WO2007055404A1 - Method of hot metal dephosphorization treatment - Google Patents

Method of hot metal dephosphorization treatment Download PDF

Info

Publication number
WO2007055404A1
WO2007055404A1 PCT/JP2006/322792 JP2006322792W WO2007055404A1 WO 2007055404 A1 WO2007055404 A1 WO 2007055404A1 JP 2006322792 W JP2006322792 W JP 2006322792W WO 2007055404 A1 WO2007055404 A1 WO 2007055404A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot metal
oxygen source
dephosphorization
gas
supplied
Prior art date
Application number
PCT/JP2006/322792
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichi Uchida
Masaru Washio
Akihiko Inoue
Yasunori Muraki
Yasuo Kishimoto
Shotaro Fujiki
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to CN2006800418425A priority Critical patent/CN101305105B/en
Publication of WO2007055404A1 publication Critical patent/WO2007055404A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • C21C1/025Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Definitions

  • the present invention relates to a hot metal dephosphorization method, and more particularly, to a method for efficiently dephosphorizing hot metal with a high iron yield without using a fluorine source as a solvent. .
  • hot metal pretreatment such as phosphorus treatment or hot metal desulfurization treatment in which S contained in the hot metal is removed under a reducing atmosphere with a desulfurizing agent is generally performed.
  • the main dephosphorizing agent is lime.
  • the amount of dephosphorization required while reducing the amount of lime used is required. That is, a technology that efficiently removes phosphorous with a small amount of lime is required.
  • a technique using another solvent (a hatching accelerator) as a substitute for fluorite has been proposed.
  • a medium solvent containing aluminum oxide is used as a substitute for fluorite in decarburization or dephosphorization of hot metal.
  • a method has been proposed.
  • the aluminum oxide proposed as a substitute for fluorite in Japanese Patent Laid-Open No. 2 0 0 2-3 0 9 3 1 2 promotes slag hatching but has the effect of increasing the viscosity of the slag. ing.
  • JP-A 2 0 0 0-1 4 4 2 2 6 discloses quick lime, iron oxide and Z or oxygen gas.
  • Technology that consists of supplying a treatment agent with a specified CaO / O ratio to the same location of the molten iron at the same time, that is, quick lime is applied to the collision part (called "fire point") between the oxygen gas and the molten metal surface.
  • fired point the collision part between the oxygen gas and the molten metal surface.
  • Japanese Patent Laid-Open No. 2 0 3-3 2 8 0 2 when oxygen gas is used as a carrier gas and a lime-containing refinement agent is blown, the collision between the oxygen gas and the molten metal surface occurs. It has been introduced that the protrusions, that is, the hot spots, become hot and the lime hatches.
  • Japanese Patent Laid-Open No. 20 0 3-3 2 8 0 2 in addition, in order to avoid a slowing of the progress of the dephosphorization reaction due to a high hot point, a nematic agent containing an endothermic substance is It has been proposed to improve the dephosphorization efficiency at the hot spot.
  • the present invention has been made in view of the above circumstances, and the object of the present invention is to use a small amount of lime without using a fluorine-containing medium solvent for dephosphorizing molten iron. It is an object of the present invention to provide a hot metal dephosphorization method that can dephosphorize at a dephosphorization efficiency and iron yield equivalent to those of conventional methods, which is more advantageous than previously proposed.
  • the method for dephosphorizing hot metal according to the first aspect of the invention for solving the above problem comprises adding a dephosphorizing agent mainly composed of CaO to the hot metal and degassing mainly composed of added CaO.
  • a gaseous oxygen source is supplied from one supply system to the molten iron bath surface, and the other one It is characterized by supplying the solid oxygen source from the supply system to the hot metal bath surface near the place where the gaseous oxygen source is supplied, using a carrier gas.
  • the hot metal dephosphorization method according to the second invention is characterized in that, in the first invention, the respective supply systems of the gaseous oxygen source and the solid oxygen source are arranged in the same lance. .
  • a hot metal dephosphorization method according to the first or second aspect, wherein a dephosphorizing agent mainly composed of CaO is added through the gas oxygen source supply system.
  • the gaseous oxygen source is supplied to the hot metal bath surface.
  • a hot metal dephosphorization method according to any one of the first to third aspects, wherein the transport gas for the solid oxygen source is air, reducing gas, carbon dioxide gas, non-oxidizing gas. It is one or two or more gases of gas and rare gas, and has an oxygen concentration lower than that of the gaseous oxygen source.
  • a hot metal dephosphorization method according to any one of the first to fourth aspects, wherein the solid oxygen source is a sintered ore, a mill scale, a dust collecting dust having a particle size of 1 mm or less. It is characterized by being one or more of iron, iron sand and iron ore.
  • a dephosphorization method for hot metal wherein a dephosphorizing agent mainly composed of CaO is added to a hot metal together with an oxygen source in a converter, and the added CaO is added.
  • the main dephosphorizing fertilizer is hatched to form slag, and the hot metal dephosphorization process is used.
  • a dephosphorizing agent composed mainly of CaO is supplied to the molten iron bath together with gaseous oxygen, and a solid oxygen source and gaseous oxygen are supplied from the other supply system.
  • One or more of air, reducing gas, carbon dioxide gas, non-oxidizing gas, and noble gas is transferred to the hot metal bath surface near the same location as the carrier gas. It is characterized by being supplied as a product.
  • a hot metal dephosphorization method according to any one of the first to sixth aspects, wherein a solid is disposed at a position surrounded by a plurality of hot spots formed by supplying a gaseous oxygen source. It is characterized by supplying an oxygen source.
  • Hot metal dephosphorization is performed using a hot metal transfer container such as a torpedo car or hot metal pan, or a refinery furnace such as a converter as a reaction vessel. Then, a decontaminating agent mainly composed of C a 0, a gaseous oxygen source such as oxygen gas, and a solid oxygen source such as solid iron oxide are added to the hot metal, and phosphorus in the hot metal is added to the gaseous oxygen source and Phosphorus oxide that is oxidized by a solid oxygen source is composed of a dephosphorizing agent mainly composed of CaO. It is carried out by removing the phosphorus in the hot metal by taking it into the slag for dephosphorization. Gaseous oxygen sources and solid oxygen sources are collectively referred to as oxygen sources. '
  • solid oxygen sources are more efficient than gaseous oxygen sources for degassing reactions. This is because the dephosphorization reaction is thermodynamically more advantageous at lower temperatures.
  • the temperature rise due to decarburization heat is dominant, whereas when a solid oxygen source is input, the solid oxygen source Since heat is absorbed during decomposition, temperature rise is suppressed.
  • a temperature advantageous for the dephosphorization reaction is maintained.
  • a temperature condition that can melt the solid oxygen source is necessary.
  • the solid oxygen source becomes Fe 0 after melting, and contributes to the dephosphorylation reaction, and has a function of increasing the FeO component in the dephosphorization slag. This promotes the dephosphorization reaction.
  • the solid oxygen source is generally dropped from a hopper installed above the reaction vessel during the dephosphorization process. In this case, in order to prevent the solid oxygen source from being sucked into the exhaust system, a granular or lump of several to several tens of millimeters is used. The granular or massive solid oxygen source does not melt immediately even if it is put into the reaction vessel, and may remain until the end of the dephosphorization treatment.
  • a gaseous oxygen source is supplied from one supply system to the hot metal bath surface, and a solid oxygen source is supplied from another supply system to the hot metal bath surface near the location where the gaseous oxygen source is supplied. To supply.
  • the location where the gaseous oxygen source collides with the hot metal bath surface that is, the fire point
  • the fire point is excessively high gh oxy gen n by the gaseous oxygen source. pot ent ialfield) is formed, but the temperature is high due to the reaction between the gaseous oxygen source and the carbon in the hot metal. Therefore, supplying a solid oxygen source directly to the fire point does not provide a significant effect in terms of oxygen potential and cooling.
  • the peripheral part near the hot spot is maintained at a relatively high temperature, although the temperature is lower than the hot spot, so that the solid oxygen source supplied thereto can be quickly melted.
  • the “hot metal bath surface in the vicinity of the place where the gaseous oxygen source is supplied” refers to the vicinity of the surface where the supplied gaseous oxygen source first contacts the hot metal.
  • the gaseous oxygen source injected from the upper blowing lance is in the vicinity of a position where it collides with the hot metal bath surface, and the gaseous oxygen source is injected into the injection lance or
  • the surface where the gaseous oxygen source enters the hot metal at the exit of the injection lance or tuyere also defined as “fire point”.
  • the bath surface temperature is maintained at a relatively high temperature even if the bath surface of the hot metal to which the gaseous oxygen source is supplied is kept at a relatively high temperature. A portion higher than the average temperature is preferable.
  • the centers of the supply positions on the bath surfaces from both systems must not coincide with each other, and it is preferable that the center of the supply position of the solid oxygen source does not cover the hot spot region.
  • different gases are sprayed onto the bath surface from both systems, even if the centers of the supply positions on the bath surface are very close to each other, a difference in area is ensured if they do not substantially match. There is no problem.
  • oxygen gas including industrial pure oxygen
  • air oxygen-enriched air
  • oxygen gas is used because the dephosphorization reaction rate is faster than when other gases are used.
  • oxygen concentration is higher than that of air in order to ensure the dephosphorization reaction rate.
  • gas for transporting the solid oxygen source air, non-oxidizing gas, rare gas, reducing gas, carbon dioxide gas which is a weak oxidizing gas close to non-oxidizing gas is used. Use one or more of these gases.
  • the reducing gas is a hydrocarbon gas such as propane gas and CO gas
  • the non-oxidizing gas is a gas having no oxidizing ability such as nitrogen gas
  • the rare gas is an Ar gas.
  • inert gas such as He gas.
  • the effect can be obtained even if the carrier gas for the solid oxygen source is a gas containing a certain amount of oxygen, such as air.
  • the concentration of oxygen contained in the carrier gas be lower than that of the gaseous oxygen source.
  • the gaseous oxygen source is air
  • the gaseous oxygen source is pure oxygen or oxygen-enriched air, all of the above-mentioned transport gases can be used.
  • the dephosphorizing agent containing mainly CaO may be added separately from the gaseous oxygen source from a hopper or the like.
  • a dephosphorizing agent mainly composed of CaO is supplied to the hot metal bath surface together with a gaseous oxygen source.
  • the dephosphorizing agent itself mainly composed of CaO is also heated in a high-temperature atmosphere, so that the slag can be made even faster. That is, the dephosphorization reaction can be further promoted.
  • the dephosphorizing agent mainly composed of C a O used in the present invention contains C a O, and is particularly limited to the content of C a O as long as it can perform the intended dephosphorization treatment. There is no about. Usually, it is composed of C a O alone or contains 50% by mass or more of C a O, and other components as necessary.
  • hatching accelerators are generally mentioned. In other words, although this application is a technology that enables the reduction or omission of hatching accelerators, it does not prohibit addition of hatching accelerators to further improve hatching efficiency.
