. Further, the preliminary dephosphorization treatment of the hot metal using the upper blowing lance 1A may be performed in accordance with the case where the upper blowing lance 1 is used.
  • the top blowing lances 1, 1 ⁇ / b> A mainly contain a powder different from a solid oxygen source, such as a lime-based dephosphorizing refining agent, together with an oxygen-containing gas for blowing.
  • the first supply path and the first supply path Even if the powder is supplied from the supply path 3, only the oxygen-containing gas is injected from the secondary combustion nozzle 13, and the secondary combustion nozzle 13 is not blocked, and the secondary combustion is stable over a long period of time. Oxygen containing gas is injected. This will suppress the adhesion of bullion to the converter-type smelting vessel, and prevent harmful effects associated with adhesion of bullion.
  • the hot metal discharged from the blast furnace is desiliconized in the blast furnace casting floor as necessary, and then transferred to a 300-ton converter, using the top blow lance shown in FIG. 1 for a total of four times.
  • the preliminary dephosphorization treatment was carried out (Invention Examples 1 to 4).
  • the number of main hole nozzles was four in a uniform arrangement on a concentric circle.
  • the secondary combustion nozzles are arranged in an evenly arranged manner on the circumference, and each of the eight upper and lower nozzles is provided.
  • the angle ⁇ (°) formed between the secondary combustion nozzle and the upper blowing lance is determined by the oxygen jet flow from the secondary combustion nozzle.
  • the distance X (m) from the nozzle outlet of the secondary combustion nozzle 13 at a flow rate of 30 m / sec was set to satisfy the following formula (2).
  • X is a distance (m) from the nozzle outlet of the secondary combustion nozzle determined from the equation (1)
  • H is a horizontal distance (m) from the center of the top blowing lance to the converter furnace wall.
  • the phosphorus concentration in the hot metal before the dephosphorization treatment was unified to 0.12% by mass, the phosphorus concentration in the hot metal after the dephosphorization treatment was set to 0.020% by mass or less, and the iron yield was set to 98% or more.
  • the iron yield ( ⁇ ) is the hot metal discharged after dephosphorization with respect to the total mass (W 0 + W S ) of the mass (W 0 ) of the hot metal charged in the converter and the mass (W S ) of the iron scrap.
  • oxygen gas is supplied from the oxygen-containing gas supply pipe 14, and quick lime powder (average particle size of 1 mm or less) is supplied from the powder supply pipe 15 as a carrier gas, and inside the innermost pipe.
  • quick lime powder average particle size of 1 mm or less
  • a solid oxygen source in powder form was supplied using nitrogen gas as a carrier gas.
  • the first supply path is a supply path for oxygen gas and quicklime powder
  • the second supply path is a supply path for oxygen gas.
  • dephosphorization was performed without using a fluorine compound such as CaF 2 as a dephosphorizing refining agent.
  • nitrogen gas was blown from the tuyeres at the bottom of the converter furnace at a flow rate of 0.03 to 0.30 Nm 3 / min per ton of hot metal.
  • the flow rate of oxygen gas supplied from the main hole nozzle and the secondary combustion nozzle was 0.6 to 2.5 Nm 3 / min per ton of hot metal.
  • the basic unit of oxygen gas was 12 Nm 3 / t excluding oxygen gas necessary for desiliconization.
  • the oxygen gas flow rate (Q) from the secondary combustion nozzle relative to the oxygen gas flow rate (Q 2 O 3 ) from the main hole nozzle, that is, 100 Q / Q 2 O was 6%.
  • any one of powdered iron ore average particle size 50 ⁇ m
  • iron sand average particle size 100 ⁇ m
  • mill scale average particle size 500 ⁇ m
  • iron ore sintered ore average particle size 100 ⁇ m
  • a secondary combustion nozzle of the upper blow lance shown in FIG. 1 is mechanically closed, and a dephosphorization process is performed in which oxygen gas for secondary combustion is not supplied to the furnace space (Comparative Example 1). did.
  • the other dephosphorization treatment conditions of the comparative example were performed according to the examples of the present invention.
  • Table 1 shows the hot metal components and operating conditions before and after the dephosphorization treatment in the inventive examples and the comparative examples.
  • the amount of CaO basic unit and solid oxygen source used in Table 1 is the amount per ton of hot metal.
  • the hot metal discharged from the blast furnace is desiliconized in the blast furnace casting floor as necessary, and then transferred to a 300-ton converter, using the top blow lance shown in FIG. 3 twice in total.
  • the preliminary dephosphorization treatment was carried out (Invention Examples 5 to 6).
  • the oxygen gas flow rate (Q) from the secondary combustion nozzle to the oxygen gas flow rate (Q O ) from the main hole nozzle is: That 100Q / Q O was 12%. Also in this case, it was confirmed that Xsin ⁇ was in a range satisfying the formula (2).
  • Other dephosphorization conditions were the same as those in Example 1.
  • Table 2 shows hot metal components and operating conditions before and after the dephosphorization treatment.
  • the CaO basic unit and the amount of solid oxygen source used in Table 2 are amounts per ton of hot metal, and the definition of iron yield is the same as in Example 1.
  • the hot metal discharged from the blast furnace is desiliconized in a blast furnace casting floor as necessary, and then transferred to a 350-ton capacity converter using the top blowing lance shown in FIGS. 1 and 3.
  • Preliminary dephosphorization was performed (Invention Examples 7 to 8).
  • Oxygen gas was blown from the tuyeres at the bottom of the converter furnace as a stirring gas at a flow rate of 0.3 Nm 3 / min per ton of hot metal.
  • the tuyeres at the bottom of the furnace had a double tube structure, and oxygen gas was blown from the inner tube and propane gas was blown from the outer tube as a cooling gas according to the flow rate of oxygen gas.
  • As a solid oxygen source 6 kg of iron ore sintered ore (average particle size 100 ⁇ m) was used per 1 ton of hot metal, and sprayed from the sub-hole nozzle of the top blowing lance.
  • the condition of the oxygen jet from the secondary combustion nozzle was set in a range satisfying the formula (2).
  • Other dephosphorization conditions were the same as those in Example 1.
  • Table 3 shows hot metal components and operating conditions before and after the dephosphorization treatment.
  • the oxygen gas flow rate (Q) from the secondary combustion nozzle to the oxygen gas flow rate (Q O ) from the main hole nozzle during the dephosphorization process, that is, 100 Q / Q O is also shown.
  • the basic unit of CaO in Table 3 is the amount per 1 ton of hot metal, and the definition of the yield rate is the same as in Example 1.
  • the hot metal discharged from the blast furnace is transported to a converter with a capacity of 300 tons, and the converter is decarburized and dephosphorized using the top blowing lance shown in FIG. 9)
  • dephosphorization occurs in parallel by increasing the basicity of the slag in the furnace.
  • oxygen gas is supplied from the oxygen-containing gas supply pipe 18, and quick lime powder (average particle size of 1 mm or less) is supplied from the oxygen-containing gas / powder supply pipe 17 using oxygen gas as a carrier gas.
  • a solid oxygen source in powder form was supplied using argon gas as a carrier gas.
  • the flow rate of oxygen gas supplied from the main hole nozzle was 3.2 Nm 3 / min per ton of hot metal.
  • oxygen gas was supplied in the first half of the time from the start to the end of blowing and Ar gas was supplied in the second half.
  • the oxygen gas flow rate (Q) from the secondary combustion nozzle with respect to the oxygen gas flow rate (Q O ) from the main hole nozzle was 5%. It was confirmed that the condition of the oxygen jet from the secondary combustion nozzle was in a range satisfying the formula (2).
  • As the solid oxygen source 6 kg of iron ore sintered ore (average particle size 100 ⁇ m) was used per 1 ton of hot metal, and sprayed from the sub-hole nozzle.
  • a dephosphorization process is performed in which the secondary combustion nozzle of the upper blow lance shown in FIG. 3 is mechanically closed and oxygen gas for secondary combustion is not supplied to the furnace space (Comparative Example 3). did.
  • the other decarburization and dephosphorization treatment conditions of the comparative example were performed in accordance with the present invention.
  • Table 4 shows the hot metal components and operating conditions before and after the dephosphorization treatment in the examples of the present invention and comparative examples.
  • the amount of CaO basic unit and solid oxygen source used in Table 4 is the amount per ton of hot metal.
  • the iron yield of Invention Example 9 was slightly superior to that of Comparative Example 3. That is, even under conditions of high-temperature treatment and less metal adhesion, the yield can be improved by partially using secondary combustion.
  • the nozzle stably injects the oxygen-containing gas for secondary combustion over a long period of time without clogging.
  • adhesion of bullion to the converter-type smelting vessel is suppressed, adverse effects due to adhesion of bullion are prevented, and iron yield and productivity are improved.
  • fluxes such as oxygen-containing gas, solid oxygen source, and lime-based dephosphorizing refining agent can be supplied to the same location or in the vicinity of each, enabling efficient smelting of hot metal and molten steel. Is done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

Provided is a top lance for refining which has, disposed at the lower end of the lance, a primary nozzle (11) and a secondary nozzle (12) that extend vertically downward or obliquely downward, and which has, disposed in the lateral part of the lance which is located above at a distance from the lower end, a nozzle (13) for secondary combustion that extends horizontally or obliquely downward. The top lance further has therein: a first supply passage for supplying a powder through the primary nozzle together with an oxygenic gas for blowing, the powder being not a solid oxygen source, or for supplying through the primary nozzle an oxygenic gas for blowing; a second supply passage for supplying an oxygenic gas for secondary combustion through the nozzle for secondary combustion; and a third supply passage for supplying a powdery solid oxygen source through the secondary nozzle together with a carrier gas. When molten iron or molten steel is subjected to oxidation refining, this top lance not only enables the oxidation refining to be conducted efficiently but also is effective in efficiently melting the metal adherent to the converter-type refining vessel.