  • hatching promoters include substances containing titanium oxide and aluminum oxide (A 1 2 0 3 ), which act to lower the melting point of CaO and promote hatching; It is preferable to use them as part of the solvent. Among these, addition of titanium oxide is preferable from the viewpoint of slag viscosity. Fluorine-containing materials such as fluorite can also be used as hatching accelerators.
  • a fluorine-containing substance as a solvent from the viewpoint of protecting the environment by suppressing the amount of fluorine eluted from the slag.
  • Substances in which fluorine is inevitably mixed as an impurity component may be used.
  • the material does not contain fluorine from this viewpoint.
  • a dephosphorizing agent composed mainly of CaO it is preferable to use quick lime or limestone because it is inexpensive and has excellent dephosphorization ability. It is also known as slag (“BOF slag” or “de carbu lizati on slag”) that is generated when decarburized and refined hot metal after light-burning dolomite or dephosphorization treatment is used in the next converter. ) Can also be used as a dephosphorizing agent mainly composed of C a O.
  • the decarburized soot is mainly composed of C a 0 and has a low phosphorus content, so that it can be sufficiently used as a dephosphorizing fertilizer mainly composed of C a 0.
  • the solid oxygen source used in the present invention iron ore sintered ore, mill scale, dust collecting dust (dust), iron sand, iron ore and the like can be used.
  • a dust collection dust is a dust containing iron that is recovered from exhaust gas in a blast furnace, converter, or sintering process.
  • the solid oxygen source is preferably a powder having a particle size of 1 mm or less. When the particle size exceeds 1 mm, rapid melting is difficult, and it is difficult to increase the Fe 0 component of the slag.
  • a particle size of 1 mm or less means that a sieve with a mesh size of 1 mm is passed. As long as it passes through a sieve with an opening size of 1 mm, it may have a spindle shape with a major axis exceeding 1 mm. From the viewpoint of handling, the particle size is preferably 1 ⁇ m or more.
  • iron sand and fine iron ore are particularly suitable because they are fine powders of 1 mm or less in the form of generation and do not require powdering.
  • iron sand not only functions as a solid oxygen source, but also contains about 7 to 10% of titanium oxide, which promotes the incubation of dephosphorizing fertilizers mainly composed of CaO. It also has a function as an agent and is particularly suitable.
  • Titanium oxide acts as an acidic oxide in the slag composition at the time of dephosphorization, and has an excellent effect of hatching CaO, which is the main dephosphorizing agent for dephosphorization.
  • Addition of iron sand containing selenium promotes the hatching of a dephosphorizing agent composed mainly of C o and promotes the dephosphorization reaction.
  • titanium oxide has the effect of reducing the viscosity of slag composed of dephosphorizing spirits mainly composed of C a 0, which makes it easy to discharge slag from the reaction vessel after dephosphorization. It has the effect of becoming.
  • the amount of titanium oxide in the slag is preferably 10% by mass or less in terms of Ti 2 O 2 . If it exceeds 10% by mass, the ratio of C a O, which is the main component, decreases, so the effect of improving the dephosphorization ability is offset and the effect of addition is reduced. On the other hand, the amount of titanium oxide is preferably 1% by mass or more in terms of T i O 2 in order to surely enjoy the above-mentioned effects such as a decrease in slag viscosity.
  • T i refers to O 2 conversion is
  • T i ⁇ is titanium oxide
  • T i ⁇ is titanium oxide
  • i 0 2 is converted and displayed.
  • the reaction vessel used for the dephosphorization treatment is not particularly limited, and a ladle type vessel such as a hot metal ladle or a charging ladle, a torpedo car, a converter, etc. can be used.
  • both a gaseous oxygen source and a solid oxygen source are supplied as an oxygen source in order to promote the dephosphorization reaction.
  • the gaseous oxygen source is the top blow lance.
  • a solid oxygen source must also be supplied to the hot metal bath near the location where the gaseous oxygen source is supplied. For example, when a gaseous oxygen source is being blown up, it is preferable to supply the solid oxygen source from above to the vicinity of the collision surface at the hot metal bath surface of the gaseous oxygen source. Alternatively, a solid oxygen source may be supplied in the vicinity of the collision surface at the hot metal bath surface of the gaseous oxygen source using a carrier gas from the bottom blowing tuyere.
  • a gaseous oxygen source is being injected through an injection lance or tuyere, the ability to provide a system to supply a solid oxygen source to the same injection lance or tuyere.
  • a solid oxygen source can be supplied near the surface where the gaseous oxygen source enters the gun at the exit of the junction lance or tuyere.
  • a lance for supplying them an upper lance, an injection lance, etc.
  • a dephosphorizing agent mainly composed of CaO is supplied from one of the supply systems together with the gaseous oxygen source, and the other.
  • the supply means may be any means such as a top blow lance, injection lance, tuyere, etc., but it is supplied from the top blow lance because it has a small thermal load and is highly durable and easy to operate. It is preferable to do.
  • the size of the dephosphorizing agent composed mainly of C a 0 supplied with the gaseous oxygen source is preferably 1 mm or less from the viewpoint of promoting hatching.
  • the bath surface to which the gaseous oxygen source is supplied that is, the fire point, is superior in the decarburization reaction with oxygen gas. Due to the heat generated by the decarburization reaction, for example, the dephosphorization of the converter has a high temperature exceeding 200. On the other hand, the dephosphorization reaction is thermodynamically accelerated at lower temperatures. Therefore, the dephosphorization reaction takes place substantially in the peripheral part of the temperature of approximately 1800 ° C. or less, slightly away from the fire point.
  • the top blow lance has at least two supply systems, one of which supplies the gaseous oxygen source and the other one directs the solid oxygen source with the carrier gas to the vicinity of the fire point.
  • the solid oxygen source is supplied to a portion near the fire point where the dephosphorization reaction is substantially promoted. Since the solid oxygen source is supplied by a carrier gas having a lower oxygen concentration than oxygen gas, the temperature of the portion does not rise excessively, and the good reactivity of the solid oxygen source prevents dephosphorization. Further promoted.
  • the dephosphorization capacity at 1800 ° C is approximately double the dephosphorization capacity at 2 0 0 0 by thermodynamic estimation.
  • the above-described configuration having two supply systems is, for example, a double-pipe structure with at least a top blowing lance, one with an oxygen gas flow path, the other with a solid oxygen source and a carrier gas.
  • a gaseous oxygen source was supplied from a nozzle hole arranged on a concentric circle centered on the lance center axis, while a solid oxygen source and a carrier gas were arranged on the lance center axis.
  • a method of supplying from the nozzle hole can be adopted. This method creates a state of supplying a solid oxygen source at a position surrounded by a plurality of fire spots formed by supplying a gaseous oxygen source, so that a solid oxygen source supply surrounded by a fire spot is generated.
  • the part is particularly suitable because the high temperature state below the fire point is stably maintained.
  • a plurality of nozzle holes may be arranged on a concentric circle centered on the lance central axis, and a gaseous oxygen source and a solid oxygen source may be supplied from alternate (alternate) holes. It is not necessary to supply all of the solid oxygen source to be supplied to the hot metal bath surface in the vicinity of the place where the gaseous oxygen source is supplied, but a place where only a part of the solid oxygen source is supplied with the gaseous oxygen source It may be supplied to the hot metal bath surface in the vicinity of.
  • the lower limit should be the amount by which the increase in the FeO component in the slag is sufficient.
  • the upper limit may be limited to an amount that does not cause excessive heat removal according to the equipment specifications. For example, when dephosphorization is performed in a container of about 100 to 3500 tons, it is transported to a gaseous oxygen source 1 N m 3 (pure oxygen gas in the standard state) that is supplied to the bath surface.
  • the solid oxygen source supplied by the working gas is preferably added in the range of 0.1 kg to 2 kg.
  • the solid oxygen source to be supplied to a place other than the vicinity of the hot metal bath surface to which the gaseous oxygen source is supplied may be supplied by an appropriate method such as top addition or injection addition.
  • the top addition and the injection are performed. It may be supplied by an appropriate method such as addition of water.
  • the hot metal temperature rises due to the oxidation reaction heat.
  • the sensible heat, latent heat, and decomposition heat of the solid oxygen source itself are higher than the oxidation reaction heat. Is too large, the hot metal temperature drops. Therefore, the usage ratio between the gaseous oxygen source and the solid oxygen source is set according to the temperature before and after the hot metal treatment while maintaining the above range. Further, in order to efficiently perform the dephosphorization reaction, it is preferable to stir the hot metal. For this stirring, generally, gas stirring using a nozzle or the like embedded in the bottom of the furnace is performed. Good.
  • the F e O concentration in the slag is preferably in the range of 10% by mass to 50% by mass, so that the F e O concentration in the slag can maintain this range.
  • the dephosphorization treatment can be carried out while maintaining the same dephosphorization rate as before without using a fluorine-containing substance as a solvent. Is possible. As a result, the slag can be reused without taking measures against fluorine leakage to the remote area, and the environmental load can be avoided. In addition, even if the dephosphorization temperature is increased, it is possible to maintain the same amount of dephosphorization as in the past. In this case, the iron yield in the dephosphorization process can be increased, which is an industrially beneficial effect. Is brought about.
  • the molten iron discharged from the blast furnace is desiliconized in a blast furnace casthouse and then transported to a 300 ton capacity converter, where a total of four dephosphorization processes are carried out (this Invention Examples 1 to 4).
  • the phosphorus concentration in the hot metal before dephosphorization was unified to 0.1 2 mass%, and the phosphorus concentration in the hot metal after dephosphorization was 0.020 mass. /.
  • the iron yield was targeted at 98% or more.
  • the iron yield (7?) Is the rolling mass; the final mass (W.
  • the dephosphorization process has two separate supply systems, supplying oxygen gas and quicklime powder (average particle size of 1 mm or less) from one supply system, and other supply systems. Then, an upper blowing lance was used to supply a solid oxygen source in the form of nitrogen gas as a carrier gas.
  • the structure of the top blow lance is a double pipe structure for the supply system of oxygen gas and solid oxygen source, one of which is a flow path for oxygen gas and the other is a flow path for solid oxygen source and transport gas.
  • the source is supplied from a plurality of nozzle holes arranged concentrically around the center axis of the lance, while the solid oxygen source and the transport gas are supplied from a single nozzle hole arranged on the center axis of the lance. It was made to supply from.
  • the solid oxygen source was supplied so that the center of the supply position did not reach the hot spot area. It processed without adding fluorine-containing substances such as fluorite. From the tuyeres at the bottom of the converter furnace, nitrogen is used as the stirring gas, 0.03 to 0.3 per ton of hot metal. Blowing in at a flow rate of 0 N m 3 / min.
  • powdered iron ore (average particle size 50 m), iron sand (average particle size 100 m), mill scale (average particle size 500 m), iron ore sintered ore ( One of the average particle size of 100 m) was used and sprayed onto the hot metal bath surface.
  • the oxygen gas sending condition was set at 0.6 2.5 N m 3 / min per ton of hot metal.
  • the oxygen intensity was 1 2 Nm 3 t excluding oxygen necessary for desiliconization.
  • dephosphorization treatment was performed in which granular iron ore (average particle size of about 2 O mm) was placed on top of the furnace on top.
  • Other dephosphorization treatment conditions in the comparative example were performed in accordance with the examples of the present invention.
  • Table 1 shows the hot metal components and operating conditions before and after the dephosphorization treatment in the present invention example and the comparative example. The basic unit and the amount of solid oxygen used are shown in amounts equivalent to 1 ton of hot metal.
  • iron oxide iron sand having an average particle size of 100 m was used. Iron oxide was used in combination with a supply gas from the top blow lance and a top hopper from the furnace hopper.
  • the dephosphorizing agent consists of quick lime powder (average particle size of 1 mm or less) supplied from the gaseous oxygen source supply system and massive lime (average diameter of about 1 O mm) that is placed on top of the furnace hopper.
  • quick lime powder average particle size of 1 mm or less
  • massive lime average diameter of about 1 O mm
  • the basicity of the slag was adjusted.
  • quick lime powder was not supplied from the supply system of the gaseous oxygen source, and only massive lime was put on top from the furnace on the top.
  • the limestone powder (average particle size of 1 mm or less) was supplied in addition to the quick lime powder from the supply system of the gaseous oxygen source.
  • Comparative Examples 1 1 to 14 dephosphorization treatment was also performed when iron oxide was not projected from the top blowing lance. Further, as Comparative Examples 15 to 17, dephosphorization treatment was also performed when a part of iron oxide was supplied from a supply system of a gaseous oxygen source. Other dephosphorization treatment conditions in the comparative example were performed in accordance with the examples of the present invention.
  • Table 2 shows the hot metal components before and after the dephosphorization treatment and the operating conditions in the inventive examples and comparative examples.
  • the phosphorus concentration in the hot metal after the dephosphorization treatment becomes 0.020% by mass or less, and The iron yield was over 98%.
  • the comparative example it was not possible to achieve both a phosphorus concentration in the hot metal after dephosphorization treatment of 0.020% by mass or less and an iron yield of 98% or more.
  • the hot metal discharged from the blast furnace was desiliconized in the blast furnace bed, and then transferred to a 300-ton capacity converter, and dephosphorization treatment was carried out twice in total (Invention Examples 31 to 32).
  • As the bottom blowing gas oxygen gas was blown from the inner tube of the tuyeres of the double tube structure at the bottom of the converter furnace at a flow rate of about 0. S Nm SZmin per ton of hot metal.
  • Outer tube The dephosphorization treatment was performed in the same manner as in Example 1 except that propane gas for cooling the tuyere was blown.
  • As the iron oxide a mill scale having an average particle size of 500 / m was used.
  • the target concentration of hot metal after dephosphorization was 0.020% by mass or less and iron yield was 98% or more.
  • Table 3 shows the hot metal components and operating conditions before and after the dephosphorization treatment in the examples of the present invention.
  • a dephosphorizing agent mainly composed of CaO is added to the hot metal, and a gaseous oxygen source is supplied from one supply system to the hot metal bath surface.
  • the basicity of slag for dephosphorization and refinement (C a OZS i) 0 2) the or lowered than the conventional, even a molten iron temperature after dephosphorization or raised as compared with the conventional dephosphorization reaction is not inhibited, efficiently molten iron can be dephosphorization process .
  • a gas having a lower oxygen concentration than the gaseous oxygen source such as air, reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas is used. It does not form an excessively high oxygen potential field like the hot spot, and can suppress the decarburization reaction and promote the dephosphorization reaction more efficiently.

Abstract

A method of hot metal dephosphorization treatment, comprising adding a dephosphorization refining agent composed mainly of CaO and reducing the added dephosphorization refining agent composed mainly of CaO to slags to thereby accomplish dephosphorization of the hot metal, wherein a gaseous oxygen source is fed from one supply system to a surface of hot metal bath and a solid oxygen source is fed from another supply system to a surface of hot metal bath in the vicinity of the site where the gaseous oxygen source is fed by the use of carrier gas. Thus, without the use of any medium solvent containing fluorine, there can be accomplished dephosphorization treatment with dephosphorization efficiency and iron yield equal to or higher than those of the prior art.

Description

溶銑の脱燐処理方法 技術分野  Technical field of hot metal dephosphorization process
本発明は、 溶銑の脱燐処理方法に関し、 詳しく は、 媒溶剤と してフッ素源 を使用しなく ても高い鉄歩留ま りで効率良く溶銑を脱燐処理する方法に関 するものである。 明  The present invention relates to a hot metal dephosphorization method, and more particularly, to a method for efficiently dephosphorizing hot metal with a high iron yield without using a fluorine source as a solvent. . Light
 Fine
背景技術 Background art
高炉溶銑を用いる製鋼プロセスにおいては、 転炉で脱炭吹鍊する前に、 溶 銑中に含有される S i 及び Pの大半を酸素ガスや固体の酸化鉄を用いて酸 化除去する溶銑脱燐処理、或いは溶銑中に含有される Sを脱硫剤によって還 元雰囲気下で除去する溶銑脱硫処理などの、 所謂、 溶銑予備処理が一般的に 行われている。  In the steelmaking process using blast furnace hot metal, before the decarburization blowing in the converter, most of the Si and P contained in the hot metal is oxidized and removed using oxygen gas or solid iron oxide. So-called hot metal pretreatment such as phosphorus treatment or hot metal desulfurization treatment in which S contained in the hot metal is removed under a reducing atmosphere with a desulfurizing agent is generally performed.
近年、 鉄鋼製品に要求される品質要求は以前にも増して厳格になり、 今ま で以上に燐濃度の低減が求められるよ うになっている。この品質要求に応え るには、溶銑予備処理のうちで特に脱燐処理を行う溶銑量を従来以上に増加 することや、 脱燐処理後の燐濃度を安定して下げることが必要である。 他方で、 昨今の地球温暖化に代表される環境影響に対応すべく 、 製鋼工程 におけるスラグ排出量の削減が必須となっている。 溶銑の脱燐処理におい てスラグの排出量を削減するためには、溶融して脱燐用精鍊剤と して機能す るスラグ (「脱燐精鍊用スラグ」) となる脱りん精鍊剤の投入量を低減するこ とが必要である。溶銑脱燐処理において、脱りん精鍊剤の主体は石灰であり、 上記の品質要求に応えると と もにスラグ排出量を削減するためには、石灰の 使用量を低減しつつ、 必要脱燐量を維持する技術、 即ち、 少ない石灰の使用 量で効率良く脱燐処理する技術が必要となる。  In recent years, the quality requirements for steel products have become more stringent than ever, and there is an increasing demand for lower phosphorus concentrations. In order to meet this quality requirement, it is necessary to increase the amount of hot metal to be dephosphorized in the hot metal pretreatment more than before and to stably reduce the phosphorus concentration after dephosphorization. On the other hand, it is essential to reduce slag emissions in the steelmaking process in order to respond to the environmental impacts represented by recent global warming. In order to reduce the amount of slag discharged during the dephosphorization of hot metal, the introduction of a dephosphorizing agent that melts and functions as a dephosphorizing refinery (“slag for dephosphorizing refinement”) It is necessary to reduce the amount. In hot metal dephosphorization, the main dephosphorizing agent is lime. In order to meet the above quality requirements and reduce slag discharge, the amount of dephosphorization required while reducing the amount of lime used. That is, a technology that efficiently removes phosphorous with a small amount of lime is required.
脱燐処理において、 滓化 (f l ux i n g) しない石灰は脱燐反応に寄与しない ことから、 石灰の使用量を削減するためには、 添加した石灰の滓化を促進さ せることが重要となる。 従来、 石灰を始めとするスラグの滓化能力に優れた 滓化促進用の媒溶剤 (fluxing agent) と してホタル石 (フッ化カルシウム を主成分とする鉱石) が知られており、 脱燐処理においてもホタル石が用い られてきた。 しかし近年、 環境規制の強化に伴い、 フッ素を含む媒溶剤の使 用が制限されるよ うになり、 そのため、 ホタル石を使用しなく ても石灰によ る脱燐反応を促進させる手段が検討され、 多数の提案がなされている。 そのなかの 1つの手段と して、 ホタル石の代替と して他の媒溶剤 (滓化促 進剤) を用いる技術が提案されている。 例えば、 特開 2 0 0 2 _ 3 0 9 3 1 2号公報には、 溶銑の脱炭精鍊或いは脱燐処理において、 ホタル石の代替と して酸化アルミ二ゥムを含有する媒溶剤を使用する方法が提案されている。 しかしながら、特開 2 0 0 2 - 3 0 9 3 1 2号公報においてホタル石代替 と して提案された酸化アルミニゥムは、 スラグの滓化は促進させるが、 スラ グの粘度を高める作用を有している。 このため、 酸化アルミ ニウムの使用量 が多いと脱燐処理後、 スラグを反応容器から排滓する際に、 スラグが炉內に 付着して残留する場合が発生する。 これによ り、 次のチャージ (溶銑充填) で脱燐処理を行 う 際に残留ス ラ グ中の燐が溶銑に戻る、 所謂 「復燐 (re- ph0sphorizati0n)」 が発生し、 次チャージの脱燐処理に悪影響を及ぼ すという問題があった。 更に、 スラグの粘度が高いことに起因して、 スラグ 中に多く の粒鉄 (metal dropletあるレ、は iron droplet) が捕捉され、 この 粒鉄がスラグ排出時に炉外に持ち出されて鉄歩留り を低下させるという問 題もあった。 一方、 滓化促進剤に依らずに石灰の滓化を促進する方法と して、 特開 2 0 0 0 - 1 4 4 2 2 6号公報には、 生石灰と、 酸化鉄及び Zまたは酸素ガスか らなり、 所定の C a O/O比となる処理剤を、 同時に溶銑の同じ場所に供給 する技術、 つまり、 酸素ガスと溶湯面との衝突部 (「火点」 と呼ばれる) に 生石灰を投入する技術が開示されている。 In the dephosphorization process, lime that does not fl ux ing does not contribute to the dephosphorization reaction, so to reduce the amount of lime used, the hatching of the added lime is promoted. Is important. Conventionally, fluorite (ore containing calcium fluoride as a main component) is known as a fluxing agent with excellent hatching ability of slag including lime. Fluorite has also been used in processing. However, in recent years, with the tightening of environmental regulations, the use of a solvent containing fluorine has been restricted. Therefore, means for promoting the dephosphorization reaction with lime without using fluorite have been studied. Many proposals have been made. As one of the means, a technique using another solvent (a hatching accelerator) as a substitute for fluorite has been proposed. For example, in Japanese Patent Application Laid-Open No. 2 02 _ 3 0 9 3 1 2, a medium solvent containing aluminum oxide is used as a substitute for fluorite in decarburization or dephosphorization of hot metal. A method has been proposed. However, the aluminum oxide proposed as a substitute for fluorite in Japanese Patent Laid-Open No. 2 0 0 2-3 0 9 3 1 2 promotes slag hatching but has the effect of increasing the viscosity of the slag. ing. For this reason, if the amount of aluminum oxide used is large, when slag is discharged from the reaction vessel after dephosphorization, slag may adhere to the furnace and remain. As a result, the so-called “re-phospho 0 sphorizati 0n ” is generated, in which the phosphorus in the residual slag returns to the hot metal when dephosphorization is performed in the next charge (hot metal filling). There was a problem of adversely affecting the dephosphorization treatment of the next charge. Furthermore, due to the high viscosity of the slag, many iron particles (metal droplets) are trapped in the slag, and these iron particles are taken out of the furnace when the slag is discharged to increase the iron yield. There was also a problem of lowering. On the other hand, as a method of promoting the hatching of lime without depending on the hatching accelerator, JP-A 2 0 0 0-1 4 4 2 2 6 discloses quick lime, iron oxide and Z or oxygen gas. Technology that consists of supplying a treatment agent with a specified CaO / O ratio to the same location of the molten iron at the same time, that is, quick lime is applied to the collision part (called "fire point") between the oxygen gas and the molten metal surface. The technology to be introduced is disclosed.