Description

精錬用上吹きランス及びそれを用いた溶銑の精錬方法Top blowing lance for refining and hot metal refining method using the same
 本発明は、脱燐処理(dephosphorization treatment)などの酸化精錬(oxidation refining)を転炉型精錬容器内の溶銑(hot metal)または溶鋼に施すのに好適な精錬用上吹きランス(top lance)に関し、更に、該上吹きランスを用いた溶銑の精錬方法に関する。 本発明の上吹きランスは、酸素含有ガス(oxygen containing gas)の供給経路と酸化鉄などの固体酸素源(solid oxygen source)の供給経路とが分離されているので、これらの経路から酸素含有ガス及び固体酸素源を独立して転炉型精錬容器内の溶銑または溶鋼の浴面に供給可能である。 また本発明の上吹きランスは、酸素含有ガスとともに固体酸素源以外の粉体の供給が可能である。 さらに発明の上吹きランスは、ランス先端部から隔てたランスの側面から二次燃焼用の酸素含有ガスを転炉型精錬容器の炉内空間に供給することが可能である。 The present invention relates to a top lance for refining suitable for applying oxidation refining such as dephosphorization treatment to hot metal or molten steel in a converter-type refining vessel. Furthermore, the present invention relates to a hot metal refining method using the top blowing lance. In the top blowing lance of the present invention, the oxygen-containing gas supply path and the solid oxygen source supply path such as iron oxide are separated from each other, so the oxygen-containing gas is separated from these paths. In addition, the solid oxygen source can be independently supplied to the hot metal or molten steel bath surface in the converter type refining vessel. Further, the top blowing lance of the present invention can supply a powder other than the solid oxygen source together with the oxygen-containing gas. Furthermore, the top blowing lance of the invention can supply the oxygen-containing gas for secondary combustion to the in-furnace space of the converter-type refining vessel from the side surface of the lance separated from the lance tip.
 高炉溶銑を用いる製鋼プロセスにおいては、転炉(converter)で脱炭吹錬する前に、溶銑中に含有される燐(P)の大半を酸素ガスや固体の酸化鉄を用いて酸化し除去する、溶銑の予備脱燐処理(dephosphorization pretreatment)が一般的に行われている。 特に近年、鉄鋼製品に求められる品質要求は以前にも増して厳格になり、今まで以上の燐濃度の低減が求められるようになっている。 この品質要求に応えるには、脱燐処理を施す溶銑量を従来以上に増加することや、脱燐処理後の燐濃度を安定して下げることが必要となる。 In a steelmaking process using blast furnace hot metal, most of phosphorus (P) contained in the hot metal is oxidized and removed using oxygen gas or solid iron oxide before decarburization and blowing in a converter. In general, a dephosphorization pretreatment of hot metal is generally performed. In particular, in recent years, quality requirements for steel products have become more stringent than ever, and there has been a demand for a lower phosphorus concentration than ever before. In order to meet this quality requirement, it is necessary to increase the amount of hot metal to be subjected to dephosphorization more than before and to stably reduce the phosphorus concentration after dephosphorization.
 一方、昨今の地球温暖化に代表される環境への影響の軽減要請に対応すべく、製鋼工程におけるスラグ(slag)排出量の削減が必須となっている。 溶銑の予備脱燐処理でスラグの排出量を削減するためには、溶融して燐酸化物(P)吸収用の精錬剤(refining agent)として機能するスラグ(「脱燐精錬用スラグ」と呼ぶ)となる、脱燐用の精錬剤(以下、「脱燐用精錬剤」と記す)の投入量を低減することが必要である。 溶銑の予備脱燐処理における脱燐用精錬剤の主体は石灰(lime)である。 したがって、上記の品質要求に応えるとともにスラグ排出量を削減するためには、石灰の使用量を低減しつつ、必要脱燐量を維持する技術、即ち、少ない石灰の使用量で効率良く脱燐処理する技術が必要となる。 On the other hand, reduction of slag emissions in the steelmaking process is indispensable in order to respond to the recent demand for reducing the environmental impact represented by global warming. In order to reduce the amount of slag discharged by the preliminary dephosphorization treatment of hot metal, slag that melts and functions as a refining agent for absorbing phosphorus oxide (P 2 O 5 ) (“slag for dephosphorization refining”) It is necessary to reduce the amount of dephosphorizing refining agent (hereinafter referred to as “dephosphorizing refining agent”). The main component of the dephosphorizing refining agent in the hot metal preliminary dephosphorization treatment is lime. Therefore, in order to meet the above quality requirements and reduce the amount of slag discharged, a technology for maintaining the necessary dephosphorization amount while reducing the amount of lime used, that is, the dephosphorization process efficiently with a small amount of lime used. Technology to do is necessary.
 溶銑の予備脱燐処理において、滓化(fluxing)(スラグ化)しない石灰は脱燐反応に寄与しないことから、石灰の使用量を削減するためには、添加した石灰の滓化を促進させることが重要となる。 従来、石灰を始めとするスラグの滓化能力に優れた滓化促進用の媒溶剤(滓化促進剤:fluxing agent)としてホタル石(fluorite:フッ化カルシウムを主成分とする鉱石)が知られており、脱燐処理においてもホタル石が用いられてきた。 しかし近年、環境規制の強化に伴い、フッ素を含有する媒溶剤の使用が制限されるようになっている。 そのため、ホタル石を使用しなくても石灰による脱燐反応を促進させる手段が検討され、多数の提案がなされている。 In the hot metal preliminary dephosphorization process, lime that does not flux (slag) does not contribute to the dephosphorization reaction, so to reduce the amount of lime used, promote the hatching of the added lime. Is important. Conventionally, fluorite (ore containing calcium fluoride as a main component) is known as a medium solvent for promoting hatching (fluxing agent) having excellent hatching ability of slag including lime. In addition, fluorite has been used in the dephosphorization treatment. However, in recent years, with the strengthening of environmental regulations, the use of solvent containing fluorine has been restricted. Therefore, means for promoting the dephosphorization reaction by lime without using fluorite have been studied, and many proposals have been made.
 そのなかの1つの手段として、石灰系の脱燐用精錬剤を、酸素含有ガスや酸化鉄などの酸素源が供給されている場所と同一の場所或いは近接した場所に供給する技術が提案されている。 この技術は、石灰系の脱燐用精錬剤の滓化を促進させ、少ない石灰系脱燐用精錬剤で効率良く脱燐処理しようとするものである。 As one of the means, there has been proposed a technique for supplying a lime-based dephosphorizing refining agent to the same place or a place where an oxygen source such as an oxygen-containing gas or iron oxide is supplied. Yes. This technology promotes the hatching of a lime-based dephosphorizing refining agent and attempts to efficiently dephosphorize with a small amount of lime-based dephosphorizing refining agent.
 例えば、特許文献1には、酸素ガスが供給されている場所に、石灰系脱燐用精錬剤及び吸熱物質を添加して行う溶銑の予備脱燐処理方法が提案されている。 特許文献2には、酸素ガスの供給によって溶銑表面に形成される火点(fire spot、hot spot)領域に石灰系脱燐用精錬剤を添加するに好適な上吹きランスが開示されている。 この上吹きランスは、軸心部位置に石灰系脱燐用精錬剤を供給するための粉体吹き込みノズルを配置し、その周囲に酸素ガスを供給するための複数のノズルを配置した、四重管構造となっている。また、特許文献3には、酸素含有ガスとともに石灰系脱燐用精錬剤を供給する供給経路と酸化鉄の供給経路とが分離されていて、これらの経路から酸素含有ガス、石灰系脱燐用精錬剤及び酸化鉄を溶銑浴面に供給して脱燐処理などの酸化精錬を溶銑に施すための、五重管構造の精錬用上吹きランスが提案されている。 この特許文献3では、酸化鉄供給経路の周囲に緩衝空間を設けることにより、酸化鉄供給経路の破孔を検知することも提案している。 For example, Patent Document 1 proposes a hot metal preliminary dephosphorization treatment method in which a lime-based dephosphorization refining agent and an endothermic substance are added to a place where oxygen gas is supplied. Patent Document 2 discloses an upper blowing lance suitable for adding a lime-based dephosphorizing refining agent to a fire spot (fire spot) region formed on the hot metal surface by supplying oxygen gas. This top blowing lance is a quadruple in which a powder blowing nozzle for supplying a lime-based dephosphorizing refining agent is arranged at the axial center position, and a plurality of nozzles for supplying oxygen gas are arranged around it. It has a tube structure. Further, in Patent Document 3, a supply path for supplying a lime-based dephosphorization refining agent together with an oxygen-containing gas and an iron oxide supply path are separated, and oxygen-containing gas and lime-based dephosphorization are separated from these paths. An upper blowing lance for refining a five-pipe structure for supplying a refining agent and iron oxide to the hot metal bath surface and subjecting the hot metal to oxidative refining such as dephosphorization has been proposed. This Patent Document 3 also proposes detecting a broken hole in the iron oxide supply path by providing a buffer space around the iron oxide supply path.
 ところで、溶融鉄における脱燐反応は温度が低いほど有利であることから、脱燐処理は、1300~1400℃程度の溶銑の段階で行われている。 たとえば特許文献1および特許文献2では1300℃弱~1350℃程度の実施温度が開示されている。 また、最近では、フリーボード(炉内での、静置溶鉄の占める以外の空間)が大きく強攪拌が可能であることから、溶銑の予備脱燐処理は、転炉型精錬容器で行われるのが一般的である。 しかし、低温であるので、脱燐処理中に飛散した溶銑が転炉型精錬容器の側壁や炉口などに付着・凝固して地金が堆積し、溶銑歩留まりの低下や地金除去作業による生産性の低下を招いていた。 By the way, since the dephosphorization reaction in molten iron is more advantageous as the temperature is lower, the dephosphorization process is performed in the hot metal stage of about 1300 to 1400 ° C. For example, Patent Document 1 and Patent Document 2 disclose working temperatures of about 1300 ° C. to about 1350 ° C. In addition, recently, the free board (space other than the space occupied by static molten iron in the furnace) is large and can be vigorously stirred. Therefore, the preliminary dephosphorization of hot metal is performed in a converter-type smelting vessel. Is common. However, because of the low temperature, the hot metal scattered during the dephosphorization process adheres to and solidifies on the side walls and furnace opening of the converter-type smelting vessel and deposits the metal, resulting in a reduction in the hot metal yield and the production of the metal. It was causing a decline in sex.
 この地金付着の問題は、溶銑の予備脱燐処理に限らず、転炉での溶銑の脱炭精錬においても問題になっている。 つまり、転炉での溶銑の脱炭精錬では、吹錬中の地金飛散(「スピッテング」と呼ぶ)やスラグ噴出(「スロッピング(slopping)」と呼ぶ)によって転炉の内壁や炉口に地金が堆積し、炉内への溶銑及び鉄スクラップの装入が阻害されるなどの問題が発生する。 問題 This problem of metal adhesion is not limited to hot metal preliminary dephosphorization, but also to hot metal decarburization and refining in converters. In other words, in the decarburization and refining of hot metal in the converter, the inner wall of the converter and the furnace port are scattered by metal splattering (referred to as “spitting”) and slag ejection (referred to as “slipping”) during blowing. Ingots accumulate, causing problems such as hindering hot metal and iron scrap charging into the furnace.
 この地金付着を解決するための手段も多数提案されている。 例えば特許文献4には、先端部に主孔ノズルを有する上吹きランスの先端部から所定の間隔を隔てた上吹きランスの側面に、水平または下向き方向の二次燃焼用ノズルを配置し、前記主孔ノズルから酸素ガスを供給して転炉内の溶銑または溶鋼を酸化精錬すると同時に、前記二次燃焼用ノズルから酸素ガスを供給して転炉に付着した地金を溶解する精錬方法が提案されている。 Many means have been proposed to solve this adhesion of bullion. For example, in Patent Document 4, a horizontal or downward secondary combustion nozzle is disposed on a side surface of an upper blowing lance that is spaced a predetermined distance from a distal end portion of an upper blowing lance having a main hole nozzle at the distal end portion. A refining method is proposed in which oxygen gas is supplied from the main hole nozzle to oxidize and refine hot metal or molten steel in the converter, and at the same time, oxygen gas is supplied from the secondary combustion nozzle to melt the metal attached to the converter. Has been.
特開2003−328021号公報JP 2003-328021 A 特開2006−336033号公報JP 2006-336033 A 特開2008−208407号公報JP 2008-208407 A 特開2008−138271号公報JP 2008-138271 A
 現在、製鋼工程においては、溶銑の予備脱燐処理を始めとして、酸素源として、酸素含有ガスなどの気体酸素源と酸化鉄などの固体酸素源とを併用し、これらを同一箇所或いは近接した箇所に添加する酸化精錬方法が主流になっている。 しかも、その場合に、前記気体酸素源を搬送用ガスとして利用し、脱燐用精錬剤などのフラックス(flux)を気体酸素源とともに搬送し(特許文献3を参照)、よってフラックスを気体酸素源の添加位置に投入する精錬方法も行われるようになっている。 また、このような精錬を実施する場合にも、転炉型精錬容器の内壁及び炉口に付着した地金を上吹きランス側面の二次燃焼用ノズルから供給する気体酸素源によって溶解することは、鉄歩留まり並びに生産性を確保する上で極めて重要である。 Currently, in the steelmaking process, starting with hot metal dephosphorization, a gaseous oxygen source such as an oxygen-containing gas and a solid oxygen source such as iron oxide are used together as an oxygen source, and these are located at the same location or in close proximity. The oxidation refining method added to the mainstream has become the mainstream. Moreover, in that case, the gaseous oxygen source is used as a carrier gas, and a flux such as a dephosphorizing refining agent is carried together with the gaseous oxygen source (see Patent Document 3). A refining method for adding to the addition position is also performed. Also, even when such refining is carried out, it is possible to dissolve the metal adhering to the inner wall and furnace port of the converter type refining vessel by the gaseous oxygen source supplied from the secondary combustion nozzle on the side of the top blowing lance. It is extremely important in securing iron yield and productivity.
 このような精錬を実施するための上吹きランスとして、上記従来のさまざまな形状の上吹きランスを検証すれば、何れの上吹きランスも採用することはできない。 また、上記従来の上吹きランスを組み合わせたとしても、満足できる上吹きランスにはなり得ない。例えば、特許文献3に提案される上吹きランスの酸素含有ガス供給経路に接続して、特許文献4に提案される二次燃焼用ノズルを設置しても、酸素含有ガス供給経路を介して酸素含有ガスとともにフラックスを搬送すると、このフラックスによって二次燃焼用ノズルが閉塞してしまうという問題が発生する。 If any of the above conventional various types of top blowing lances is verified as a top blowing lance for carrying out such refining, none of the above top blowing lances can be employed. Moreover, even if the conventional top blowing lance is combined, it cannot be a satisfactory top blowing lance. For example, even if the secondary combustion nozzle proposed in Patent Document 4 is installed by connecting to the oxygen-containing gas supply path of the top blowing lance proposed in Patent Document 3, oxygen is supplied through the oxygen-containing gas supply path. When the flux is transported together with the contained gas, there arises a problem that the secondary combustion nozzle is blocked by the flux.
 本発明はこのような事情に鑑みてなされたもので、その目的とするところは、溶銑の予備脱燐処理のように、溶銑または溶鋼を転炉型精錬容器内で酸化精錬するにあたり、効率的な酸化精錬が可能であると同時に、転炉型精錬容器に付着した地金を効率的に溶解することのできる精錬用上吹きランスを提供することである。 本発明の目的はまた、この精錬用上吹きランスを用いた溶銑の精錬方法を提供することである。 The present invention has been made in view of such circumstances, and the object thereof is to efficiently perform hot metal or hot steel in an oxidizing refining vessel in a converter-type refining vessel, such as preliminary dephosphorization of hot metal. It is to provide an upper blowing lance for refining that can efficiently oxidize and refining ingots adhering to a converter type refining vessel. The object of the present invention is also to provide a hot metal refining method using this top blowing lance.
 上記課題を解決するための本発明の要旨は以下のとおりである。
 (1)転炉型精錬容器に収容された溶銑または溶鋼の酸化精錬に使用する精錬用上吹きランスであって、上吹きランスの先端部に、鉛直下向きまたは斜め下向き方向の吹錬用主孔ノズル及び固体酸素源吹き込み用副孔ノズルを有するとともに、前記先端部から上方に隔離した位置の上吹きランスの側面部に、水平または斜め下向き方向の二次燃焼用ノズルを有し、且つ、上吹きランスの内部には、固体酸素源とは異なる粉体を吹錬用の酸素含有ガスとともに前記主孔ノズルを通じて供給するか、または、吹錬用の酸素含有ガスを前記主孔ノズルを通じて供給するための第1の供給経路と、二次燃焼用の酸素含有ガスを前記二次燃焼用ノズルを通じて供給するための第2の供給経路と、粉体状の固体酸素源を搬送用ガスとともに前記副孔ノズルを通じて供給するための第3の供給経路と、を有することを特徴とする精錬用上吹きランス。
 すなわち。第1の供給経路は、固体酸素源とは異なる粉体(以下「精錬用フラックス」とも記す)を当該経路に導入する精錬用フラックス導入部と、酸素含有ガスを当該経路に導入する酸素含有ガス導入部とを有する。 精錬用フラックス導入部は、精錬用フラックスを搬送ガスと共に導入する導入部であってもよく、この搬送ガスも酸素含有ガスであることが好ましい。 言うまでも無く、精錬用フラックスと酸素含有ガスとが同一の導入部から導入される(すなわち、前記精錬用フラックスと酸素含有ガスとを前記主孔ノズルを通じて供給する際の比率に予め混合したものが、該導入部から導入される)構造としてもよい。 なお、操業においては、精錬用フラックスの導入を停止し、酸素含有ガスのみを前記酸素含有ガス導入部より第1の供給経路に導入してもよい。
 また、第2の供給経路は、酸素含有ガスを当該経路に導入する酸素含有ガス導入部を有する。 さらに、第3の供給経路は搬送用ガスと共に固体酸素源を当該経路に導入する固体酸素源導入部を有する。 なお、操業においては、固体酸素源の供給を停止し、搬送用ガスのみを前記導入部より第3の供給経路に導入してもよい。
 ここで、第1の供給経路および第2の供給経路が酸素含有ガス導入部を共有しても良い。その場合は、前記精錬用フラックスが第2の供給経路に混入することを防ぐための仕切り構造を設けるものとする。
The gist of the present invention for solving the above problems is as follows.
(1) A refining top blow lance used for the oxidation refining of hot metal or molten steel contained in a converter type refining vessel, and a main hole for refining vertically or obliquely downward at the tip of the top blow lance A secondary combustion nozzle in a horizontal or obliquely downward direction on the side surface of the upper blowing lance at a position separated upward from the tip, A powder different from the solid oxygen source is supplied to the inside of the blowing lance with the oxygen-containing gas for blowing through the main hole nozzle, or an oxygen-containing gas for blowing is supplied through the main hole nozzle. A second supply path for supplying a secondary combustion oxygen-containing gas through the secondary combustion nozzle, and a powdery solid oxygen source together with a carrier gas. Hole nozzle Lance on for refining and having a third supply path for supplying through.