他方、 特開 2 0 0 3 — 3 2 8 0 2 1号公報においても、 酸素ガスを搬送用 ガスと して、 石灰を含有する精鍊剤を吹き込むと、 酸素ガスと溶湯面との衝 突部、つま り火点が高温となって石灰の滓化が行われることが紹介されてい る。 特開 2 0 0 3 - 3 2 8 0 2 1 号公報では、 更に、 火点が高温となって脱 燐反応の進行が鈍ることを回避するために、吸熱物質を含有する精鍊剤を火 点に供給し、 火点部における脱燐効率の向上を図ることが提案されている。 On the other hand, also in Japanese Patent Laid-Open No. 2 0 3-3 2 8 0 2 1, when oxygen gas is used as a carrier gas and a lime-containing refinement agent is blown, the collision between the oxygen gas and the molten metal surface occurs. It has been introduced that the protrusions, that is, the hot spots, become hot and the lime hatches. In Japanese Patent Laid-Open No. 20 0 3-3 2 8 0 2 1, in addition, in order to avoid a slowing of the progress of the dephosphorization reaction due to a high hot point, a nematic agent containing an endothermic substance is It has been proposed to improve the dephosphorization efficiency at the hot spot.
しかしながら、 火点は酸素ガスによる脱炭反応が優勢であり、 脱炭反応な どの発熱によ り 2 0 0 0でを超える高温となっている。 このため、 これを適 正な温度に冷却する負担は大きく 、よ り効果的に脱燐効率を改善する手段が 求められていた。 , 発明の開示  However, the decarburization reaction by oxygen gas is dominant at the fire point, and the temperature is higher than 2100 due to heat generation such as the decarburization reaction. For this reason, the burden of cooling this to an appropriate temperature is great, and a means for improving the dephosphorization efficiency more effectively has been demanded. Disclosure of the invention
〔発明が解決しょ う とする課題〕  [Problems to be solved by the invention]
本発明は上記事情に鑑みてなされたもので、 その目的とするところは、 溶 銑を脱燐処理するに当たり、 フッ素を含有する媒溶剤を使用 しなく ても、 少 ない石灰の使用量で、従来と同等の脱燐効率及び鉄歩留りで脱燐処理するこ とができる、従来提案されているよ り も有利な溶銑の.脱燐処理方法を提供す るこ とである。  The present invention has been made in view of the above circumstances, and the object of the present invention is to use a small amount of lime without using a fluorine-containing medium solvent for dephosphorizing molten iron. It is an object of the present invention to provide a hot metal dephosphorization method that can dephosphorize at a dephosphorization efficiency and iron yield equivalent to those of conventional methods, which is more advantageous than previously proposed.
〔課題を解決するための手段〕 [Means for solving the problems]
上記課題を解決するための第 1 の発明に係る溶銑の脱燐処理方法は、 C a Oを主体とする脱りん精鍊剤を溶銑に添加して、添加した C a Oを主体とす る脱りん精鍊剤を滓化させてスラグとなし、 溶銑に対して脱燐処理を施す、 溶銑の脱燐処理方法において、 1つの供給系統から気体酸素源を溶銑浴面に 供給し、 他の 1つの供給系統から固体酸素源を、 気体酸素源が供給されてい る場所の近傍の溶銑浴面に、搬送用ガスを用いて供給するこ とを特徵とする ものである。  The method for dephosphorizing hot metal according to the first aspect of the invention for solving the above problem comprises adding a dephosphorizing agent mainly composed of CaO to the hot metal and degassing mainly composed of added CaO. In the molten iron dephosphorization method, a gaseous oxygen source is supplied from one supply system to the molten iron bath surface, and the other one It is characterized by supplying the solid oxygen source from the supply system to the hot metal bath surface near the place where the gaseous oxygen source is supplied, using a carrier gas.
第 2の発明に係る溶銑の脱燐処理方法は、 第 1 の発明において、 前記気体 酸素源と固体酸素源のそれぞれの供給系統を、同一のランス内に配すること を特徴とするものである。  The hot metal dephosphorization method according to the second invention is characterized in that, in the first invention, the respective supply systems of the gaseous oxygen source and the solid oxygen source are arranged in the same lance. .
第 3の発明に係る溶銑の脱燐処理方法は、第 1 または第 2の発明において、 C a Oを主体とする脱りん精鍊剤を、前記気体酸素源の供給系統を通じて前 記気体酸素源と と もに溶銑浴面に供給することを特徴とするものである。 第 4の発明に係る溶銑の脱燐処理方法は、第 1 〜第 3のいずれかの発明に おいて、 前記固体酸素源の搬送用ガスが、 空気、 還元性ガス、 炭酸ガス、 非 酸化性ガス、希ガスのうちの何れか 1種または 2種以上の気体であり、かつ、 前記気体酸''素源よ り も酸素濃度が低いこ とを特徴とするものである。 According to a third aspect of the present invention, there is provided a hot metal dephosphorization method according to the first or second aspect, wherein a dephosphorizing agent mainly composed of CaO is added through the gas oxygen source supply system. The gaseous oxygen source is supplied to the hot metal bath surface. According to a fourth aspect of the present invention, there is provided a hot metal dephosphorization method according to any one of the first to third aspects, wherein the transport gas for the solid oxygen source is air, reducing gas, carbon dioxide gas, non-oxidizing gas. It is one or two or more gases of gas and rare gas, and has an oxygen concentration lower than that of the gaseous oxygen source.
第 5の発明に係る溶銑の脱燐処理方法は、第 1〜第 4のいずれかの発明に おいて、 前記固体酸素源は、 粒度が 1 m m以下の焼結鉱、 ミルスケール、 集 塵ダス ト、 砂鉄、 鉄鉱石のうちの何れか 1種または 2種以上であることを特 徵とするものである。  According to a fifth aspect of the present invention, there is provided a hot metal dephosphorization method according to any one of the first to fourth aspects, wherein the solid oxygen source is a sintered ore, a mill scale, a dust collecting dust having a particle size of 1 mm or less. It is characterized by being one or more of iron, iron sand and iron ore.
第 6の発明に係る溶銖の脱燐処理方法は、 転炉において、 C a Oを主体と する脱りん精鍊剤を酸素源と と もに溶銖に添加して、添加した C a Oを主体 とする脱りん精鍊剤を滓化させてスラグとなし、溶銑に対して脱燐処理を施 す、 溶銑の脱燐処理方法において、 少なく と も 2つの供給経路を有する上吹 きランスを用い、そのうちの 1つの供給系統から C a Oを主体とする脱りん 精鍊剤を気体酸素と と もに溶鉄浴面に供給し、他の 1つの供給系統から固体 酸素源を、 気体酸素が供給されている場所と同一場所の近傍の溶銑浴面に、 空気、 還元性ガス、 炭酸ガス、 非酸化性ガス、 希ガスの うちの何れか 1種ま たは 2種以上の気体を搬送用ガス と して供給するこ とを特徴とするもので ある。  According to a sixth aspect of the present invention, there is provided a dephosphorization method for hot metal according to a sixth aspect of the invention, wherein a dephosphorizing agent mainly composed of CaO is added to a hot metal together with an oxygen source in a converter, and the added CaO is added. In the hot metal dephosphorization process, the main dephosphorizing fertilizer is hatched to form slag, and the hot metal dephosphorization process is used. From one of these supply systems, a dephosphorizing agent composed mainly of CaO is supplied to the molten iron bath together with gaseous oxygen, and a solid oxygen source and gaseous oxygen are supplied from the other supply system. One or more of air, reducing gas, carbon dioxide gas, non-oxidizing gas, and noble gas is transferred to the hot metal bath surface near the same location as the carrier gas. It is characterized by being supplied as a product.
7の発明に係る溶銑の脱燐処理方法は、第 1〜第 6のいずれかの発明に おいて、 気体酸素源の供給によ り形成される複数の火点に囲まれる位置に、 固体酸素源を供給することを特徵とするものである。 発明を実施するための最良の形態 According to a seventh aspect of the present invention, there is provided a hot metal dephosphorization method according to any one of the first to sixth aspects, wherein a solid is disposed at a position surrounded by a plurality of hot spots formed by supplying a gaseous oxygen source. It is characterized by supplying an oxygen source. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を具体的に説明する。  Hereinafter, the present invention will be specifically described.
溶銑の脱燐処理は、 トーピ一 ドカーや溶銑鍋などの溶銑搬送容器、 或いは 転炉などの精鍊炉を反応容器と して用いる。そして C a 〇を主体とする脱り ん精鍊剤と、酸素ガスなどの気体酸素源及び固体の酸化鉄などの固体酸素源 とを、 溶銑に添加して、 溶銑中の燐を気体酸素源及び固体酸素源によつて酸 化し、 生成した燐酸化物を、 C a Oを主体とする脱りん精鍊剤などからなる 脱燐精鍊用スラグに取り込み、溶銑中の燐を除去するという方法で行われて いる。 気体酸素源及固体酸素源は、 まとめて酸素源と呼ばれる。' Hot metal dephosphorization is performed using a hot metal transfer container such as a torpedo car or hot metal pan, or a refinery furnace such as a converter as a reaction vessel. Then, a decontaminating agent mainly composed of C a 0, a gaseous oxygen source such as oxygen gas, and a solid oxygen source such as solid iron oxide are added to the hot metal, and phosphorus in the hot metal is added to the gaseous oxygen source and Phosphorus oxide that is oxidized by a solid oxygen source is composed of a dephosphorizing agent mainly composed of CaO. It is carried out by removing the phosphorus in the hot metal by taking it into the slag for dephosphorization. Gaseous oxygen sources and solid oxygen sources are collectively referred to as oxygen sources. '
原理的に考えれば、 脱憐反応に関して、 固体酸素源は気体酸素源に比して 効率が高い。 これは、 脱燐反応が熱力学的には低温ほど有利であるこ とに由 来する。 溶銑に酸素を投入すると脱炭及び脱燐が起こるが、 気体酸素源を投 入した場合は脱炭発熱による温度上昇が優勢であるのに対し、固体酸素源を 投入した場合は固体酸素源の分解時に吸熱を伴うため、温度上昇が抑制され る。 つま り、 固体酸素源を使用することによ り、 脱燐反応に有利な温度に維 持される。 但し、 脱燐反応の促進のためには、 固体酸素源が溶融できる程度 の温度条件は必要である。 また、 固体酸素源は、 溶融後に F e 〇となり、 脱 燐反応に寄与する、脱燐精鍊用スラグ中の F e O成分を増加させる機能を有 して:^り、 前記温度上昇の抑制効果と相俟って脱燐反応を促進させている。 従来、 固体酸素源は、 反応容器の上方に設置されたホッパーから脱燐処理 中に落下投入されるのが一般的であった。 この場合に固体酸素源は、 排気系 統に吸引されないよ うにするため、数 m m〜数十 m mの粒状または塊状のも のが使用される。粒状または塊状の固体酸素源は反応容器内に投入されても 直ちには溶融せず、 脱燐処理終了時点まで残留する場合もある。 また、 固体 酸素源が溶融するこ とによってスラグ中の F e Oが上昇するが、スラグ中の F e Oは溶銑中の炭素と反応して還元されることから、固体酸素源の溶融速 度と F e Oの還元速度とが同等の場合には、スラグ中の F e O濃度は上昇し ない。 つま り、 スラグ中の F e〇の還元速度より も固体酸素源の溶融速度を 大きく しなければ、 スラグ中の酸素ポテンシャルは上昇せず、 脱燐速度の向 上は望めない。 本発明においては、 1つの供給系統から気体酸素源を溶銑浴面に供給し、 他の供給系統から固体酸素源を、気体酸素源が供給されている場所の近傍の 溶銑浴面に搬送用ガスを用いて供給する。  In principle, solid oxygen sources are more efficient than gaseous oxygen sources for degassing reactions. This is because the dephosphorization reaction is thermodynamically more advantageous at lower temperatures. When oxygen is added to the hot metal, decarburization and dephosphorization occur, but when a gaseous oxygen source is input, the temperature rise due to decarburization heat is dominant, whereas when a solid oxygen source is input, the solid oxygen source Since heat is absorbed during decomposition, temperature rise is suppressed. In other words, by using a solid oxygen source, a temperature advantageous for the dephosphorization reaction is maintained. However, in order to promote the dephosphorization reaction, a temperature condition that can melt the solid oxygen source is necessary. In addition, the solid oxygen source becomes Fe 0 after melting, and contributes to the dephosphorylation reaction, and has a function of increasing the FeO component in the dephosphorization slag. This promotes the dephosphorization reaction. Conventionally, the solid oxygen source is generally dropped from a hopper installed above the reaction vessel during the dephosphorization process. In this case, in order to prevent the solid oxygen source from being sucked into the exhaust system, a granular or lump of several to several tens of millimeters is used. The granular or massive solid oxygen source does not melt immediately even if it is put into the reaction vessel, and may remain until the end of the dephosphorization treatment. In addition, F e O in the slag rises as the solid oxygen source melts, but the F e O in the slag reacts with the carbon in the hot metal and is reduced, so the melting rate of the solid oxygen source If the reduction rate of FeO is equivalent to that of FeO, the concentration of FeO in the slag will not increase. In other words, unless the melting rate of the solid oxygen source is set higher than the reduction rate of FeO in the slag, the oxygen potential in the slag will not increase and the dephosphorization rate cannot be improved. In the present invention, a gaseous oxygen source is supplied from one supply system to the hot metal bath surface, and a solid oxygen source is supplied from another supply system to the hot metal bath surface near the location where the gaseous oxygen source is supplied. To supply.
溶銑浴面において、気体酸素源が溶銑浴面と衝突する場所、つまり火点は、 気体酸素源、によつて過剰な高酸素ポテンシャノレ場(e x c e s s i v e l y h i gh oxy ge n pot ent i a l f i e l d) が形成されているが、 気体酸素源と溶銑中の炭素との反 応によって高温になっている。 したがって、 火点に直接固体酸素源を供給し ても、 酸素ポテンシャルおよび冷却の観点で有意な効果は得られない。 一方、 火点近傍の周縁部は、 火点よ りは温度が低いが比較的高温に維持さ れるので、 そこに供給された固体酸素源は迅速に溶融するこ とができる。 さ らに、 火点のよ うな過剰な高酸素ポテンシャル場は形成されず、 固体酸素源 が効率よく反応に寄与することができる。 これによ り、 スラグの酸素ポテン シャルが上昇し、 つま り脱燐反応に最適なスラグが迅速に形成され、 少ない スラグ量であっても、 また高温下であっても脱燐処理が可能となる。 尚、 本 発明でいう、 「気体酸素源が供給されている場所の近傍の溶銑浴面」 とは、 供給される気体酸素源が最初に溶銑に接触する面の近傍のこ とである。例え ば、 上吹きランスから気体酸素源を供給する場合には、 上吹きランスから噴 射される気体酸素源が溶銑浴面に衝突する位置の近傍であり、気体酸素源を イ ンジェク ショ ンランス或いは羽口を用いて溶銑中へイ ンジヱク ショ ンす る (吹き込む) 場合には、 気体酸素源がィ ンジニクシヨ ンランス或いは羽口 の出口で溶銑に侵入する面(この場合も 「火点」 と定義する)の近傍となる。 ただし、 通常の脱燐処理においては、 気体酸素源が供給されている溶銑の浴 面から離れても浴面温度は比較的高温に維持されるので、固体酸素源の供給 位置が、 溶銑全体の平均温度よ り高い部分であることが好ましい。 On the hot metal bath surface, the location where the gaseous oxygen source collides with the hot metal bath surface, that is, the fire point, is excessively high gh oxy gen n by the gaseous oxygen source. pot ent ialfield) is formed, but the temperature is high due to the reaction between the gaseous oxygen source and the carbon in the hot metal. Therefore, supplying a solid oxygen source directly to the fire point does not provide a significant effect in terms of oxygen potential and cooling. On the other hand, the peripheral part near the hot spot is maintained at a relatively high temperature, although the temperature is lower than the hot spot, so that the solid oxygen source supplied thereto can be quickly melted. Moreover, an excessive high oxygen potential field such as a fire point is not formed, and the solid oxygen source can contribute to the reaction efficiently. This increases the oxygen potential of the slag, that is, the optimal slag for dephosphorization reaction is quickly formed, and the dephosphorization process can be performed even at low slag and at high temperatures. Become. In the present invention, the “hot metal bath surface in the vicinity of the place where the gaseous oxygen source is supplied” refers to the vicinity of the surface where the supplied gaseous oxygen source first contacts the hot metal. For example, when supplying a gaseous oxygen source from an upper blowing lance, the gaseous oxygen source injected from the upper blowing lance is in the vicinity of a position where it collides with the hot metal bath surface, and the gaseous oxygen source is injected into the injection lance or When using a tuyere to inject (blow) into the hot metal, the surface where the gaseous oxygen source enters the hot metal at the exit of the injection lance or tuyere (also defined as “fire point”) ). However, in a normal dephosphorization process, the bath surface temperature is maintained at a relatively high temperature even if the bath surface of the hot metal to which the gaseous oxygen source is supplied is kept at a relatively high temperature. A portion higher than the average temperature is preferable.
なお、両系統からの浴面上の供給位置の中心同士は一致しないことが必要 であり、固体酸素源の供給位置の中心が火点の領域にかからないことが好ま しい。 ただし供給領域自体が重なり合う ことは問題ない。 また、 両系統から 異なるガスが浴面に吹き付けられているため、前記浴面上の供給位置の中心 同士が相当近接していても、実質的に一致していないのであれば領域の相違 が確保され、 問題はない。  It should be noted that the centers of the supply positions on the bath surfaces from both systems must not coincide with each other, and it is preferable that the center of the supply position of the solid oxygen source does not cover the hot spot region. However, there is no problem that the supply areas themselves overlap. In addition, since different gases are sprayed onto the bath surface from both systems, even if the centers of the supply positions on the bath surface are very close to each other, a difference in area is ensured if they do not substantially match. There is no problem.
本発明で使用する気体酸素源と しては、酸素ガス(工業用純酸素を含む)、 空気、 酸素富化空気、 酸素ガスと不活性ガスとの混合ガスなどを使用するこ とができる。 通常の脱燐処理の場合には、 他のガスを使用した場合に比べて 脱燐反応速度が速いことから、 酸素ガスを使用する。 混合ガスの場合は、 脱 燐反応速度を確保するために、酸素濃度を空気よ り も高くすることが好まし レ、。 本発明の好ま しい態様と しては、 固体酸素源の搬送用ガスと して空気、 非 酸化性ガス、 希ガス、 還元性ガス、 非酸化性ガスに近い弱酸化性ガスである 炭酸ガスの うちの何れか 1種または 2種以上の気体を用いる。 ここで、 還元 性ガスとは、 プロパンガスなどの炭化水素系ガス及び C Oガスであり、 非酸 化性ガスとは、 窒素ガスなどの酸化能力のないガスであり、 希ガスとは A r ガスや H eガスなどの不活性ガスである。 これらのガスを用いることで、 火 点近傍の温度上昇を抑制することができ、原理的に脱りんに有利な条件を作 ることができる。 As the gaseous oxygen source used in the present invention, oxygen gas (including industrial pure oxygen), air, oxygen-enriched air, a mixed gas of oxygen gas and inert gas, and the like can be used. In the case of normal dephosphorization, oxygen gas is used because the dephosphorization reaction rate is faster than when other gases are used. In the case of a mixed gas, it is preferable to make the oxygen concentration higher than that of air in order to ensure the dephosphorization reaction rate. Les. As a preferred embodiment of the present invention, as the gas for transporting the solid oxygen source, air, non-oxidizing gas, rare gas, reducing gas, carbon dioxide gas which is a weak oxidizing gas close to non-oxidizing gas is used. Use one or more of these gases. Here, the reducing gas is a hydrocarbon gas such as propane gas and CO gas, and the non-oxidizing gas is a gas having no oxidizing ability such as nitrogen gas, and the rare gas is an Ar gas. And inert gas such as He gas. By using these gases, the temperature rise near the fire point can be suppressed, and in principle conditions favorable for dephosphorization can be created.