That is. The first supply path includes a refining flux introduction section that introduces a powder (hereinafter also referred to as “refining flux”) different from the solid oxygen source, and an oxygen-containing gas that introduces an oxygen-containing gas into the path. And an introduction part. The refining flux introduction part may be an introduction part for introducing the refining flux together with the carrier gas, and this carrier gas is also preferably an oxygen-containing gas. Needless to say, the refining flux and the oxygen-containing gas are introduced from the same introduction portion (that is, the refining flux and the oxygen-containing gas previously mixed in the ratio when supplying the refining flux and the oxygen-containing gas through the main hole nozzle). However, it is good also as a structure introduced from this introduction part. In operation, the introduction of the refining flux may be stopped, and only the oxygen-containing gas may be introduced into the first supply path from the oxygen-containing gas introduction section.
In addition, the second supply path has an oxygen-containing gas introduction unit that introduces the oxygen-containing gas into the path. Furthermore, the third supply path has a solid oxygen source introduction part that introduces a solid oxygen source into the path together with the carrier gas. In operation, the supply of the solid oxygen source may be stopped and only the carrier gas may be introduced into the third supply path from the introduction unit.
Here, the first supply path and the second supply path may share the oxygen-containing gas introduction part. In that case, a partition structure is provided to prevent the refining flux from entering the second supply path.
 (2)前記第2の供給経路の末端は閉ざされていて、第2の供給経路で供給される酸素含有ガスが第1の供給経路及び第3の供給経路に合流しないように構成されていることを特徴とする、上記(1)に記載の精錬用上吹きランス。
 なお、第2の供給経路の末端とは、該経路の、最もランス先端部に近い二次燃焼用ノズルよりも先(ランス先端部側)の部分を意味する。
 (3)前記第2の供給経路に還元性ガス、炭酸ガス、非酸化性ガス、希ガスのうちの何れか1種または2種以上のガスを供給するように構成されていることを特徴とする、上記(2)に記載の精錬用上吹きランス。
 すなわち、第2の供給経路は、前記いずれか1種または2種以上のガスを当該経路に導入する導入部を有する。 言うまでも無く、これらのガスが前記酸素含有ガスと同一の導入部から導入される構造としてもよい。
(2) The terminal of the second supply path is closed, and the oxygen-containing gas supplied through the second supply path is configured not to join the first supply path and the third supply path. The top blowing lance for refining as described in said (1) characterized by the above-mentioned.
Note that the end of the second supply path means a portion of the path ahead of the nozzle for secondary combustion closest to the lance tip (on the lance tip).
(3) It is configured to supply any one or more of reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas to the second supply path. The top blowing lance for refining according to the above (2).
That is, the second supply path has an introduction part that introduces any one or more of the gases into the path. Needless to say, a structure may be adopted in which these gases are introduced from the same introduction portion as the oxygen-containing gas.
 (4)前記第3の供給経路の周囲に、空気、還元性ガス、炭酸ガス、非酸化性ガス、希ガスのうちの何れか1種または2種以上のガスが存在する緩衝空間が備えられ、該緩衝空間に存在するガスの圧力または流量の変化に基づいて第3の供給経路での破孔が検知されるように構成されていることを特徴とする上記(1)~(3)の何れかに記載の精錬用上吹きランス。 (4) A buffer space in which any one or more of air, reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas is present is provided around the third supply path. In the above (1) to (3), the broken hole in the third supply path is detected based on the change in the pressure or flow rate of the gas existing in the buffer space. The top blow lance for refining according to any one of the above.
 (5)前記第1の供給経路、前記第2の供給経路及び前記第3の供給経路が同心円上に配置されていることを特徴とする上記(1)~(4)の何れかに記載の精錬用上吹きランス。 (5) The first supply path, the second supply path, and the third supply path are arranged concentrically, as described in any one of (1) to (4) above Top blow lance for refining.
 (6)石灰系脱燐用精錬剤を転炉型精錬容器に収容された溶銑に添加し、添加した前記脱燐用精錬剤を滓化させてスラグとなし、溶銑に対して酸化精錬を実施するにあたり、上記(1)~(5)の何れか1つに記載の精錬用上吹きランスを用い、第1の供給経路から吹錬用の酸素ガスを溶銑浴面に供給すると同時に、第3の供給経路から固体酸素源を吹錬用の酸素ガスが供給されている場所の近傍の溶銑浴面に搬送用ガスとともに供給し、更に、第2の供給経路から二次燃焼用酸素ガスを転炉型精錬容器の炉内空間に供給して酸化精錬を行うことを特徴とする、溶銑の精錬方法。
 なお、前記石灰系脱燐用精錬剤の少なくとも一部を、第1の供給経路より前記溶銑に供給することが好ましい。
(6) Add the lime-based dephosphorization refining agent to the hot metal contained in the converter-type refining vessel, and hatch the added dephosphorizing refining agent to form slag. In doing so, using the top blowing lance for refining according to any one of the above (1) to (5), the oxygen gas for blowing is supplied from the first supply path to the hot metal bath surface, The solid oxygen source is supplied to the hot metal bath surface in the vicinity of the location where the oxygen gas for blowing is supplied from the supply path, and the oxygen gas for secondary combustion is converted from the second supply path. A method for refining hot metal, which comprises supplying to the furnace space of a furnace-type refining vessel and carrying out oxidation refining.
In addition, it is preferable to supply at least a part of the lime-based dephosphorizing refining agent to the hot metal from the first supply path.
 本発明によれば、上吹きランスは、その内部に、石灰系脱燐用精錬剤などの、固体酸素源とは異なる粉体を吹錬用の酸素含有ガスとともに主孔ノズルを通じて供給するか、または、吹錬用の酸素含有ガスを主孔ノズルを通じて供給するための第1の供給経路と、二次燃焼用の酸素含有ガスを二次燃焼用ノズルを通じて供給するための第2の供給経路と、粉体状の固体酸素源を搬送用ガスとともに副孔ノズルを通じて供給するための第3の供給経路と、を有する。 したがって、第1の供給経路及び第3の供給経路から粉体を供給しても、二次燃焼用ノズルからは酸素含有ガスのみが噴射され、二次燃焼用ノズルは、閉塞することなく長期間にわたって安定して二次燃焼用酸素含有ガスを噴射する。 これにより、転炉型精錬容器の地金付着が抑制され、地金付着に伴う弊害が未然に防止されて、鉄歩留まりの向上や生産性の向上が達成される。 また、酸素含有ガス、固体酸素源、及び石灰系脱燐用精錬剤などのフラックスを同一箇所またはそれぞれの近傍に供給することができるので、溶銑及び溶鋼の酸化精錬を効率的に行うことが実現される。 According to the present invention, the top blowing lance is supplied with a powder different from the solid oxygen source, such as a lime-based dephosphorizing refining agent, together with the oxygen-containing gas for blowing through the main hole nozzle. Alternatively, a first supply path for supplying the oxygen-containing gas for blowing through the main hole nozzle, and a second supply path for supplying the oxygen-containing gas for secondary combustion through the nozzle for secondary combustion And a third supply path for supplying the powdered solid oxygen source together with the carrier gas through the sub-hole nozzle. Therefore, even if powder is supplied from the first supply path and the third supply path, only the oxygen-containing gas is injected from the secondary combustion nozzle, and the secondary combustion nozzle is not blocked for a long period of time. The oxygen-containing gas for secondary combustion is stably injected over the entire area. As a result, adhesion of bullion to the converter-type smelting vessel is suppressed, adverse effects due to adhesion of bullion are prevented, and iron yield and productivity are improved. In addition, fluxes such as oxygen-containing gas, solid oxygen source, and lime-based dephosphorizing refining agent can be supplied to the same location or in the vicinity of each, enabling efficient smelting of hot metal and molten steel. Is done.
図1は、本発明に係る精錬用上吹きランスの例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a refining top blowing lance according to the present invention. 図2は、本発明に係る精錬用上吹きランスにおいて、緩衝空間への緩衝用ガスの供給経路を示す図である。FIG. 2 is a diagram showing a buffer gas supply path to the buffer space in the refining top blow lance according to the present invention. 図3は、本発明に係る精錬用上吹きランスの他の例を示す概略断面図である。FIG. 3 is a schematic sectional view showing another example of the refining top blow lance according to the present invention.
 以下、添付図面を参照して本発明を具体的に説明する。 なお、以下に例示されるランスは典型的な例ではあるが、各部位(ノズル、経路など)の形状、寸法、数、位置などはこれに限定されない。 すなわち各部位の目的を適正に実現するために、公知の技術を参考に、実使用環境に合わせて構造を設計することができる。 Hereinafter, the present invention will be specifically described with reference to the accompanying drawings. The lances exemplified below are typical examples, but the shape, size, number, position, etc. of each part (nozzle, path, etc.) are not limited to this. That is, in order to properly realize the purpose of each part, the structure can be designed according to the actual use environment with reference to known techniques.
 図1は、本発明に係る精錬用上吹きランスの1例を示す概略断面図である。 図1に示すように、本発明に係る上吹きランス1は、円筒状のランス本体2と、このランス本体2の下端に溶接などにより接続されたランスノズル3と、ランス本体2の上端部であり、ガス、粉体、冷却水の導入部(ランス本体2の、各々の供給設備との接続部)となるランス頂部4と、で構成されている。 ランス本体2は、最外管5、外管6、中管7、仕切り管8、内管9、最内管10の同心円状の6種の鋼管、即ち六重管で構成されている。 銅製のランスノズル3には、その軸心部に鉛直下向き方向の副孔ノズル12が設置され、この副孔ノズル12の周囲には、吐出方向を鉛直斜め下向き方向とする複数個の主孔ノズル11が設置されている。 また、ランス本体2の側面部には、ランスノズル3の先端部から上方に隔離した位置に、吐出方向を水平または斜め下向き方向とする複数個の二次燃焼用ノズル13が、ランス本体2の円周方向でほぼ等間隔に設置されている。 図1では、鉛直方向に2段であるが、1段であってもまた3段以上としても構わない。 なお、上吹きランス1の先端部から上方に隔離した位置の側面部に水平または斜め下向き方向の二次燃焼用ノズル13を設けるとは、二次燃焼用ノズルからの噴射方向が精錬容器の炉壁に向くようにランス側面部上の位置および向き(角度)を選定することを意味する。 また、ランス先端部に最も近い二次燃焼用ノズル13のランスの先端部からの距離は、一般的な転炉上吹きランスノズル3における冷却水路等の設計制約を勘案して、ランス先端から300mm以上離れていることが好ましい。 FIG. 1 is a schematic cross-sectional view showing an example of a refining top blowing lance according to the present invention. As shown in FIG. 1, an upper blowing lance 1 according to the present invention includes a cylindrical lance main body 2, a lance nozzle 3 connected to the lower end of the lance main body 2 by welding, and the upper end of the lance main body 2. There is a lance top portion 4 that serves as an introduction portion for gas, powder, and cooling water (connection portion of the lance body 2 to each supply facility). The lance body 2 is composed of six kinds of concentric steel pipes, that is, a six-fold pipe, that is, an outermost pipe 5, an outer pipe 6, an intermediate pipe 7, a partition pipe 8, an inner pipe 9, and an innermost pipe 10. The copper lance nozzle 3 is provided with a vertically downward sub-hole nozzle 12 at the axial center thereof, and around the sub-hole nozzle 12, a plurality of main hole nozzles whose discharge direction is a vertically oblique downward direction. 11 is installed. In addition, a plurality of secondary combustion nozzles 13 whose discharge direction is horizontal or obliquely downward is provided on the side surface of the lance body 2 at a position separated upward from the tip of the lance nozzle 3. It is installed at almost equal intervals in the circumferential direction. In FIG. 1, although there are two stages in the vertical direction, it may be one stage or three stages or more. Note that the horizontal or obliquely downward secondary combustion nozzle 13 is provided on the side surface portion at a position separated upward from the tip of the upper blow lance 1 when the injection direction from the secondary combustion nozzle is the furnace of the refining vessel. It means selecting the position and direction (angle) on the side surface of the lance so as to face the wall. The distance from the tip of the lance of the secondary combustion nozzle 13 closest to the tip of the lance is 300 mm from the tip of the lance in consideration of design restrictions such as a cooling water channel in a general converter top blowing lance nozzle 3. It is preferable that they are separated from each other.
 主孔ノズル11は、吹錬用ガスである酸素含有ガス、または、この酸素含有ガスを搬送用ガスとして酸素含有ガスとともに固体酸素源以外のフラックスなどの粉体(「精錬用フラックス」)、つまり石灰系脱燐用精錬剤などの粉体を、転炉などの精錬容器(図示せず)の内部に吹き込むためのノズルである。 副孔ノズル12は、鉄鉱石、ミルスケール(mill scale)などの固体酸素源を搬送用ガスとともに精錬容器の内部に吹き込むためのノズルである。 また、二次燃焼用ノズル13は二次燃焼用の酸素含有ガスを精錬容器の内部空間に吹き込むためのノズルである。 主孔ノズル11は、図1に示すように、先端部になるほど断面が拡大する、所謂ラバールノズル(Laval Nozzle)の形状を採っている。 一方、副孔ノズル12及び二次燃焼用ノズル13はストレート形状であるが、副孔ノズル12及び二次燃焼用ノズル13もラバールノズルの形状を採っても構わない。 この上吹きランス1は、精錬容器の内部に昇降可能となるように、精錬容器の上方で支持装置(図示せず)によって支持されている。 The main hole nozzle 11 is an oxygen-containing gas that is a blowing gas, or a powder ("refining flux") such as a flux other than a solid oxygen source together with the oxygen-containing gas using the oxygen-containing gas as a carrier gas, that is, This is a nozzle for blowing powder such as a lime-based dephosphorizing refining agent into a refining vessel (not shown) such as a converter. The sub-hole nozzle 12 is a nozzle for blowing a solid oxygen source such as iron ore and mill scale into the smelting vessel together with the carrier gas. The secondary combustion nozzle 13 is a nozzle for blowing an oxygen-containing gas for secondary combustion into the internal space of the refining vessel. As shown in FIG. 1, the main hole nozzle 11 has a so-called Laval nozzle that has a cross-section that expands toward the tip. On the other hand, the sub-hole nozzle 12 and the secondary combustion nozzle 13 have a straight shape, but the sub-hole nozzle 12 and the secondary combustion nozzle 13 may also take the shape of a Laval nozzle. The upper blowing lance 1 is supported by a support device (not shown) above the refining vessel so that it can be moved up and down inside the refining vessel.
 図1のランスの場合、主孔ノズル11の設置孔数や口径などの制約は特にないが、上吹きランス1への供給ガス圧などの制約により、必要とする酸素含有ガス供給量から必然的に設置孔数及び口径は決定されるため、これらを満足する範囲内で設定することとする。二次燃焼用ノズル13も、設置孔数や口径などの制約は特にないが、炉形状に応じて付着地金の溶解に適した配置に設定する。 ここで、酸素含有ガスとは、酸素ガス(純酸素ガス)、酸素富化空気、酸素ガスと希ガスなどとの混合ガスであって、且つ、空気よりも酸素ガス濃度が高濃度のガスである。 副孔ノズル12から吹き込む固体酸素源としては、鉄鉱石の焼結鉱、ミルスケール、集塵ダスト、砂鉄、鉄鉱石、マンガン鉱石などを使用することができる。 ここで、集塵ダストとは、高炉、転炉、焼結工程において排気ガスから回収される、FeO或いはFeを含有するダストである。 In the case of the lance of FIG. 1, there are no particular restrictions on the number of installed holes and the diameter of the main hole nozzle 11, but due to restrictions on the supply gas pressure to the top blowing lance 1, it is unavoidable from the required oxygen-containing gas supply amount. Since the number of holes and the diameter of the holes are determined, they should be set within a range that satisfies them. The secondary combustion nozzle 13 is not particularly limited in terms of the number of installed holes and the diameter, but is set to an arrangement suitable for melting the adhered metal depending on the furnace shape. Here, the oxygen-containing gas is a gas having oxygen gas (pure oxygen gas), oxygen-enriched air, a mixed gas of oxygen gas and rare gas, and the oxygen gas concentration is higher than that of air. is there. As the solid oxygen source blown from the sub-hole nozzle 12, iron ore sintered ore, mill scale, dust collection dust, iron sand, iron ore, manganese ore and the like can be used. Here, dust collection dust is dust containing FeO or Fe 2 O 3 that is recovered from exhaust gas in a blast furnace, converter, and sintering process.
 尚、本発明では、石灰系脱燐用精錬剤の1種である生石灰などのフラックスは主孔ノズル11から酸素含有ガスを搬送用ガスとして吹き込むが、同様に、副孔ノズル12からも、固体酸素源に併せて生石灰などのフラックスを吹き込んでも構わない。 当然ながら、副孔ノズル12から噴出される流量、及び、主孔ノズル11から噴出される流量は、各々独立した流量計(図示せず)によって独立して流量制御されている。 In the present invention, a flux such as quick lime, which is a kind of lime-based dephosphorizing refining agent, blows oxygen-containing gas from the main hole nozzle 11 as a carrier gas. A flux such as quick lime may be blown in combination with the oxygen source. Of course, the flow rate ejected from the sub hole nozzle 12 and the flow rate ejected from the main hole nozzle 11 are independently controlled by independent flow meters (not shown).
 最外管5と外管6との間隙、及び、外管6と中管7との間隙は、上吹きランス1を冷却するための冷却水の流路となっている。 そしてランス頂部4に設けられた給水管(図示せず)から供給された冷却水は外管6と中管7との間隙を通ってランスノズル3の部位まで至り、ランスノズル3の部位で反転して最外管5と外管6との間隙を通ってランス頂部4に設けられた排水管(図示せず)から排出される。 給排水の経路を逆としてもよい。 The gap between the outermost pipe 5 and the outer pipe 6 and the gap between the outer pipe 6 and the middle pipe 7 serve as cooling water flow paths for cooling the upper blowing lance 1. Cooling water supplied from a water supply pipe (not shown) provided at the lance top 4 reaches the site of the lance nozzle 3 through the gap between the outer tube 6 and the middle tube 7 and is reversed at the site of the lance nozzle 3. Then, the water is discharged from a drain pipe (not shown) provided on the lance top 4 through a gap between the outermost pipe 5 and the outer pipe 6. The water supply / drainage route may be reversed.
 中管7と仕切り管8との間隙は、酸素含有ガスを二次燃焼用ノズル13へ供給するための第2の供給経路となっている。 そしてランス頂部4に設けられた、中管7に連通する酸素含有ガス供給管14から中管7の内部に導入された酸素含有ガスは、第2の供給経路を通って二次燃焼用ノズル13に至り、二次燃焼用ノズル13から噴出されるようになっている。 但し、仕切り管8の上端部は、酸素含有ガス供給管14の設置部位(酸素含有ガスの導入部)までには至っていない。 すなわち、酸素含有ガス供給管14から中管7の内部に導入された酸素含有ガスは、仕切り管8と内管9との間隙(後述するように、仕切り管8と内管9との間隙は第1の供給経路である)にも流入し、この間隙を通って主孔ノズル11に噴出するようになっている。 また、仕切り管8の下端部は、ランスノズル3の部位までは至っていない。 すなわち、中管7と仕切り管8との間隙、つまり第2の供給経路を通ったものの、二次燃焼用ノズル13から噴出されなかった酸素含有ガスは、第1の供給経路に合流し、主孔ノズル11から噴出するようになっている。 The gap between the middle tube 7 and the partition tube 8 is a second supply path for supplying the oxygen-containing gas to the secondary combustion nozzle 13. The oxygen-containing gas introduced into the inside of the intermediate pipe 7 from the oxygen-containing gas supply pipe 14 that communicates with the intermediate pipe 7 provided at the lance top 4 passes through the second supply path and becomes the secondary combustion nozzle 13. The secondary combustion nozzle 13 is ejected. However, the upper end portion of the partition tube 8 does not reach the installation site of the oxygen-containing gas supply tube 14 (the introduction portion of the oxygen-containing gas). That is, the oxygen-containing gas introduced from the oxygen-containing gas supply pipe 14 into the middle pipe 7 is a gap between the partition pipe 8 and the inner pipe 9 (as described later, the gap between the partition pipe 8 and the inner pipe 9 is Also flows into the first supply path), and is ejected to the main hole nozzle 11 through this gap. Also, the lower end of the partition tube 8 does not reach the lance nozzle 3 part. That is, the oxygen-containing gas that has passed through the gap between the intermediate pipe 7 and the partition pipe 8, that is, the second supply path, but has not been ejected from the secondary combustion nozzle 13 joins the first supply path, It ejects from the hole nozzle 11.
 仕切り管8と内管9との間隙は、吹錬用の酸素含有ガス、または、この酸素含有ガスとともに固体酸素とは異なる粉体(「精錬用フラックス」)、例えば石灰系脱燐用精錬剤などの粉体を、主孔ノズル11へ供給するための第1の供給経路となっている。 つまり、ランス頂部4には、酸素含有ガスを搬送用ガスとして、精錬用フラックスを供給するための粉体供給管15(該供給管の設置部位が精錬用フラックス導入部となる)が、仕切り管8に連通して設けられており、また前述したように酸素含有ガス供給管14(該供給管の設置部位が酸素含有ガス導入部となる)が中管7に連通して設けられている。
 そして主孔ノズル11から吹錬用酸素含有ガスとともに精錬用フラックスを吹き込む場合には、酸素含有ガス供給管14から供給される酸素含有ガスと、粉体供給管15から供給される粉体及び酸素含有ガスとが、合流して第1の供給経路を通るようになっている。この場合、仕切り管8の下端位置は二次燃焼用ノズル13の設置位置よりも下方であるので、第1の供給経路を通る粉体が二次燃焼用ノズル13に流入することはない。 すなわち、仕切り管8は、前記精錬用フラックスが第2の供給経路に混入することを防ぐための仕切り構造として機能する。
 主孔ノズル11から吹錬用酸素含有ガスのみを吹き込む場合には、粉体供給管15を停止するか、粉体供給管15から酸素含有ガスのみを供給すればよい。
 精錬用フラックス、すなわち固体酸素源とは異なる粉体としては、固体酸素源以外で精錬を効率的に実現するために投入される公知の(あるいは予見しうる)全ての固体物質が適用できる。 例えば、前記の石灰系脱燐用精錬剤(生石灰(CaO)や石灰石(CaCO)、またはドロマイト(CaCO・MgCO)、脱炭スラグ、二次精錬スラグなど)の他、スラグの原料(例えば珪石(SiO)、酸化マグネシウムを含むレンガ屑等)や、滓化促進剤(蛍石、酸化チタン、酸化アルミニウムなどを含むもの等)、等々が挙げられる。 なお、通常は、少なくとも石灰系脱燐用精錬剤が精錬用フラックスとして供給される。
The gap between the partition pipe 8 and the inner pipe 9 is an oxygen-containing gas for blowing or a powder different from solid oxygen together with this oxygen-containing gas (“refining flux”), for example, a lime-based dephosphorizing agent. The first supply path for supplying the powder such as to the main hole nozzle 11. In other words, the lance top 4 is provided with a powder supply pipe 15 for supplying a refining flux using oxygen-containing gas as a carrier gas (a portion where the supply pipe is installed serves as a refining flux introduction part). 8 and the oxygen-containing gas supply pipe 14 (the portion where the supply pipe is installed serves as the oxygen-containing gas introduction part) is provided in communication with the middle pipe 7 as described above.
When the refining flux is blown together with the oxygen-containing gas for blowing from the main hole nozzle 11, the oxygen-containing gas supplied from the oxygen-containing gas supply pipe 14, the powder and oxygen supplied from the powder supply pipe 15 The contained gas merges and passes through the first supply path. In this case, since the lower end position of the partition pipe 8 is below the installation position of the secondary combustion nozzle 13, the powder passing through the first supply path does not flow into the secondary combustion nozzle 13. That is, the partition pipe 8 functions as a partition structure for preventing the refining flux from being mixed into the second supply path.
When only the oxygen-containing gas for blowing is blown from the main hole nozzle 11, the powder supply pipe 15 may be stopped or only the oxygen-containing gas may be supplied from the powder supply pipe 15.
As the refining flux, that is, the powder different from the solid oxygen source, all known (or foreseeable) solid substances that are added to efficiently realize refining other than the solid oxygen source can be applied. For example, in addition to the lime-based dephosphorizing refining agent (quick lime (CaO), limestone (CaCO 3 ), dolomite (CaCO 3 .MgCO 3 ), decarburized slag, secondary refining slag, etc.), raw materials for slag ( Examples thereof include silica (SiO 2 ), brick scraps containing magnesium oxide, etc., hatching accelerators (including fluorite, titanium oxide, aluminum oxide, etc.) and the like. In general, at least a lime-based dephosphorizing refining agent is supplied as a refining flux.
 最内管10の内部は、搬送用ガスとともに固体酸素源を副孔ノズル12へ供給するための第3の供給経路となっている。 すなわち、ランス頂部4に設けられた、最内管10に連通する供給管(図示せず)から搬送用ガスとともに最内管10の内部に供給された固体酸素源は、最内管10の内部を通って副孔ノズル12に至り、副孔ノズル12から噴出されるようになっている。 ここで、前記供給官の設置部(図示せず)は、固体酸素源導入部となる。 固体酸素源を搬送する搬送用ガスとしては、酸素含有量が空気以下の気体が好適であり、とくに空気、還元性ガス、炭酸ガス、非酸化性ガス、希ガスのうちの何れか1種または2種以上のガスを使用することが好ましい。 The inside of the innermost pipe 10 is a third supply path for supplying a solid oxygen source to the sub-hole nozzle 12 together with the carrier gas. That is, the solid oxygen source supplied to the inside of the innermost pipe 10 together with the carrier gas from a supply pipe (not shown) provided at the lance top 4 and communicating with the innermost pipe 10 is the inside of the innermost pipe 10. It passes through to the sub-hole nozzle 12 and is ejected from the sub-hole nozzle 12. Here, the installation section (not shown) of the supplier is a solid oxygen source introduction section. As the transport gas for transporting the solid oxygen source, a gas having an oxygen content equal to or lower than air is suitable, and in particular, any one of air, reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas or It is preferable to use two or more gases.
 固体酸素源の搬送用ガスとして、空気、還元性ガス、炭酸ガス、非酸化性ガス、希ガスを使用する理由は以下の通りである。 空気は、主孔ノズル11から吹き込まれる酸素含有ガスに比較して酸素ガスの含有量が少なく、また、還元性ガス、炭酸ガス、非酸化性ガス、希ガスは実質的に酸素ガスを含んでいない。 したがって、固体酸素源に含まれる微量の金属鉄(metallic iron)の搬送中における燃焼を防止することができるとともに、搬送中に固体酸素源と最内管10との接触によって発生する火花による最内管10の燃焼を防止することができる。 ここで、還元性ガスとは、プロパンガスなどの炭化水素系ガス及びCOガスであり、非酸化性ガスとは、窒素ガスなどの酸化能力のないガスであり、希ガスとはArガスやHeガスなどの不活性ガスである。 The reason for using air, reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas as the carrier gas for the solid oxygen source is as follows. The air contains less oxygen gas than the oxygen-containing gas blown from the main hole nozzle 11, and the reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas substantially contain oxygen gas. Not in. Therefore, it is possible to prevent combustion during the transportation of a small amount of metallic iron contained in the solid oxygen source, and the innermost due to the spark generated by the contact between the solid oxygen source and the innermost tube 10 during the transportation. The combustion of the tube 10 can be prevented. Here, the reducing gas is a hydrocarbon gas such as propane gas and CO gas, the non-oxidizing gas is a gas having no oxidizing ability such as nitrogen gas, and the rare gas is Ar gas or He. An inert gas such as a gas.
 内管9と最内管10との間隙は、先端部のランスノズル3の部位で密封されて行き止まりになっていて、ランス頂部4に設けられた緩衝用ガス供給管16から供給される、空気、還元性ガス、炭酸ガス、非酸化性ガス、希ガスのうちの何れか1種または2種以上のガスが存在する緩衝空間となっている。 本発明においては、緩衝空間に存在させるガスを「緩衝用ガス」と称す。 The gap between the inner tube 9 and the innermost tube 10 is sealed at the tip portion of the lance nozzle 3 to make a dead end, and is supplied from a buffer gas supply tube 16 provided on the lance top 4. , A buffer space in which any one or more of reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas is present. In the present invention, the gas present in the buffer space is referred to as “buffer gas”.
 この緩衝空間への緩衝用ガスの供給経路を図2に示す。 図2に示すように、ランス頂部4に設けられた緩衝用ガス供給管16に、検出器(detector)20、遠隔操作弁21、フレキシブルホース22、及び複数の手動遮断弁23を備えた緩衝用ガス導入装置19が接続されている。 そしてこの緩衝用ガス導入装置19を介して緩衝空間へ緩衝用ガスが供給されるようになっている。 検出器20としては、圧力計または流量計、若しくは圧力計及び流量計の双方を設置する。 緩衝空間への緩衝用ガスの導入方法としては、遠隔操作弁21を遮断して緩衝空間に緩衝用ガスを密封してもよいし、また、遠隔操作弁21を開放して緩衝空間に緩衝用ガスの圧力を常に働かせてもよい。 図2の例では、どちらの操作も可能なように構成されている。 尚、フレキシブルホース22は、上吹きランス1が上下に昇降するときの余裕代である。 また、図2の例では検出器20をフレキシブルホース22よりも上吹きランス1に近い側に設置しているが、フレキシブルホース22よりも供給側に設置するなどしてもよく、検出器20をどこの部位に設置しても構わない。但し、緩衝空間の圧力変動の測定値に基づいて破孔を検知する場合には、検出器20を遠隔操作弁21よりも上吹きランス1の側に配置する必要がある。 従って、操業のフレキシビリティの観点から、検出器20は遠隔操作弁21よりも上吹きランス1の側に配置することが好ましい。 The buffer gas supply path to this buffer space is shown in FIG. As shown in FIG. 2, a buffer gas supply pipe 16 provided at the lance top 4 includes a detector 20, a remote control valve 21, a flexible hose 22, and a plurality of manual shut-off valves 23. A gas introduction device 19 is connected. The buffer gas is supplied to the buffer space via the buffer gas introducing device 19. As the detector 20, a pressure gauge or a flow meter, or both a pressure gauge and a flow meter are installed. As a method of introducing the buffer gas into the buffer space, the remote control valve 21 may be shut off and the buffer gas may be sealed in the buffer space, or the remote control valve 21 may be opened to buffer the buffer space. The gas pressure may always be applied. In the example of FIG. 2, it is configured so that both operations are possible. The flexible hose 22 is a margin when the upper blowing lance 1 moves up and down. In the example of FIG. 2, the detector 20 is installed closer to the upper blowing lance 1 than the flexible hose 22, but it may be installed closer to the supply side than the flexible hose 22. It can be installed anywhere. However, when a broken hole is detected based on a measured value of pressure fluctuation in the buffer space, the detector 20 needs to be arranged on the upper blowing lance 1 side than the remote control valve 21. Therefore, from the viewpoint of operational flexibility, the detector 20 is preferably disposed on the upper blowing lance 1 side than the remote control valve 21.
 緩衝用ガスとして、空気、還元性ガス、炭酸ガス、非酸化性ガス、希ガスを使用する理由は、固体酸素源の搬送用ガスとしてこれらのガス種を使用する理由と同一である。 即ち、固体酸素源の搬送によって、この固体酸素源の供給経路つまり第3の供給経路である最内管10に破孔が発生して緩衝用ガスと固体酸素源とが接触しても、これらのガス種を緩衝用ガスとして使用する限り、固体酸素源中の金属鉄の燃焼や、固体酸素源と最内管10との接触によって発生する火花による最内管10の燃焼を防止することができるからである。 したがって、上記以外でも酸素含有量が空気以下の気体であれば緩衝用ガスに用いることが出来る。 The reason for using air, reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas as the buffer gas is the same as the reason for using these gas types as the carrier gas for the solid oxygen source. In other words, even if the buffer gas and the solid oxygen source come into contact with each other even if a hole is generated in the innermost tube 10 which is the supply path of the solid oxygen source, that is, the third supply path, due to the transport of the solid oxygen source As long as this gas species is used as a buffer gas, combustion of metallic iron in the solid oxygen source and combustion of the innermost tube 10 due to sparks generated by contact between the solid oxygen source and the innermost tube 10 can be prevented. Because it can. Therefore, any gas other than the above can be used as a buffer gas as long as the oxygen content is less than air.
 最内管10の精錬中での破孔の検知は、以下のようにして行うことができる。 即ち、精錬中に最内管10に破孔が発生すると、緩衝空間と最内管10の内部とが連通し、緩衝空間内の圧力が変化する、或いは緩衝空間へ供給する緩衝用ガスの流量が変化するので、その変化に基づいて破孔を検知する。 具体的な検知方法としては、以下の2つの方法を採ることができる。 1つの方法は、検出器20として、圧力計または圧力計と流量計との双方を設置し、緩衝空間に緩衝用ガスを導入した後、遠隔操作弁21を遮断して緩衝空間に緩衝用ガスを封入し、精錬中に緩衝空間内の圧力を検出器20により測定して、破孔を検知する方法である。 他の方法は、検出器20として流量計を設置し、遠隔操作弁21を開放して常時緩衝用ガスの圧力を緩衝空間に働かせ、この状態で検出器20により流量を測定し、破孔した場合の流量変化から破孔を検知する方法である。 Detecting broken holes during refining of the innermost pipe 10 can be performed as follows. That is, if a hole breaks in the innermost pipe 10 during refining, the buffer space communicates with the inside of the innermost pipe 10, the pressure in the buffer space changes, or the flow rate of the buffer gas supplied to the buffer space Changes, so a hole is detected based on the change. The following two methods can be taken as specific detection methods. One method is to install a pressure gauge or both a pressure gauge and a flow meter as the detector 20, introduce a buffer gas into the buffer space, shut off the remote control valve 21, and buffer the gas into the buffer space. And the pressure in the buffer space is measured by the detector 20 during refining to detect a broken hole. In another method, a flow meter is installed as the detector 20, the remote control valve 21 is opened, and the pressure of the buffer gas is constantly applied to the buffer space. In this state, the flow rate is measured by the detector 20, and the hole is broken. This is a method for detecting a broken hole from a change in flow rate.
 以下、このようにして構成される本発明に係る上吹きランス1を用いて転炉で溶銑の予備脱燐処理を実施する例を説明する。 Hereinafter, an example in which the hot metal preliminary dephosphorization process is performed in the converter using the upper blow lance 1 according to the present invention configured as described above will be described.
 本発明に係る上吹きランス1を転炉内の溶銑の上方所定位置に配置し、主孔ノズル11から酸素含有ガスとして酸素ガスを溶銑浴面に向けて吹き付ける。 またそれとともに、副孔ノズル12から、空気、還元性ガス、炭酸ガス、非酸化性ガス、希ガスのうちの何れか1種または2種以上のガスを搬送用ガスとして固体酸素源を溶銑浴面に向けて吹き付ける。 副孔ノズル12から吹き付けられる固体酸素源は、酸素ガスが供給されている場所と同一場所の溶銑浴面に、或いはその近傍に供給される。 脱燐処理には、脱燐反応で生成される燐酸化物(P)を吸収するための脱燐精錬用スラグが必要であり、この脱燐精錬用スラグとなる石灰系脱燐用精錬剤も投入する。 The upper blowing lance 1 according to the present invention is disposed at a predetermined position above the hot metal in the converter, and oxygen gas is blown from the main hole nozzle 11 toward the hot metal bath surface as an oxygen-containing gas. At the same time, from the sub-hole nozzle 12, a solid oxygen source is used as a hot metal bath by using any one or more of air, reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas as a carrier gas. Spray toward the surface. The solid oxygen source sprayed from the sub-hole nozzle 12 is supplied to or near the hot metal bath surface where the oxygen gas is supplied. The dephosphorization treatment requires a slag for dephosphorization and refining for absorbing the phosphorus oxide (P 2 O 5 ) produced by the dephosphorization reaction, and the lime-based dephosphorization for slag to be the slag for dephosphorization and refining. Add agent.
 石灰系脱燐用精錬剤としては、CaOを含有し、本件の意図する脱燐処理ができるものであれば、特にCaOの含有量に制約はない。 通常は、CaO単独からなるものや、またはCaOを50質量%以上含有し、必要に応じてその他の成分を含有するものである。具体的な例としては、生石灰(CaO)や石灰石(CaCO)、またはドロマイト(CaCO・MgCO)を使用することができ、更に、これらの物質に滓化促進剤として、酸化チタン、酸化アルミニウム、酸化マグネシウムを含有する物質を混合したものも使用することができる。 また脱炭スラグ(decarburization slag)および取鍋スラグ(ladle refining slag)などもCaOを主成分としており、しかも燐含有量が少ないことから、石灰系脱燐用精錬剤として十分に利用することができる。 The refining agent for lime-based dephosphorization is not particularly limited as long as it contains CaO and can be dephosphorized as intended in the present case. Usually, it consists of CaO alone, or contains 50 mass% or more of CaO, and contains other components as necessary. As specific examples, quick lime (CaO), limestone (CaCO 3 ), or dolomite (CaCO 3 .MgCO 3 ) can be used. Further, as a hatching accelerator for these substances, titanium oxide, oxidation A mixture of materials containing aluminum and magnesium oxide can also be used. In addition, decarburization slag and ladle refining slag are mainly composed of CaO and have a low phosphorus content, so that they can be sufficiently used as a refining agent for lime-based dephosphorization. .