本発明においては、 固体酸素源の搬送用ガスが空気などの、 ある程度の酸 素を含有するガスであっても効果を得ることができる。 しかし上記の観点か ら、 搬送用ガスに含まれる酸素の濃度は、 気 酸素源よ り も低いことが望ま しい。 例えば、 気体酸素源が空気の場合は固体酸素源の搬送用ガスと して非 酸化性ガス、希ガス、還元性ガス、炭酸ガスなどを使用するこ とが望ましい。 また、気体酸素源が純酸素もしく は酸素富化空気などの場合には上記した搬 送用ガスのすべてを用いることができる。  In the present invention, the effect can be obtained even if the carrier gas for the solid oxygen source is a gas containing a certain amount of oxygen, such as air. However, from the above viewpoint, it is desirable that the concentration of oxygen contained in the carrier gas be lower than that of the gaseous oxygen source. For example, when the gaseous oxygen source is air, it is desirable to use a non-oxidizing gas, a rare gas, a reducing gas, a carbon dioxide gas, etc. as the transport gas for the solid oxygen source. Further, when the gaseous oxygen source is pure oxygen or oxygen-enriched air, all of the above-mentioned transport gases can be used.
なお、 固体酸素源には微量の金属鉄を含むものがあり、 純酸素気流中 は 燃焼して設備に損害を与える恐れがある。固体酸素源を空気よ り も酸素濃度 の低い搬送用ガスで搬送することは、事故回避という工業的な観点からも有 効である。 本発明においては、 C a Oを主体とする脱りん精鍊剤はホッパーなどから 気体酸素源とは別個に投入してもよい。 しかし本発明のさ らに好ましい態様 においては、気体酸素源と ともに C a Oを主体とする脱りん精練剤を溶銑浴 面に供給する。 これによ り、 C a Oを主体とする脱りん精鍊剤自体も高温 雰囲気下で加熱されることから、スラグ化をより一層迅速にすることができ る。 つまり、 脱燐反応をより一層促進させることができる。  Some solid oxygen sources contain a small amount of metallic iron, which may burn in a pure oxygen stream and cause damage to equipment. Transporting a solid oxygen source with a transport gas having a lower oxygen concentration than air is also effective from an industrial point of view to avoid accidents. In the present invention, the dephosphorizing agent containing mainly CaO may be added separately from the gaseous oxygen source from a hopper or the like. However, in a more preferred embodiment of the present invention, a dephosphorizing agent mainly composed of CaO is supplied to the hot metal bath surface together with a gaseous oxygen source. As a result, the dephosphorizing agent itself mainly composed of CaO is also heated in a high-temperature atmosphere, so that the slag can be made even faster. That is, the dephosphorization reaction can be further promoted.
本発明で使用する、 C a Oを主体とする脱りん精鍊剤とは、 C a Oを含有 し、本件の意図する脱燐処理ができるものであれば特に C a Oの含有量に制 約はない。 通常は、 C a O単独からなるものや、 または C a Oを 5 0質量% 以上含有し、 必要に応じてその他の成分を含有するものである。 The dephosphorizing agent mainly composed of C a O used in the present invention contains C a O, and is particularly limited to the content of C a O as long as it can perform the intended dephosphorization treatment. There is no about. Usually, it is composed of C a O alone or contains 50% by mass or more of C a O, and other components as necessary.
その他の成分と しては一般に滓化促進剤が挙げられる。 すなわち、 本願は 滓化促進剤の低減あるいは省略を可能とする技術ではあるものの、滓化促進 剤を添加してさ らに滓化効率を改善することを禁じるものではなレ、。滓化促 進剤と しては、 特に、 C a Oの融点を下げて滓化を促進させる作用のある酸 化チタンや酸化アルミニウム (A 1 2 0 3 ) を含有する物質が挙げられ、 ; れらを媒溶剤の一部と して使用するこ とが好ま しい。中でもスラグ粘度の観 点からは酸化チタンの添加が好ま しい。 また、 ホタル石などのフッ素含有物 質も滓化促進剤と して使用可能である。 ただし、 スラグを廃棄処分などにす る際に、 スラグからのフッ素の溶出量を抑えて環境を保護する観点から、 フ ッ素含有物質は媒溶剤と して使用しないこ とが好ましい。フ ッ素が不純物成 分と して不可避的に混入した物質については使用しても構わない。 当然、 酸 化チタンを含有する物質や酸化アルミ二ゥムを含有する物質を用いる場合 も、 この観点からフッ素を含まないものであることが好ま しい。 As other components, hatching accelerators are generally mentioned. In other words, although this application is a technology that enables the reduction or omission of hatching accelerators, it does not prohibit addition of hatching accelerators to further improve hatching efficiency. Examples of hatching promoters include substances containing titanium oxide and aluminum oxide (A 1 2 0 3 ), which act to lower the melting point of CaO and promote hatching; It is preferable to use them as part of the solvent. Among these, addition of titanium oxide is preferable from the viewpoint of slag viscosity. Fluorine-containing materials such as fluorite can also be used as hatching accelerators. However, when disposing of slag, etc., it is preferable not to use a fluorine-containing substance as a solvent from the viewpoint of protecting the environment by suppressing the amount of fluorine eluted from the slag. Substances in which fluorine is inevitably mixed as an impurity component may be used. Of course, when using a material containing titanium oxide or a material containing aluminum oxide, it is preferable that the material does not contain fluorine from this viewpoint.
C a Oを主体とする脱りん精鍊剤の具体例と しては、安価でしかも脱燐能 に優れることから生石灰、 石灰石を使用することが好ましい。 また、 軽焼ド ロマイ トや脱燐処理後の溶銑を次工程の転炉で脱炭精鍊した際に発生する スラグ (「脱炭滓 (BOF s l a gまたは de carbu l i z a t i on s l a g)」 と もレヽう) を、 C a 〇を主体とする脱りん精鍊剤と して使用すること もできる。 脱炭滓は、 C a 〇を主成分と しており、 しかも燐含有量が少ないことから、 C a 〇を主 体とする脱りん精鍊剤と して十分に利用することができる。 また、 本発明で使用する固体酸素源と しては、 鉄鉱石の焼結鉱、 ミルスケ —ル、 集塵ダス ト (ダス ト)、 砂鉄、 鉄鉱石などを使用するこ とができる。 集塵ダス トとは、 高炉、 転炉、 焼結工程において排気ガスから回収される、 鉄分を含むダス トである。 固体酸素源の溶融化を促進させる観点から、 固体 酸素源は粒径 1 m m以下の粉粒体であることが好ましい。粒径が 1 m mを超 えるものは、 迅速な溶融が困難であり、 スラグの F e 〇成分の上昇が得られ にく い。 ここで、 粒径が 1 m m以下とは、 目開き寸法が 1 m mの篩分器を通 過するという意味であり、 目開き寸法が 1 m mの篩分器を通過する限り、 長 径が 1 m mを超える紡錘形であっても構わない。 尚、 取扱いの観点から、 粒 径は 1 μ m以上が好ま しい。 As a specific example of a dephosphorizing agent composed mainly of CaO, it is preferable to use quick lime or limestone because it is inexpensive and has excellent dephosphorization ability. It is also known as slag (“BOF slag” or “de carbu lizati on slag”) that is generated when decarburized and refined hot metal after light-burning dolomite or dephosphorization treatment is used in the next converter. ) Can also be used as a dephosphorizing agent mainly composed of C a O. The decarburized soot is mainly composed of C a 0 and has a low phosphorus content, so that it can be sufficiently used as a dephosphorizing fertilizer mainly composed of C a 0. Further, as the solid oxygen source used in the present invention, iron ore sintered ore, mill scale, dust collecting dust (dust), iron sand, iron ore and the like can be used. A dust collection dust is a dust containing iron that is recovered from exhaust gas in a blast furnace, converter, or sintering process. From the viewpoint of promoting the melting of the solid oxygen source, the solid oxygen source is preferably a powder having a particle size of 1 mm or less. When the particle size exceeds 1 mm, rapid melting is difficult, and it is difficult to increase the Fe 0 component of the slag. Here, a particle size of 1 mm or less means that a sieve with a mesh size of 1 mm is passed. As long as it passes through a sieve with an opening size of 1 mm, it may have a spindle shape with a major axis exceeding 1 mm. From the viewpoint of handling, the particle size is preferably 1 μm or more.
上記の固体酸素源のなかで、 砂鉄及び微粉の鉄鉱石は、 発生形態と して 1 m m以下の微粉であり、 粉碎処理を必要と しないことから特に好適である。 このう ち、 砂鉄は、 固体酸素源と して機能するのみならず、 酸化チタンを 7 〜 1 0 %程度含有しているこ とから C a Oを主体とする脱りん精鍊剤の滓 化促進剤と しての機能も備えており、 特に好適である。  Among the above-mentioned solid oxygen sources, iron sand and fine iron ore are particularly suitable because they are fine powders of 1 mm or less in the form of generation and do not require powdering. Of these, iron sand not only functions as a solid oxygen source, but also contains about 7 to 10% of titanium oxide, which promotes the incubation of dephosphorizing fertilizers mainly composed of CaO. It also has a function as an agent and is particularly suitable.
酸化チタンは脱燐処理時のスラグ組成においては酸性酸化物と して作用 し、脱燐用の脱りん精鍊剤の主体である C a Oを滓化する効果に優れている つま り、 酸化チタンを含有する砂鉄を添加することで、 C a 〇を主体とする 脱りん精鍊剤の滓化が促進されて脱燐反応が促進される。 また、 酸化チタン は、 C a 〇を主体とする脱りん精鎳剤からなるスラグの粘度を低下させる作 用があり、 これによ り、 脱燐処理後、 反応容器からのスラグの排出が容易に なるという効果を奏する。 このため、 スラグ排出後の反応容器内のスラグ残 留量は無視できるほど少なく なり、 次チャージの脱燐処理においては、 復燐 などによって脱燐反応が阻害されるこ とはなく 、効率良く脱燐処理すること ができる。  Titanium oxide acts as an acidic oxide in the slag composition at the time of dephosphorization, and has an excellent effect of hatching CaO, which is the main dephosphorizing agent for dephosphorization. Addition of iron sand containing selenium promotes the hatching of a dephosphorizing agent composed mainly of C o and promotes the dephosphorization reaction. In addition, titanium oxide has the effect of reducing the viscosity of slag composed of dephosphorizing spirits mainly composed of C a 0, which makes it easy to discharge slag from the reaction vessel after dephosphorization. It has the effect of becoming. For this reason, the amount of residual slag in the reaction vessel after slag discharge becomes negligibly small, and in the dephosphorization treatment of the next charge, the dephosphorization reaction is not hindered by dephosphorization, etc. Phosphorus treatment is possible.