 溶銑浴面において、酸素ガスが溶銑浴面と衝突する場所(「火点」という)は、酸素ガスと溶銑中の炭素との反応によって高温になっており、火点或いは火点の近傍に供給された固体酸素源は迅速に溶融し、スラグ中のFeO成分を増加させる。 これにより、スラグの酸素ポテンシャルが上昇し、つまり脱燐反応に最適なスラグが迅速に形成され、少ないスラグ量であっても、また高温下であっても脱燐処理が可能となる。 また、石灰系脱燐用精錬剤を火点或いは火点の近傍に投入することによって、石灰系脱燐用精錬剤の滓化が促進されて脱燐精錬用スラグが早期に形成され、脱燐反応がより一層促進される。 従って、石灰系脱燐用精錬剤も主孔ノズル11、または主孔ノズル11及び副孔ノズル12を介して、火点或いは火点の近傍に投入することが好ましい。 On the hot metal bath surface, the location where the oxygen gas collides with the hot metal bath surface (referred to as “fire point”) is heated due to the reaction between the oxygen gas and the carbon in the hot metal, and is supplied to or near the fire point. The resulting solid oxygen source melts rapidly and increases the FeO component in the slag. This increases the oxygen potential of the slag, that is, the slag optimum for the dephosphorization reaction is rapidly formed, and the dephosphorization treatment is possible even at a small amount of slag or at a high temperature. Also, by introducing the lime-based dephosphorization refining agent at or near the fire point, the hatching of the lime-based dephosphorization refining agent is promoted, and the dephosphorization refining slag is formed at an early stage. The reaction is further promoted. Therefore, it is preferable to add the lime-based dephosphorizing refining agent to the fire point or the vicinity of the fire point through the main hole nozzle 11 or the main hole nozzle 11 and the sub hole nozzle 12.
 この吹錬の際、二次燃焼用ノズル13から二次燃焼用の酸素ガスを供給し、脱燐精錬と並行して炉体の付着地金を溶解し、或いは地金付着を防止する。 これにより、地金付着に伴う弊害が未然に防止されて、鉄歩留まりの向上や生産性の向上が実現される。 In this blowing, oxygen gas for secondary combustion is supplied from the secondary combustion nozzle 13 to melt the ingot from the furnace body in parallel with the dephosphorization or prevent the adhesion of the ingot. As a result, harmful effects associated with adhesion of bullion can be prevented, and iron yield and productivity can be improved.
 この場合、二次燃焼用ノズル13からの酸素ガスの供給量(Q)は、主孔ノズル11からの酸素ガス供給量(Q)の5~30%の範囲であることが好ましい。 100Q/Qが5%未満では、二次燃焼用の酸素ガスが少なすぎ、二次燃焼発熱量が足りず、付着地金を溶解することができない。 一方、100Q/Qが30%を超えると、二次燃焼発熱熱が過剰となり、炉体耐火物の溶損が促進される。 In this case, the oxygen gas supply amount (Q) from the secondary combustion nozzle 13 is preferably in the range of 5 to 30% of the oxygen gas supply amount (Q O ) from the main hole nozzle 11. When 100 Q / Q 2 O is less than 5%, the amount of oxygen gas for secondary combustion is too small, and the calorific value of secondary combustion is insufficient, so that the adhered metal cannot be dissolved. On the other hand, if 100 Q / Q 2 O exceeds 30%, the secondary combustion exothermic heat becomes excessive and the melting loss of the furnace refractory is promoted.
 また、二次燃焼用ノズル13からの酸素ガスの流速が速くなりすぎ、二次燃焼用ノズル13からの酸素ガスが直接炉壁に到達すると、付着地金が局所的に溶解するのみならず、炉体耐火物が局所的に溶損する。 従って、二次燃焼用ノズル13からの酸素ガス噴流が炉壁に到達するまでの期間に、酸素ガス噴流を炉内で発生するCOガスと反応させ、二次燃焼熱を炉内に均一に分散させることが重要である。 In addition, when the flow rate of the oxygen gas from the secondary combustion nozzle 13 becomes too fast and the oxygen gas from the secondary combustion nozzle 13 directly reaches the furnace wall, not only the adhered metal melts locally, The furnace body refractory melts locally. Therefore, during the period until the oxygen gas jet from the secondary combustion nozzle 13 reaches the furnace wall, the oxygen gas jet reacts with the CO gas generated in the furnace, and the secondary combustion heat is uniformly dispersed in the furnace. It is important to let
 特許文献4に開示されるように、二次燃焼用ノズル13からの酸素ガスの流速が30m/秒まで減衰した時点で、炉内発生COガスと二次燃焼用ノズル13からの酸素ガスとが反応し、二次燃焼反応が生じることが知られている。 二次燃焼用ノズル13から供給される酸素ガスの流速が30m/秒となる、二次燃焼用ノズル13のノズル出口からの距離X(m)は、下記の(1)式で与えられる。 As disclosed in Patent Document 4, when the flow velocity of oxygen gas from the secondary combustion nozzle 13 is attenuated to 30 m / second, the CO gas generated in the furnace and the oxygen gas from the secondary combustion nozzle 13 are reduced. It is known to react and a secondary combustion reaction occurs. The distance X (m) from the nozzle outlet of the secondary combustion nozzle 13 at which the flow rate of the oxygen gas supplied from the secondary combustion nozzle 13 is 30 m / sec is given by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 但し、(1)式において、V:二次燃焼用ノズルの出口における酸素ガス噴流の流速(m/秒)、de:二次燃焼用ノズルの出口径(mm)、C=0.016+0.19/(P−P)、P:二次燃焼用ノズルの絶対圧表示の酸素背圧(kgf/cm)、P:転炉型精錬容器内の絶対圧表示の雰囲気圧(kgf/cm)である。 However, in the formula (1), V 0 : the flow velocity (m / sec) of the oxygen gas jet at the outlet of the secondary combustion nozzle, de: the outlet diameter (mm) of the secondary combustion nozzle, C = 0.016 + 0. 19 / (P 0 -P e ), P 0 : Oxygen back pressure (kgf / cm 2 ) expressed in absolute pressure of the secondary combustion nozzle, P e : Atmospheric pressure (absolute pressure displayed in the converter type refining vessel) kgf / cm 2 ).
 この距離Xが炉壁に到達しないような適切な範囲で上吹きランスの設計及び吹錬条件の制御を行えば、局所的な地金溶解や炉壁耐火物の溶損が回避でき、二次燃焼反応熱を炉内に均一に分散できる。 By designing the top blowing lance and controlling the blowing conditions within an appropriate range so that this distance X does not reach the furnace wall, local melting of the metal and melting of the furnace wall refractory can be avoided. The heat of combustion reaction can be uniformly distributed in the furnace.
 尚、図1に示す上吹きランス1では、仕切り管8の下端部がランスノズル3の部位に至っておらず、第2の供給経路は第1の供給経路に開口している。 このため、二次燃焼用ノズル13から噴出する酸素含有ガスの流量は、主孔ノズル11の総断面積と二次燃焼用ノズル13の総断面積との比に依存し、二次燃焼用ノズル13からの噴出量を独立して制御することはできない。 つまり、酸素含有ガス供給管14及び粉体供給管15から供給される酸素含有ガスの総量が、両者の総断面積の比に応じて配分される。 これを改善して、より高精度の吹錬制御を行うために、二次燃焼用の酸素含有ガス流量を独立して制御するようにすることもできる。 但し、この場合には、上吹きランスの内部構造を図1に示す上吹きランス1とは変える必要がある。 In the upper blow lance 1 shown in FIG. 1, the lower end portion of the partition tube 8 does not reach the lance nozzle 3, and the second supply path opens to the first supply path. Therefore, the flow rate of the oxygen-containing gas ejected from the secondary combustion nozzle 13 depends on the ratio of the total cross-sectional area of the main hole nozzle 11 and the total cross-sectional area of the secondary combustion nozzle 13, and the secondary combustion nozzle The amount of ejection from 13 cannot be controlled independently. That is, the total amount of oxygen-containing gas supplied from the oxygen-containing gas supply pipe 14 and the powder supply pipe 15 is distributed according to the ratio of the total cross-sectional area of both. In order to improve this and perform more accurate blowing control, the oxygen-containing gas flow rate for secondary combustion can be controlled independently. However, in this case, it is necessary to change the internal structure of the upper blowing lance from the upper blowing lance 1 shown in FIG.
 図3に、二次燃焼用の酸素含有ガスの流量を、吹錬用酸素含有ガスとは独立して制御することのできる上吹きランスの例を示す。 FIG. 3 shows an example of an upper blowing lance that can control the flow rate of the oxygen-containing gas for secondary combustion independently of the oxygen-containing gas for blowing.
 図3に示す上吹きランス1Aでは、仕切り管8の下端はランスノズル3の部位まで至り、ランスノズル3の部位で、中管7と仕切り管8との間隙は、つまり第2の供給経路は密封されている。 また、ランス頂部4において、仕切り管8の上端は、中管7の上端位置よりも上方に位置し、中管7と仕切り管8との間に密閉用のシール材が設置されて第2の供給経路は密封されている。 そして、中管7に、酸素含有ガス供給管18が連通されている(該供給管の設置部は酸素含有ガス導入部となる)。 即ち、酸素含有ガス供給管18から中管7の内部に供給された酸素含有ガスは、中管7と仕切り管8との間隙つまり第2の供給経路を通って、二次燃焼用ノズル13から噴出するようになっている。 In the upper blow lance 1A shown in FIG. 3, the lower end of the partition pipe 8 reaches the portion of the lance nozzle 3, where the gap between the middle tube 7 and the partition tube 8 is the second supply path. Sealed. Further, in the lance top 4, the upper end of the partition pipe 8 is located above the upper end position of the middle pipe 7, and a sealing material for sealing is installed between the middle pipe 7 and the partition pipe 8, so that the second The supply path is sealed. The oxygen-containing gas supply pipe 18 communicates with the middle pipe 7 (the installation section of the supply pipe is an oxygen-containing gas introduction section). That is, the oxygen-containing gas supplied from the oxygen-containing gas supply pipe 18 to the inside of the middle pipe 7 passes through the gap between the middle pipe 7 and the partition pipe 8, that is, the second supply path, from the secondary combustion nozzle 13. It comes to erupt.
 一方、ランス頂部4においては、仕切り管8には、酸素含有ガス・粉体供給管17が連通している(該供給管の設置部は精錬用フラックス導入部兼酸素含有ガス導入部となる)。そして、酸素含有ガス・粉体供給管17から仕切り管8の内部に供給された吹錬用の酸素含有ガス、または、酸素含有ガスを搬送用ガスとする精錬用フラックスは、仕切り管8と内管9との間隙つまり第1の供給経路を通って、主孔ノズル11から噴出するようになっている。 主孔ノズル11から酸素含有ガスのみを吹き込む場合には、酸素含有ガス・粉体供給管17から酸素含有ガスのみを供給し、主孔ノズル11から酸素含有ガスを搬送用ガスとして粉体を吹き込む場合には、酸素含有ガス・粉体供給管17から酸素含有ガスとともに粉体を供給する。 上吹きランス1Aは、その他の構造は図1に示す上吹きランス1と同一構造となっており、同一の部分は同一符号により示し、その説明は省略する。 また、この上吹きランス1Aを用いた溶銑の予備脱燐処理も、上吹きランス1を用いた場合に準じて行えばよい。
 なお、吹錬の状況によっては、第2の供給経路を通じて二次燃焼用ノズル13から酸素ガスを噴出する必要がない場合がある。 この場合には、図3に示す上吹きランス1Aにおいては、二次燃焼ノズル13の閉塞を防止するために第2の供給経路から還元性ガス、炭酸ガス、非酸化性ガス、希ガスのうちの何れか1種または2種以上のガスを供給することができるように構成されている。
On the other hand, in the lance top 4, an oxygen-containing gas / powder supply pipe 17 communicates with the partition pipe 8 (the installation section of the supply pipe serves as a refining flux introduction section and an oxygen-containing gas introduction section). . The oxygen-containing gas for blowing supplied from the oxygen-containing gas / powder supply pipe 17 to the inside of the partition pipe 8 or the refining flux using the oxygen-containing gas as the transport gas is separated from the partition pipe 8 and the inside. The gas is ejected from the main hole nozzle 11 through the gap with the pipe 9, that is, through the first supply path. When only the oxygen-containing gas is blown from the main hole nozzle 11, only the oxygen-containing gas is supplied from the oxygen-containing gas / powder supply pipe 17, and the powder is blown from the main hole nozzle 11 using the oxygen-containing gas as a carrier gas. In this case, the powder is supplied together with the oxygen-containing gas from the oxygen-containing gas / powder supply pipe 17. The other structure of the top blowing lance 1A is the same as that of the top blowing lance 1 shown in FIG. 1, and the same parts are denoted by the same reference numerals, and the description thereof is omitted. Further, the preliminary dephosphorization treatment of the hot metal using the upper blowing lance 1A may be performed in accordance with the case where the upper blowing lance 1 is used.
Depending on the state of blowing, it may not be necessary to eject oxygen gas from the secondary combustion nozzle 13 through the second supply path. In this case, in the upper blowing lance 1A shown in FIG. 3, in order to prevent the secondary combustion nozzle 13 from being blocked, among the reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas from the second supply path. Any one of these or two or more gases can be supplied.
 このように、本発明によれば、上吹きランス1,1Aは、その内部に、石灰系脱燐用精錬剤などの、固体酸素源とは異なる粉体を吹錬用の酸素含有ガスとともに主孔ノズル11を通じて供給するか、または、吹錬用の酸素含有ガスを主孔ノズル11を通じて供給するための第1の供給経路と、二次燃焼用の酸素含有ガスを二次燃焼用ノズル13を通じて供給するための第2の供給経路と、粉体状の固体酸素源を搬送用ガスとともに副孔ノズル12を通じて供給するための第3の供給経路と、を有するので、第1の供給経路及び第3の供給経路から粉体を供給しても、二次燃焼用ノズル13からは酸素含有ガスのみが噴射され、二次燃焼用ノズル13は閉塞することなく、長期間にわたって安定して二次燃焼用酸素含有ガスを噴射する。 これにより、転炉型精錬容器の地金付着が抑制され、地金付着に伴う弊害が未然に防止される。 Thus, according to the present invention, the top blowing lances 1, 1 </ b> A mainly contain a powder different from a solid oxygen source, such as a lime-based dephosphorizing refining agent, together with an oxygen-containing gas for blowing. The first supply path for supplying the oxygen-containing gas for blowing through the main nozzle 11 and the oxygen-containing gas for secondary combustion through the nozzle 13 for secondary combustion. Since the second supply path for supplying and the third supply path for supplying the powdered solid oxygen source together with the carrier gas through the sub-hole nozzle 12 are provided, the first supply path and the first supply path Even if the powder is supplied from the supply path 3, only the oxygen-containing gas is injected from the secondary combustion nozzle 13, and the secondary combustion nozzle 13 is not blocked, and the secondary combustion is stable over a long period of time. Oxygen containing gas is injected. This will suppress the adhesion of bullion to the converter-type smelting vessel, and prevent harmful effects associated with adhesion of bullion.
 [実施例1] [Example 1]
 高炉から出銑された溶銑を、必要に応じて高炉鋳床で脱珪処理した後、300トン容量の転炉に搬送し、この転炉で図1に示す上吹きランスを用いて合計4回の予備脱燐処理を実施(本発明例1~4)した。 なお、主孔ノズルは同心円上に均等配列で4本とした。また、二次燃焼用ノズルは円周上に均等配列で上下各8本設け、二次燃焼用ノズルと上吹きランスとの成す角度θ(°)は、二次燃焼用ノズルからの酸素噴流の流速が30m/秒となる、二次燃焼用ノズル13のノズル出口からの距離X(m)が下記の(2)式を満たすようにした。
Figure JPOXMLDOC01-appb-M000002
 ここで、Xは(1)式から定まる、二次燃焼用ノズルのノズル出口からの距離(m)、Hは上吹きランス中心から転炉炉壁までの水平方向の距離(m)である。 また、角度θは二次燃焼用ノズルの中心線と上吹きランスの中心線との成す角度であり、鉛直方向を基準(=0°)としている(0°<θ≦90°)。 従って、Xsinθは二次燃焼用ノズルからの水平方向の噴流到達距離(m)を表している。
 脱燐処理前の溶銑の燐濃度は0.12質量%に統一し、脱燐処理後の溶銑の燐濃度は0.020質量%以下、鉄歩留まりは98%以上を目標とした。 鉄歩留まり(η)は、転炉内に装入した溶銑の質量(W)と鉄スクラップの質量(W)との総質量(W+W)に対して脱燐処理後に出湯した溶銑の質量(W)を百分率で表示(η=100W/(W+W))した値である。
The hot metal discharged from the blast furnace is desiliconized in the blast furnace casting floor as necessary, and then transferred to a 300-ton converter, using the top blow lance shown in FIG. 1 for a total of four times. The preliminary dephosphorization treatment was carried out (Invention Examples 1 to 4). The number of main hole nozzles was four in a uniform arrangement on a concentric circle. In addition, the secondary combustion nozzles are arranged in an evenly arranged manner on the circumference, and each of the eight upper and lower nozzles is provided. The angle θ (°) formed between the secondary combustion nozzle and the upper blowing lance is determined by the oxygen jet flow from the secondary combustion nozzle. The distance X (m) from the nozzle outlet of the secondary combustion nozzle 13 at a flow rate of 30 m / sec was set to satisfy the following formula (2).
Figure JPOXMLDOC01-appb-M000002
Here, X is a distance (m) from the nozzle outlet of the secondary combustion nozzle determined from the equation (1), and H is a horizontal distance (m) from the center of the top blowing lance to the converter furnace wall. The angle θ is an angle formed by the center line of the secondary combustion nozzle and the center line of the upper blowing lance, and the vertical direction is set as a reference (= 0 °) (0 ° <θ ≦ 90 °). Therefore, Xsin θ represents the horizontal jet arrival distance (m) from the secondary combustion nozzle.
The phosphorus concentration in the hot metal before the dephosphorization treatment was unified to 0.12% by mass, the phosphorus concentration in the hot metal after the dephosphorization treatment was set to 0.020% by mass or less, and the iron yield was set to 98% or more. The iron yield (η) is the hot metal discharged after dephosphorization with respect to the total mass (W 0 + W S ) of the mass (W 0 ) of the hot metal charged in the converter and the mass (W S ) of the iron scrap. The mass (W) is expressed as a percentage (η = 100 W / (W 0 + W S )).
 脱燐処理は、酸素含有ガス供給管14から酸素ガスを供給し、粉体供給管15から酸素ガスを搬送用ガスとして生石灰粉(平均粒径1mm以下)を供給し、最内管の内部である第3の供給経路からは窒素ガスを搬送用ガスとして粉体の固体酸素源を供給した。 この場合には、第1の供給経路は酸素ガスと生石灰粉との供給経路となり、第2の供給経路は酸素ガスの供給経路となる。 In the dephosphorization process, oxygen gas is supplied from the oxygen-containing gas supply pipe 14, and quick lime powder (average particle size of 1 mm or less) is supplied from the powder supply pipe 15 as a carrier gas, and inside the innermost pipe. From a certain third supply path, a solid oxygen source in powder form was supplied using nitrogen gas as a carrier gas. In this case, the first supply path is a supply path for oxygen gas and quicklime powder, and the second supply path is a supply path for oxygen gas.
 上吹きランスとは別に、転炉炉上に設けられたホッパーからも塊状の生石灰を炉内に投入した(上吹きランスからの生石灰投入量:炉上ホッパーからの生石灰投入量=8:2)。但し、脱燐用精錬剤として、CaFなどのフッ素化合物は使用しないで脱燐処理した。また、転炉炉底の羽口からは、攪拌用ガスとして窒素ガスを溶銑1トンあたり0.03~0.30Nm/分の流量で吹き込んだ。 Apart from the top blowing lance, lump quick lime was also introduced into the furnace from the hopper provided on the converter furnace (the amount of quick lime input from the top blowing lance: the amount of quick lime input from the furnace hopper = 8: 2) . However, dephosphorization was performed without using a fluorine compound such as CaF 2 as a dephosphorizing refining agent. Further, nitrogen gas was blown from the tuyeres at the bottom of the converter furnace at a flow rate of 0.03 to 0.30 Nm 3 / min per ton of hot metal.
 主孔ノズル及び二次燃焼用ノズルから供給する酸素ガス流量は溶銑1トンあたり0.6~2.5Nm/分とした。酸素ガスの原単位は、脱珪に必要な酸素ガスを除いて12Nm/tとした。 主孔ノズルからの酸素ガス流量(Q)に対する二次燃焼用ノズルからの酸素ガス流量(Q)は、つまり100Q/Qは6%であった。 固体酸素源としては、粉状の鉄鉱石(平均粒度50μm)、砂鉄(平均粒度100μm)、ミルスケール(平均粒度500μm)、鉄鉱石の焼結鉱(平均粒度100μm)のうちの何れか1種を用い、副孔ノズルから吹き付けた。
 最内管及び内管における破孔の有無は、緩衝用ガス流量変化から検知する方式で監視したが、とくに破孔は発生しなかった。
The flow rate of oxygen gas supplied from the main hole nozzle and the secondary combustion nozzle was 0.6 to 2.5 Nm 3 / min per ton of hot metal. The basic unit of oxygen gas was 12 Nm 3 / t excluding oxygen gas necessary for desiliconization. The oxygen gas flow rate (Q) from the secondary combustion nozzle relative to the oxygen gas flow rate (Q 2 O 3 ) from the main hole nozzle, that is, 100 Q / Q 2 O was 6%. As the solid oxygen source, any one of powdered iron ore (average particle size 50 μm), iron sand (average particle size 100 μm), mill scale (average particle size 500 μm), iron ore sintered ore (average particle size 100 μm) Was sprayed from the sub-hole nozzle.
The innermost pipe and the presence or absence of a broken hole in the inner pipe were monitored by a method of detecting from a change in the buffer gas flow rate, but no broken hole was generated.
 また、比較例として、図1に示す上吹きランスの二次燃焼用ノズルを機械的に閉塞し、二次燃焼用の酸素ガスを炉内空間に供給しない脱燐処理も実施(比較例1)した。 比較例のその他の脱燐処理条件は本発明例に準じて行った。 表1に、本発明例及び比較例における脱燐処理前後の溶銑成分及び操業条件を示す。 表1におけるCaO原単位及び固体酸素源使用量は、溶銑1トンあたりの量である。 In addition, as a comparative example, a secondary combustion nozzle of the upper blow lance shown in FIG. 1 is mechanically closed, and a dephosphorization process is performed in which oxygen gas for secondary combustion is not supplied to the furnace space (Comparative Example 1). did. The other dephosphorization treatment conditions of the comparative example were performed according to the examples of the present invention. Table 1 shows the hot metal components and operating conditions before and after the dephosphorization treatment in the inventive examples and the comparative examples. The amount of CaO basic unit and solid oxygen source used in Table 1 is the amount per ton of hot metal.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、上吹きランスからの酸素ガスの吹き付け面の近傍に固体酸素源を供給した全ての本発明例において、脱燐処理後の溶銑中燐濃度は0.020質量%以下になり、且つ、鉄歩留まりは98%以上であった。 これに対して比較例1では、脱燐処理後の溶銑中燐濃度は0.020質量%以下になったが、鉄歩留まりは98%未満であった。すなわち脱燐処理における溶銑のロスは、比較例の2.1%に対して本発明例では1.2~1.7%であり、顕著に改善された。
 [実施例2]
As shown in Table 1, in all the inventive examples in which the solid oxygen source was supplied in the vicinity of the oxygen gas blowing surface from the top blowing lance, the phosphorus concentration in the hot metal after dephosphorization was 0.020% by mass or less. And the iron yield was 98% or more. On the other hand, in Comparative Example 1, the phosphorus concentration in the hot metal after the dephosphorization treatment was 0.020% by mass or less, but the iron yield was less than 98%. That is, the hot metal loss in the dephosphorization treatment was 1.2 to 1.7% in the present invention example compared with 2.1% in the comparative example, which was remarkably improved.
[Example 2]
 高炉から出銑された溶銑を、必要に応じて高炉鋳床で脱珪処理した後、300トン容量の転炉に搬送し、この転炉で図3に示す上吹きランスを用いて合計2回の予備脱燐処理を実施(本発明例5~6)した。 The hot metal discharged from the blast furnace is desiliconized in the blast furnace casting floor as necessary, and then transferred to a 300-ton converter, using the top blow lance shown in FIG. 3 twice in total. The preliminary dephosphorization treatment was carried out (Invention Examples 5 to 6).
 脱燐処理中、二次燃焼用ノズルからの酸素ガス流量を一定に制御した結果、主孔ノズルからの酸素ガス流量(Q)に対する二次燃焼用ノズルからの酸素ガス流量(Q)は、つまり100Q/Qは12%であった。 この場合もXsinθが前記式(2)を満たす範囲であることを確認した。 その他の脱燐処理条件は、実施例1と同一条件とした。 表2に、脱燐処理前後の溶銑成分及び操業条件を示す。 表2におけるCaO原単位及び固体酸素源使用量は、溶銑1トンあたりの量であり、また、鉄歩留まりの定義は実施例1と同一である。 As a result of controlling the oxygen gas flow rate from the secondary combustion nozzle constant during the dephosphorization process, the oxygen gas flow rate (Q) from the secondary combustion nozzle to the oxygen gas flow rate (Q O ) from the main hole nozzle is: That 100Q / Q O was 12%. Also in this case, it was confirmed that Xsin θ was in a range satisfying the formula (2). Other dephosphorization conditions were the same as those in Example 1. Table 2 shows hot metal components and operating conditions before and after the dephosphorization treatment. The CaO basic unit and the amount of solid oxygen source used in Table 2 are amounts per ton of hot metal, and the definition of iron yield is the same as in Example 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2に示すように、二次燃焼用ノズルからの酸素ガス流量が実施例1に比較して増加したことから、二次燃焼発熱量が増加し、地金付着が更に抑制されて、脱燐処理における鉄歩留まりは、ほぼ99%(すなわち溶銑ロスがほぼ1%)となり、更に高位になることが確認できた。
 [実施例3]
As shown in Table 2, since the oxygen gas flow rate from the secondary combustion nozzle increased as compared with Example 1, the secondary combustion heat generation amount increased, the adhesion of the metal was further suppressed, and dephosphorization was achieved. The iron yield in the treatment was almost 99% (that is, the hot metal loss was almost 1%), and it was confirmed that the iron yield was further increased.
[Example 3]
 高炉から出銑された溶銑を、必要に応じて高炉鋳床で脱珪処理した後、350トン容量の転炉に搬送し、この転炉で図1および図3に示す上吹きランスを用いて予備脱燐処理を実施(本発明例7~8)した。 The hot metal discharged from the blast furnace is desiliconized in a blast furnace casting floor as necessary, and then transferred to a 350-ton capacity converter using the top blowing lance shown in FIGS. 1 and 3. Preliminary dephosphorization was performed (Invention Examples 7 to 8).
 転炉炉底の羽口から攪拌用ガスとして酸素ガスを溶銑1トンあたり0.3Nm/分の流量で吹き込んだ。 炉底の羽口は二重管構造とし、内管から酸素ガスを、外管からは酸素ガスの流量に応じて冷却ガスとしてプロパンガスを、それぞれ吹き込んだ。 固体酸素源としては、鉄鉱石の焼結鉱(平均粒度100μm)を溶銑1トンあたり6kg用い、上吹きランスの副孔ノズルから吹き付けた。 二次燃焼ノズルからの酸素噴流の条件は前記式(2)を満たす範囲とした。その他の脱燐処理条件は、実施例1と同一条件とした。 Oxygen gas was blown from the tuyeres at the bottom of the converter furnace as a stirring gas at a flow rate of 0.3 Nm 3 / min per ton of hot metal. The tuyeres at the bottom of the furnace had a double tube structure, and oxygen gas was blown from the inner tube and propane gas was blown from the outer tube as a cooling gas according to the flow rate of oxygen gas. As a solid oxygen source, 6 kg of iron ore sintered ore (average particle size 100 μm) was used per 1 ton of hot metal, and sprayed from the sub-hole nozzle of the top blowing lance. The condition of the oxygen jet from the secondary combustion nozzle was set in a range satisfying the formula (2). Other dephosphorization conditions were the same as those in Example 1.
 また、比較例として、図1に示す上吹きランスの二次燃焼用ノズルを機械的に閉塞し、二次燃焼用の酸素ガスを炉内空間に供給しない脱燐処理も実施(比較例2)した。 比較例のその他の脱燐処理条件は本発明例に準じて行った。 In addition, as a comparative example, a dephosphorization process is performed in which the secondary combustion nozzle of the upper blow lance shown in FIG. 1 is mechanically closed and oxygen gas for secondary combustion is not supplied to the furnace space (Comparative Example 2). did. The other dephosphorization treatment conditions of the comparative example were performed according to the examples of the present invention.
 表3に、脱燐処理前後の溶銑成分及び操業条件を示す。 脱燐処理中の主孔ノズルからの酸素ガス流量(Q)に対する二次燃焼用ノズルからの酸素ガス流量(Q)、つまり100Q/Qも併せて示した。 表3におけるCaO原単位は、溶銑1トンあたりの量であり、また、銖歩留まりの定義は実施例1と同一である。 Table 3 shows hot metal components and operating conditions before and after the dephosphorization treatment. The oxygen gas flow rate (Q) from the secondary combustion nozzle to the oxygen gas flow rate (Q O ) from the main hole nozzle during the dephosphorization process, that is, 100 Q / Q O is also shown. The basic unit of CaO in Table 3 is the amount per 1 ton of hot metal, and the definition of the yield rate is the same as in Example 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3に示すように、底吹き羽口から酸素ガスを吹き込む強撹拌条件においても、二次燃焼発熱量の増加により、地金付着が更に抑制されて、脱燐処理における鉄歩留まりが更に高位になることが確認できた。
 [実施例4]
As shown in Table 3, even under strong stirring conditions in which oxygen gas is blown from the bottom blowing tuyere, the increase in the secondary combustion heat generation further suppresses the adhesion of the metal, and the iron yield in the dephosphorization process is further increased. It was confirmed that
[Example 4]
 高炉から出銑された溶銑を300トン容量の転炉に搬送し、この転炉で図3に示す上吹きランスを用いて、脱炭脱燐処理を実施して溶鋼を溶製(本発明例9)した。 溶銑の脱炭精錬では、生成する炉内のスラグの塩基度を高めることによって脱燐反応も並行して起こる。
 脱炭脱燐処理は、酸素含有ガス供給管18から酸素ガスを供給し、酸素含有ガス・粉体供給管17から酸素ガスを搬送用ガスとして生石灰粉(平均粒径1mm以下)を供給し、最内管の内部である第3の供給経路からはアルゴンガスを搬送用ガスとして粉体の固体酸素源を供給した。
The hot metal discharged from the blast furnace is transported to a converter with a capacity of 300 tons, and the converter is decarburized and dephosphorized using the top blowing lance shown in FIG. 9) In hot metal decarburization refining, dephosphorization occurs in parallel by increasing the basicity of the slag in the furnace.
In the decarburization and dephosphorization treatment, oxygen gas is supplied from the oxygen-containing gas supply pipe 18, and quick lime powder (average particle size of 1 mm or less) is supplied from the oxygen-containing gas / powder supply pipe 17 using oxygen gas as a carrier gas. From a third supply path inside the innermost tube, a solid oxygen source in powder form was supplied using argon gas as a carrier gas.
 上吹きランスとは別に、転炉炉上に設けられたホッパーからも塊状の生石灰を炉内に投入した。 但し、精錬剤として、CaFなどのフッ素化合物は使用しないで脱炭脱燐処理した。 また、転炉炉底の羽口からは、攪拌用ガスとしてアルゴンガスを溶銑1トンあたり0.15Nm/分の流量で吹き込んだ。 Apart from the top blowing lance, massive quicklime was put into the furnace from a hopper provided on the converter furnace. However, decarburization and dephosphorization were performed without using a fluorine compound such as CaF 2 as a refining agent. Further, argon gas was blown from the tuyeres at the bottom of the converter furnace as a stirring gas at a flow rate of 0.15 Nm 3 / min per ton of hot metal.
 主孔ノズルから供給する酸素ガス流量は溶銑1トンあたり3.2Nm/分とした。 二次燃焼用ノズルからは、吹錬開始から終了までの時間のうちの前半に酸素ガスを供給し、後半にArガスを供給した。 主孔ノズルからの酸素ガス流量(Q)に対する二次燃焼用ノズルからの酸素ガス流量(Q)は5%であった。 二次燃焼ノズルからの酸素噴流の条件は前記式(2)を満たす範囲であることを確認した。固体酸素源としては、鉄鉱石の焼結鉱(平均粒度100μm)を溶銑1トンあたり6kg用い、副孔ノズルから吹き付けた。 The flow rate of oxygen gas supplied from the main hole nozzle was 3.2 Nm 3 / min per ton of hot metal. From the secondary combustion nozzle, oxygen gas was supplied in the first half of the time from the start to the end of blowing and Ar gas was supplied in the second half. The oxygen gas flow rate (Q) from the secondary combustion nozzle with respect to the oxygen gas flow rate (Q O ) from the main hole nozzle was 5%. It was confirmed that the condition of the oxygen jet from the secondary combustion nozzle was in a range satisfying the formula (2). As the solid oxygen source, 6 kg of iron ore sintered ore (average particle size 100 μm) was used per 1 ton of hot metal, and sprayed from the sub-hole nozzle.
 また、比較例として、図3に示す上吹きランスの二次燃焼用ノズルを機械的に閉塞し、二次燃焼用の酸素ガスを炉内空間に供給しない脱燐処理も実施(比較例3)した。 比較例のその他の脱炭脱燐処理条件は本発明例に準じて行った。 Further, as a comparative example, a dephosphorization process is performed in which the secondary combustion nozzle of the upper blow lance shown in FIG. 3 is mechanically closed and oxygen gas for secondary combustion is not supplied to the furnace space (Comparative Example 3). did. The other decarburization and dephosphorization treatment conditions of the comparative example were performed in accordance with the present invention.
 表4に、本発明例及び比較例における脱燐処理前後の溶銑成分及び操業条件を示す。表4におけるCaO原単位及び固体酸素源使用量は、溶銑1トンあたりの量である。 鉄歩留まり(η)は、転炉内に装入した溶銑の質量(W)と鉄スクラップの質量(W)との総質量(W+W)に対して脱炭脱燐処理後に出湯した溶鋼の質量(W)を百分率で表示(η=100W/(W+W))した値である。 Table 4 shows the hot metal components and operating conditions before and after the dephosphorization treatment in the examples of the present invention and comparative examples. The amount of CaO basic unit and solid oxygen source used in Table 4 is the amount per ton of hot metal. The iron yield (η) is the tapping hot water after decarburization and dephosphorization with respect to the total mass (W 0 + W S ) of the mass of molten iron (W 0 ) charged in the converter and the mass of iron scrap (W S ). It is the value which expressed the mass (W I ) of the molten steel as a percentage (η = 100 W I / (W 0 + W S )).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-I000007
 表4に示すように、本発明例9の鉄歩留まりは比較例3に対してわずかに優位であった。すなわち高温処理であって地金付着の少ない条件下であっても、部分的に二次燃焼を援用することで、歩留まりを改善することができる。 As shown in Table 4, the iron yield of Invention Example 9 was slightly superior to that of Comparative Example 3. That is, even under conditions of high-temperature treatment and less metal adhesion, the yield can be improved by partially using secondary combustion.
 本発明によれば、上吹きランスは、第1の供給経路及び第3の供給経路から粉体を供給しても、二次燃焼用ノズルからは酸素含有ガスのみが噴射され、二次燃焼用ノズルは、閉塞することなく長期間にわたって安定して二次燃焼用酸素含有ガスを噴射する。 これにより、転炉型精錬容器の地金付着が抑制され、地金付着に伴う弊害が未然に防止されて、鉄歩留まりの向上や生産性の向上が達成される。 また、酸素含有ガス、固体酸素源、及び石灰系脱燐用精錬剤などのフラックスを同一箇所またはそれぞれの近傍に供給することができるので、溶銑及び溶鋼の酸化精錬を効率的に行うことが実現される。 According to the present invention, even if the top blowing lance supplies powder from the first supply path and the third supply path, only the oxygen-containing gas is injected from the secondary combustion nozzle, The nozzle stably injects the oxygen-containing gas for secondary combustion over a long period of time without clogging. As a result, adhesion of bullion to the converter-type smelting vessel is suppressed, adverse effects due to adhesion of bullion are prevented, and iron yield and productivity are improved. In addition, fluxes such as oxygen-containing gas, solid oxygen source, and lime-based dephosphorizing refining agent can be supplied to the same location or in the vicinity of each, enabling efficient smelting of hot metal and molten steel. Is done.
 1 上吹きランス
 1A 上吹きランス
 2 ランス本体
 3 ランスノズル
 4 ランス頂部
 5 最外管
 6 外管
 7 中管
 8 仕切り管
 9 内管
 10 最内管
 11 主孔ノズル
 12 副孔ノズル
 13 二次燃焼用ノズル
 14 酸素含有ガス供給管
 15 粉体供給管
 16 緩衝用ガス供給管
 17 酸素含有ガス・粉体供給管
 18 酸素含有ガス供給管
 19 緩衝用ガス導入装置
 20 検出器
 21 遠隔操作弁
 22 フレキシブルホース
 23 手動遮断弁
DESCRIPTION OF SYMBOLS 1 Top blowing lance 1A Top blowing lance 2 Lance main body 3 Lance nozzle 4 Lance top part 5 Outermost pipe 6 Outer pipe 7 Middle pipe 8 Partition pipe 9 Inner pipe 10 Innermost pipe 11 Main hole nozzle 12 Subhole nozzle 13 For secondary combustion Nozzle 14 Oxygen-containing gas supply pipe 15 Powder supply pipe 16 Buffer gas supply pipe 17 Oxygen-containing gas / powder supply pipe 18 Oxygen-containing gas supply pipe 19 Buffer gas introduction device 20 Detector 21 Remote control valve 22 Flexible hose 23 Manual shut-off valve