スラグ中の酸化チタンの量は、 T i O 2換算で 1 0質量%以下が好適であ る。 1 0質量%を超えると、 主成分である C a Oの比率が低下するので、 脱 燐能力の改善効果が相殺され、 添加の効果を低下させてしま う。 一方、 スラ グの粘度低下などの上記の効果を確実に享受するためには、酸化チタンの量 は T i O 2換算で 1質量%以上が好ましい。 ここで、 T i O 2換算の意味は、 酸化チタンには T i 〇、 T i 〇 2、 T i 23、 T i 35の形態があり、 こ れらの T i 分を T i 0 2に換算して表示するという意味である。 脱燐処理に使用する反応容器は特別な制約はなく 、溶銑鍋や装入鍋などの 取鍋型容器、 トーピー ドカー、 転炉などを用いることができる。 本発明の脱 燐処理においては、 脱燐反応を推進するために、 酸素源と して気体酸素源及 び固体酸素源の双方を供給する。 このうち気体酸素源は、 上吹きランスによ る上吹きや、イ ンジ-クシヨ ンランスまたは羽口などによる溶銑中へのイ ン ジヱクショ ン或いは底吹きなどの任意の方法によ り、供給することができる。 固体酸素源も、気体酸素源が供給されている場所の近傍の溶銑浴面に供給す る必要がある。 例えば、 気体酸素源が上吹き されている場合には、 固体酸素 源も上方から気体酸素源の溶銑浴面での衝突面の近傍に供給するこ とが好 ま しいが、イ ンジェク ショ ンラ ンスまたは底吹き羽口などから搬送用ガスを 用いて気体酸素源の溶銑浴面での衝突面の近傍に固体酸素源を供給しても よレ、。気体酸素源がィンジェクシヨ ンランス或いは羽口を通じてインジエタ ショ ンされている場合には、同一のイ ンジェクショ ンランス或いは羽口に固 体酸素源を供給する系統を設ける力 固体酸素源を供給する独立のインジ二 クシヨ ンランス或いは羽口を設けるこ とによ り、気体酸素源がィンジェクシ ヨ ンランス或いは羽口の出口で溶銃に侵入する面の近傍に固体酸素源を供 給することができる。 また、 本発明の脱燐処理においては、 C a Oを主体とする脱りん精鍊剤も 気体酸素源が供給されている場所と同一場所の溶銑浴面に供給するこ とが 好ましい。 このよ う にして気体酸素源及び固体酸素源、 更には C a Oを主体 とする脱りん精鎳剤を供給するためには、 例えば、 これらを供給するランス (上吹きランス、 イ ンジェクショ ンランスなど) 若'しく は羽口に、 少なく と も 2つの供給系統を設置し、そのうちの 1つの供給系統から C a Oを主体と する脱りん精鍊剤を気体酸素源と と もに供給し、他の 1つの供給系統から固 体酸素源を前述した搬送用ガスと ともに供給するこ とによ り、上記添加条件 を達成することができる。 供給手段は、 上吹きランス、 イ ンジェクショ ンラ ンス、 羽口などどのよ うな手段であっても構わないが、 熱負荷が小さく耐用 性に富み、 操作が容易であることから、 上吹きランスから供給することが好 ま しい。 The amount of titanium oxide in the slag is preferably 10% by mass or less in terms of Ti 2 O 2 . If it exceeds 10% by mass, the ratio of C a O, which is the main component, decreases, so the effect of improving the dephosphorization ability is offset and the effect of addition is reduced. On the other hand, the amount of titanium oxide is preferably 1% by mass or more in terms of T i O 2 in order to surely enjoy the above-mentioned effects such as a decrease in slag viscosity. Here, T i refers to O 2 conversion is, T i 〇 is titanium oxide, has the form of a T i 〇 2, T i 23, T i 35, the T i min of these T This means that i 0 2 is converted and displayed. The reaction vessel used for the dephosphorization treatment is not particularly limited, and a ladle type vessel such as a hot metal ladle or a charging ladle, a torpedo car, a converter, etc. can be used. In the dephosphorization treatment of the present invention, both a gaseous oxygen source and a solid oxygen source are supplied as an oxygen source in order to promote the dephosphorization reaction. Of these, the gaseous oxygen source is the top blow lance. It can be supplied by any method such as top blowing, injection into the molten iron by an injection or tuyere, or bottom blowing. A solid oxygen source must also be supplied to the hot metal bath near the location where the gaseous oxygen source is supplied. For example, when a gaseous oxygen source is being blown up, it is preferable to supply the solid oxygen source from above to the vicinity of the collision surface at the hot metal bath surface of the gaseous oxygen source. Alternatively, a solid oxygen source may be supplied in the vicinity of the collision surface at the hot metal bath surface of the gaseous oxygen source using a carrier gas from the bottom blowing tuyere. If a gaseous oxygen source is being injected through an injection lance or tuyere, the ability to provide a system to supply a solid oxygen source to the same injection lance or tuyere. By providing a clearance or tuyere, a solid oxygen source can be supplied near the surface where the gaseous oxygen source enters the gun at the exit of the junction lance or tuyere. Further, in the dephosphorization treatment of the present invention, it is preferable to supply a dephosphorizing agent mainly composed of CaO to the hot metal bath surface at the same place as the place where the gaseous oxygen source is supplied. In this way, in order to supply a gaseous oxygen source and a solid oxygen source as well as a dephosphorizing agent mainly composed of CaO, for example, a lance for supplying them (an upper lance, an injection lance, etc.) ) At least two supply systems are installed at the tuyere, and a dephosphorizing agent mainly composed of CaO is supplied from one of the supply systems together with the gaseous oxygen source, and the other. By supplying a solid oxygen source together with the above-described carrier gas from one supply system, the above addition condition can be achieved. The supply means may be any means such as a top blow lance, injection lance, tuyere, etc., but it is supplied from the top blow lance because it has a small thermal load and is highly durable and easy to operate. It is preferable to do.
気体酸素源と共に供給される、 C a 〇を主体とする脱りん精鍊剤のサイズ は、 滓化を促進させる観点から 1 m m以下が好ましい。 気体酸素源が供給される浴面、 即ち火点は、 酸素ガスによる脱炭反応が優 勢であり、 脱炭反応などの発熱によ り、 例えば転炉の脱りんでは 2 0 0 0 を超える高温となっている。 一方、 脱燐反応は熱力学的には低温ほど促進さ れる。 従って、 実質的に脱燐反応が起こるのは、 火点からわずかに離れた、 '概ね温度 1 8 0 0 °C以下の周辺部である。 The size of the dephosphorizing agent composed mainly of C a 0 supplied with the gaseous oxygen source is preferably 1 mm or less from the viewpoint of promoting hatching. The bath surface to which the gaseous oxygen source is supplied, that is, the fire point, is superior in the decarburization reaction with oxygen gas. Due to the heat generated by the decarburization reaction, for example, the dephosphorization of the converter has a high temperature exceeding 200. On the other hand, the dephosphorization reaction is thermodynamically accelerated at lower temperatures. Therefore, the dephosphorization reaction takes place substantially in the peripheral part of the temperature of approximately 1800 ° C. or less, slightly away from the fire point.
上吹きランスが、 少なく とも 2つの供給系統を有し、 そのう ち 1系統から 気体酸素源を供給し、別の 1系統から固体酸素源を搬送用ガスと と もに火点 の近傍に向けて供給することで、 固体酸素源は火点に近接した、 実質的に脱 燐反応の促進される部分に供給されることになる。 固体酸素源は、 酸素ガス に比べて酸素濃度の低い搬送用ガスで供給されるので、その部分の温度が過 剰に上昇すること もなく、 固体酸素源の良好な反応性によって、 脱燐が更に 促進される。 例えば、 1 8 0 0 °Cにおける脱燐能力は、 熱力学的概算で 2 0 0 0でにおける脱燐能力よ り概ね倍増する  The top blow lance has at least two supply systems, one of which supplies the gaseous oxygen source and the other one directs the solid oxygen source with the carrier gas to the vicinity of the fire point. As a result, the solid oxygen source is supplied to a portion near the fire point where the dephosphorization reaction is substantially promoted. Since the solid oxygen source is supplied by a carrier gas having a lower oxygen concentration than oxygen gas, the temperature of the portion does not rise excessively, and the good reactivity of the solid oxygen source prevents dephosphorization. Further promoted. For example, the dephosphorization capacity at 1800 ° C is approximately double the dephosphorization capacity at 2 0 0 0 by thermodynamic estimation.
2つの供給系統を有する上記のよ うな構成と しては、 例えば、 上吹きラン スを少なく と も二重管構造と して一方を酸素ガスの流路、他方を固体酸素源 及び搬送用ガスの流路と し、 気体酸素源を、 ランス中心軸を中心と した同心 円上に配されたノズル孔から供給し、 一方、 固体酸素源及び搬送用ガスを、 ランス中心軸上に配されたノズル孔から供給する方法を採用するこ とがで きる。 この方法は、 気体酸素源の供給によ り形成される複数の火点に囲まれ る位置に、 固体酸素源を供給する状態をつく り 出すため、 火点に囲まれた固 体酸素源供給部は火点より低い高温状態が安定して維持されるのでと く に 好適である。 また、 ランス中心軸を中心と した同心円上に複数のノズル孔を 配し、 交互 (互い違い) の孔から気体酸素源、 及び、 固体酸素源を供給する よ うにしてもよレ、。 供給すべき固体酸素源の全てを、気体酸素源が供給されている場所の近傍 の溶銑浴面に供給する必要はなく 、固体酸素源の一部のみを気体酸素源が供 給されている場所の近傍の溶銑浴面に供給しても構わない。 但し、 気体酸素 源が供給されている場所の近傍の溶銑浴面に供給する固体酸素源が少ない と、 前述したスラグ中 F e ◦成分の上昇が少ないので、 これを防止するため に、 設備仕様に応じて、 スラグ中 F e O成分の上昇が十分となる量を下限と すればよレ、。 また、 上限と しては、 設備仕様に応じて抜熱が過大とならない 量に抑制すればよい。 例えば、 1 0 0 〜 3 5 0 トン程度の容器で脱燐処理す る場合には、 浴面に洪給する気体酸素源 1 N m 3 (標準状態での酸素ガス純 分) に対し、 搬送用ガスによ り供給される固体酸素源を 0 . 1 k g以上 2 k g以下の範囲で添加することが好ましい。 ◦ . 1 k g未満では本発明で期待 する効果が十分に得られず、 一方、 2 k g を越えると固体酸素源源の供給面 における抜熱が大きく なり、スラグの滓化が不十分となって脱燐能力を低下 させてしま う。 よ り好ま しい供給量は 0 . 3 k g以上である。 気体酸素源が供給されている溶銑浴面の近傍以外の場所に供給する固体 酸素源は、 上置き添加、 インジェクショ ン添加など適宜の方法で供給すれば よい。 同様に、 気体酸素源が供給されている溶銑の浴面以外の場所に C a O を主体とする脱り ん精鍊剤の少なく と も一部を供給する場合にも、上置き添 加、 ィンジュクショ ン添加など適宜の方法で供給すればよい。 The above-described configuration having two supply systems is, for example, a double-pipe structure with at least a top blowing lance, one with an oxygen gas flow path, the other with a solid oxygen source and a carrier gas. A gaseous oxygen source was supplied from a nozzle hole arranged on a concentric circle centered on the lance center axis, while a solid oxygen source and a carrier gas were arranged on the lance center axis. A method of supplying from the nozzle hole can be adopted. This method creates a state of supplying a solid oxygen source at a position surrounded by a plurality of fire spots formed by supplying a gaseous oxygen source, so that a solid oxygen source supply surrounded by a fire spot is generated. The part is particularly suitable because the high temperature state below the fire point is stably maintained. Alternatively, a plurality of nozzle holes may be arranged on a concentric circle centered on the lance central axis, and a gaseous oxygen source and a solid oxygen source may be supplied from alternate (alternate) holes. It is not necessary to supply all of the solid oxygen source to be supplied to the hot metal bath surface in the vicinity of the place where the gaseous oxygen source is supplied, but a place where only a part of the solid oxygen source is supplied with the gaseous oxygen source It may be supplied to the hot metal bath surface in the vicinity of. However, if the amount of solid oxygen supplied to the hot metal bath near the location where the gaseous oxygen source is supplied is small, the increase in the Fe ◦ component in the slag will be small. In addition, depending on the equipment specifications, the lower limit should be the amount by which the increase in the FeO component in the slag is sufficient. Also, the upper limit may be limited to an amount that does not cause excessive heat removal according to the equipment specifications. For example, when dephosphorization is performed in a container of about 100 to 3500 tons, it is transported to a gaseous oxygen source 1 N m 3 (pure oxygen gas in the standard state) that is supplied to the bath surface. The solid oxygen source supplied by the working gas is preferably added in the range of 0.1 kg to 2 kg. ◦ Less than 1 kg, the effect expected by the present invention cannot be obtained sufficiently. On the other hand, if it exceeds 2 kg, heat removal on the supply surface of the solid oxygen source increases, resulting in insufficient slag hatching. It will reduce your phosphorus capacity. A more preferred supply is 0.3 kg or more. The solid oxygen source to be supplied to a place other than the vicinity of the hot metal bath surface to which the gaseous oxygen source is supplied may be supplied by an appropriate method such as top addition or injection addition. Similarly, when supplying at least a part of a degassing fertilizer mainly composed of CaO to a place other than the bath surface of the hot metal to which a gaseous oxygen source is supplied, the top addition and the injection are performed. It may be supplied by an appropriate method such as addition of water.