Claims (7)

  1.  転炉型精錬容器に収容された溶銑または溶鋼の酸化精錬に使用する精錬用上吹きランスであって、
     上吹きランスの先端部に、鉛直下向きまたは斜め下向き方向の吹錬用主孔ノズル及び固体酸素源吹き込み用副孔ノズルを有し、
     前記先端部から上方に隔離した位置の上吹きランスの側面部に、水平または斜め下向き方向の二次燃焼用ノズルを有し、
     且つ、上吹きランスの内部には、
     固体酸素源とは異なる粉体を吹錬用の酸素含有ガスとともに前記主孔ノズルを通じて供給するか、または、吹錬用の酸素含有ガスを前記主孔ノズルを通じて供給するための第1の供給経路と、
     二次燃焼用の酸素含有ガスを前記二次燃焼用ノズルを通じて供給するための第2の供給経路と、
     粉体状の固体酸素源を搬送用ガスとともに前記副孔ノズルを通じて供給するための第3の供給経路と、
     を有する精錬用上吹きランス。
    An upper blow lance for refining used for oxidation refining of hot metal or molten steel contained in a converter type refining vessel,
    At the front end of the upper blowing lance, there is a main hole nozzle for blowing downward and an obliquely downward direction and a sub hole nozzle for blowing a solid oxygen source,
    On the side surface portion of the upper blowing lance at a position separated upward from the tip portion, there is a nozzle for secondary combustion in a horizontal or obliquely downward direction,
    And inside the top blowing lance,
    A first supply path for supplying a powder different from the solid oxygen source together with the oxygen-containing gas for blowing through the main hole nozzle or supplying the oxygen-containing gas for blowing through the main hole nozzle When,
    A second supply path for supplying an oxygen-containing gas for secondary combustion through the secondary combustion nozzle;
    A third supply path for supplying a powdered solid oxygen source together with a carrier gas through the sub-hole nozzle;
    Refining top blow lance.
  2.  前記第2の供給経路の末端は閉ざされていて、第2の供給経路で供給される酸素含有ガスが第1の供給経路及び第3の供給経路に合流しないように構成されている、請求項1に記載の精錬用上吹きランス。 The terminal of the second supply path is closed, and the oxygen-containing gas supplied through the second supply path is configured not to join the first supply path and the third supply path. The top blowing lance for refining according to 1.
  3.  前記第2の供給経路に還元性ガス、炭酸ガス、非酸化性ガス、希ガスのうちの何れか1種または2種以上のガスを供給するように構成されている、請求項2に記載の精錬用上吹きランス。 3. The apparatus according to claim 2, wherein one or more of a reducing gas, a carbon dioxide gas, a non-oxidizing gas, and a rare gas are supplied to the second supply path. Top blow lance for refining.
  4.  前記第3の供給経路の周囲に、空気、還元性ガス、炭酸ガス、非酸化性ガス、希ガスのうちの何れか1種または2種以上のガスが存在する緩衝空間が備えられ、該緩衝空間に存在するガスの圧力または流量の変化に基づいて第3の供給経路での破孔が検知されるように構成されている、請求項1ないし請求項3の何れか1項に記載の精錬用上吹きランス。 Around the third supply path, a buffer space in which any one or two or more gases of air, reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas are present is provided. The refining according to any one of claims 1 to 3, wherein a hole in the third supply path is detected based on a change in pressure or flow rate of gas existing in the space. Top blowing lance.
  5.  前記第1の供給経路、前記第2の供給経路および前記第3の供給経路が同心円上に配置されていることを特徴とする、請求項1ないし請求項3の何れか1項に記載の精錬用上吹きランス。 The refining according to any one of claims 1 to 3, wherein the first supply path, the second supply path, and the third supply path are arranged concentrically. Top blowing lance.
  6.  前記第1の供給経路、前記第2の供給経路および前記第3の供給経路が同心円上に配置されている、請求項4に記載の精錬用上吹きランス。 The upper blow lance for refining according to claim 4, wherein the first supply path, the second supply path, and the third supply path are arranged concentrically.
  7.  石灰系脱燐用精錬剤を転炉型精錬容器に収容された溶銑に添加し、添加した前記脱燐用精錬剤を滓化させてスラグとなし、溶銑に対して酸化精錬を実施するにあたり、
     請求項1ないし請求項6の何れか1項に記載の精錬用上吹きランスを用い、第1の供給経路から吹錬用の酸素ガスを溶銑浴面に供給すると同時に、第3の供給経路から固体酸素源を吹錬用の酸素ガスが供給されている場所の近傍の溶銑浴面に搬送用ガスとともに供給し、更に、第2の供給経路から二次燃焼用酸素ガスを転炉型精錬容器の炉内空間に供給して酸化精錬を行う、溶銑の精錬方法。
    When adding the lime-based dephosphorizing refining agent to the hot metal contained in the converter-type refining vessel, the added dephosphorizing refining agent is hatched to form slag, and when carrying out oxidation refining on the hot metal,
    Using the upper blowing lance for refining according to any one of claims 1 to 6, the oxygen gas for blowing is supplied from the first supply path to the hot metal bath surface, and at the same time from the third supply path. A solid oxygen source is supplied together with the transfer gas to the hot metal bath surface near the place where the oxygen gas for blowing is supplied, and further, the secondary combustion oxygen gas is supplied from the second supply path to the converter type refining vessel. A hot metal refining method in which oxidation refining is performed by supplying it to the furnace space.
PCT/JP2010/069118 2009-10-22 2010-10-21 Top lance for refining and method for refining molten iron using same WO2011049240A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112012009231-6A BR112012009231B1 (en) 2009-10-22 2010-10-21 HOT METAL REFINING METHOD USING TOP BOOM
KR1020127010192A KR101346726B1 (en) 2009-10-22 2010-10-21 Method for refining molten iron
CN201080047492.XA CN102575306B (en) 2009-10-22 2010-10-21 Top lance for refining and method for refining molten iron using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009243268 2009-10-22
JP2009-243268 2009-10-22
JP2010233357A JP5644355B2 (en) 2009-10-22 2010-10-18 Hot metal refining method
JP2010-233357 2010-10-18

Publications (1)

Publication Number Publication Date
WO2011049240A1 true WO2011049240A1 (en) 2011-04-28

Family

ID=43900460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069118 WO2011049240A1 (en) 2009-10-22 2010-10-21 Top lance for refining and method for refining molten iron using same

Country Status (6)

Country Link
JP (1) JP5644355B2 (en)
KR (1) KR101346726B1 (en)
CN (1) CN102575306B (en)
BR (1) BR112012009231B1 (en)
TW (1) TWI448555B (en)
WO (1) WO2011049240A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021229422A1 (en) * 2020-05-11 2021-11-18 Arcelormittal Stirring method of liquid metal and associated device
CN114369728A (en) * 2021-12-07 2022-04-19 广西金川有色金属有限公司 Top-blown oxidation-reduction method for refining furnace

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101529843B1 (en) * 2011-12-20 2015-06-17 제이에프이 스틸 가부시키가이샤 Converter steelmaking method
JP5915568B2 (en) * 2012-03-01 2016-05-11 Jfeスチール株式会社 Method of refining hot metal in converter type refining furnace
US9732393B2 (en) * 2012-07-10 2017-08-15 Lumar Metals Ltda. Blowing spear for fabrication of metals and maintenance of loading and blowing operational conditions
JP2017002331A (en) * 2015-06-04 2017-01-05 株式会社神戸製鋼所 Method for supplying solid oxygen source in dephosphorization treatment of molten iron
CN106086289B (en) * 2016-08-01 2018-05-29 朱荣 A kind of method for making steel and device of the smelting stainless steel mother liquid that dusted using top blow oxygen lance
KR101798844B1 (en) * 2016-09-02 2017-11-17 주식회사 포스코 Lance and the converter operation method using the same
JP6702369B2 (en) * 2017-09-15 2020-06-03 Jfeスチール株式会社 Dephosphorization treatment method
US11293069B2 (en) 2017-12-22 2022-04-05 Jfe Steel Corporation Method for oxygen-blowing refining of molten iron and top-blowing lance
KR102556136B1 (en) 2019-04-05 2023-07-14 제이에프이 스틸 가부시키가이샤 Refining vessel of hot melt

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208407A (en) * 2007-02-26 2008-09-11 Jfe Steel Kk Top-blowing lance for refining and method for detecting broken hole on top-blowing lance for refining
JP2009174029A (en) * 2008-01-28 2009-08-06 Jfe Steel Corp Method for operating converter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5866712A (en) * 1981-10-16 1983-04-21 Nippon Zeon Co Ltd Corrosion preventing method for incidental equipment of fluidized bed incinerator
US7600489B2 (en) * 2004-03-04 2009-10-13 H2Gen Innovations, Inc. Heat exchanger having plural tubular arrays

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208407A (en) * 2007-02-26 2008-09-11 Jfe Steel Kk Top-blowing lance for refining and method for detecting broken hole on top-blowing lance for refining
JP2009174029A (en) * 2008-01-28 2009-08-06 Jfe Steel Corp Method for operating converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021229422A1 (en) * 2020-05-11 2021-11-18 Arcelormittal Stirring method of liquid metal and associated device
WO2021229263A1 (en) * 2020-05-11 2021-11-18 Arcelormittal Stirring method of liquid metal and associated device
CN114369728A (en) * 2021-12-07 2022-04-19 广西金川有色金属有限公司 Top-blown oxidation-reduction method for refining furnace
CN114369728B (en) * 2021-12-07 2023-09-01 广西金川有色金属有限公司 Top-blown oxidation-reduction method for refining furnace

Also Published As

Publication number Publication date
KR101346726B1 (en) 2014-01-02
TW201130989A (en) 2011-09-16
BR112012009231B1 (en) 2021-06-01
CN102575306A (en) 2012-07-11
BR112012009231A2 (en) 2016-08-23
CN102575306B (en) 2014-10-01
TWI448555B (en) 2014-08-11
KR20120064710A (en) 2012-06-19
JP5644355B2 (en) 2014-12-24
JP2011106028A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
JP5644355B2 (en) Hot metal refining method
US9580764B2 (en) Top-blowing lance and method for refining molten iron using the same
US6558614B1 (en) Method for producing a metal melt and corresponding multifunction lance
US9493854B2 (en) Converter steelmaking method
JP6036172B2 (en) Method of refining hot metal in converter
KR101018535B1 (en) Refining ferroalloys
JP4715384B2 (en) Method for dephosphorizing hot metal and top blowing lance for dephosphorization
JP5834980B2 (en) Manufacturing method of molten steel
JP2006348331A (en) Top-blowing lance for refining molten metal, and blowing method for molten metal
JPH1180825A (en) Top-blown lance for converter refining and converter refining method by using this
JP5471151B2 (en) Converter steelmaking method
JP2013209703A (en) Refining method of molten iron
WO2007055404A1 (en) Method of hot metal dephosphorization treatment
JP2019002045A (en) Top blown lance for refining and method for refining molten iron
JP5915568B2 (en) Method of refining hot metal in converter type refining furnace
JP6051561B2 (en) Manufacturing method of molten steel
JP2005089839A (en) Method for refining molten steel
JP5928095B2 (en) Method for refining molten iron
ZA200108634B (en) Method of decarburisation and dephosphorisation of a molten metal.
JP6327298B2 (en) Hot metal refining method
JPS61227119A (en) Manufacture of steel in converter using cold material containing iron as principal starting material
JP2013209737A (en) Method for producing molten steel
JPH03111507A (en) Method and apparatus for producing molten ferrous alloy

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047492.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825087

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12012500625

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2898/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127010192

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10825087

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012009231

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012009231

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120419