尚、 気体酸素源を使用した場合には、 酸化反応熱によって溶銑温度は上昇 し、 固体酸素源を使用した場合には、 固体酸素源自体の顕熱、 潜熱及び分解 熱が酸化反応熱よ り も大きいために溶銑温度は降下する。 従って、 気体酸素 源と固体酸素源との使用比率は、 上記の範囲を維持しつつ、 溶銑の処理前後 の温度に応じて設定すること とする。 また、 脱燐反応を効率的に行うために は溶銑を撹拌することが好ましく 、 この撹拌と しては、 一般にィンジェクシ ョ ンラ ンスゃ炉底に埋め込まれたノズルなどを利用したガス撹拌を行えば よい。 脱燐精鍊用スラグと しては、スラグ中の F e O濃度が 1 0質量%以上 5 0 質量%以下の範囲が好適であるので、スラグ中の F e O濃度がこの範囲を維 持できるよ う に、 固体酸素源の供給量を調整することが好ましい。 よ り好ま しい範囲は 3 0質量%以下である。  When a gaseous oxygen source is used, the hot metal temperature rises due to the oxidation reaction heat. When a solid oxygen source is used, the sensible heat, latent heat, and decomposition heat of the solid oxygen source itself are higher than the oxidation reaction heat. Is too large, the hot metal temperature drops. Therefore, the usage ratio between the gaseous oxygen source and the solid oxygen source is set according to the temperature before and after the hot metal treatment while maintaining the above range. Further, in order to efficiently perform the dephosphorization reaction, it is preferable to stir the hot metal. For this stirring, generally, gas stirring using a nozzle or the like embedded in the bottom of the furnace is performed. Good. As the dephosphorization slag, the F e O concentration in the slag is preferably in the range of 10% by mass to 50% by mass, so that the F e O concentration in the slag can maintain this range. Thus, it is preferable to adjust the supply amount of the solid oxygen source. A more preferable range is 30% by mass or less.
このよ う にして溶鉄の脱燐処理を行う ことによ り、フッ素含有物質を媒溶 剤と して使用しなく ても、従来と同様の脱燐速度を維持して脱燐処理するこ とが可能となる。 その結果、 澴境へのフッ素漏洩の対策を採らないままでス ラグを再利用することができ、環境負荷を回避することが可能となる。また、 脱燐処理温度を高めても従来と同等の脱燐量を維持することが可能であり、 この場合には、 脱燐処理における鉄歩留り を高位にすることができ、 工業上 有益な効果がもたらされる。 By performing the dephosphorization treatment of the molten iron in this way, the dephosphorization treatment can be carried out while maintaining the same dephosphorization rate as before without using a fluorine-containing substance as a solvent. Is possible. As a result, the slag can be reused without taking measures against fluorine leakage to the remote area, and the environmental load can be avoided. In addition, even if the dephosphorization temperature is increased, it is possible to maintain the same amount of dephosphorization as in the past. In this case, the iron yield in the dephosphorization process can be increased, which is an industrially beneficial effect. Is brought about.
〔実施例〕 〔Example〕
(実施例 1 ) (Example 1)
高炉から出銑した溶銑を高炉铸床 (blast furnace casthouse) で脱珪処 理した後、 3 0 0 トン容量の転炉に搬送し、 この転炉で合計 4回の脱燐処理 を実施(本発明例 1 〜 4 ) した。脱燐処理前の溶銑の燐濃度は 0. 1 2質量% に統一し、 脱燐処理後の溶銑の燐濃度は 0. 0 2 0質量。/。以下、 鉄歩留り は 9 8 %以上を目標と した。 鉄歩留り ( 7? ) は、 転;^内に装入した溶銖の質 量 (W0) とスク ラ ップの質量 (Ws) との終質量 (W。十 Ws) に対して脱 燐処理後に出湯した溶銑の質量 (W) を百分率で表示 ( 7? = 1 0 0 W/ (W 。+Ws)) して求めた。 The molten iron discharged from the blast furnace is desiliconized in a blast furnace casthouse and then transported to a 300 ton capacity converter, where a total of four dephosphorization processes are carried out (this Invention Examples 1 to 4). The phosphorus concentration in the hot metal before dephosphorization was unified to 0.1 2 mass%, and the phosphorus concentration in the hot metal after dephosphorization was 0.020 mass. /. Below, the iron yield was targeted at 98% or more. The iron yield (7?) Is the rolling mass; the final mass (W. tens W s ) of the mass of molten iron (W 0 ) and the mass of the scrap (W s ) The mass (W) of the hot metal discharged after dephosphorization was expressed as a percentage (7? = 100 W / (W. + W s )).
脱燐処理は、冷却水の給排水系統以外に、分離した 2つの供給系統を有し、 1 つの供給系統から酸素ガスと生石灰粉(平均粒径 1 mm以下)とを供給し、 他の供給系統から窒素ガスを搬送用ガスと して粉体の固体酸素源を供給す る上吹きランスを用いて行った。 上吹きランスの構造は、 酸素ガスと固体酸 素源の供給系統を二重管構造と し、 一方を酸素ガスの流路、 他方を固体酸素 源及び搬送用ガスの流路と し、 気体酸素源を、 ランス中心軸を中心と した同 心円上に配された複数のノズル孔から供給し、 一方、 固体酸素源及び搬送用 ガスを、ランス中心軸上に配された単一のノズル孔から供給するよ うにした。 固体酸素源は、供給位置の中心が火点の領域にかからないよ うに供給した。 ホタル石などのフッ素を含有する物質は添加しないで処理した。 転炉炉 底の羽口からは、 撹拌ガスと して窒素を溶銑 1 トンあたり 0 . 0 3〜 0. 3 0 N m 3 / m i nの流量で吹き込んだ。 In addition to the cooling water supply and drainage system, the dephosphorization process has two separate supply systems, supplying oxygen gas and quicklime powder (average particle size of 1 mm or less) from one supply system, and other supply systems. Then, an upper blowing lance was used to supply a solid oxygen source in the form of nitrogen gas as a carrier gas. The structure of the top blow lance is a double pipe structure for the supply system of oxygen gas and solid oxygen source, one of which is a flow path for oxygen gas and the other is a flow path for solid oxygen source and transport gas. The source is supplied from a plurality of nozzle holes arranged concentrically around the center axis of the lance, while the solid oxygen source and the transport gas are supplied from a single nozzle hole arranged on the center axis of the lance. It was made to supply from. The solid oxygen source was supplied so that the center of the supply position did not reach the hot spot area. It processed without adding fluorine-containing substances such as fluorite. From the tuyeres at the bottom of the converter furnace, nitrogen is used as the stirring gas, 0.03 to 0.3 per ton of hot metal. Blowing in at a flow rate of 0 N m 3 / min.
固体酸素源と しては、 粉状の鉄鉱石 (平均粒度 5 0 m)、 砂鉄 (平均粒 度 1 0 0 m)、 ミルスケール (平均粒度 5 0 0 m)、 鉄鉱石の焼結鉱 (平 均粒度 1 0 0 m) のう ちの何れか 1種を用い、 溶銑浴面に吹き付けた。 酸 素ガスの送酸条件は溶銑 1 トンあたり 0. 6 2. 5 N m 3/m i n と した。 酸素原単位は、 脱珪に必要な酸素を除いて 1 2 Nm 3 t と した。 As solid oxygen sources, powdered iron ore (average particle size 50 m), iron sand (average particle size 100 m), mill scale (average particle size 500 m), iron ore sintered ore ( One of the average particle size of 100 m) was used and sprayed onto the hot metal bath surface. The oxygen gas sending condition was set at 0.6 2.5 N m 3 / min per ton of hot metal. The oxygen intensity was 1 2 Nm 3 t excluding oxygen necessary for desiliconization.
また、 比較例と して、 粒状の鉄鉱石 (平均粒度約 2 O mm) を炉上ホツバ 一から上置き投入した脱燐処理も実施した。比較例のその他の脱燐処理条件 は本発明例に準じて行った。 表 1 に、 本発明例及び比較例における脱燐処理 前後の溶銑成分並びに操業条件を示す。 原単位および固体酸素原使用量は、 溶銑 1 t 当 りの量で示した。  In addition, as a comparative example, dephosphorization treatment was performed in which granular iron ore (average particle size of about 2 O mm) was placed on top of the furnace on top. Other dephosphorization treatment conditions in the comparative example were performed in accordance with the examples of the present invention. Table 1 shows the hot metal components and operating conditions before and after the dephosphorization treatment in the present invention example and the comparative example. The basic unit and the amount of solid oxygen used are shown in amounts equivalent to 1 ton of hot metal.
なお、 砂鉄を固体酸素源と した場合のスラグ中の酸化チタンの量は、 T i 〇 2換算で 4質量%となった。 The amount of titanium oxide in the slag in the case of the sand and solid oxygen source became 4 mass% in T i 〇 2 equivalent.
Figure imgf000015_0001
Figure imgf000015_0001
* ) 搬送用ガスで供給される固体酸素源と上吹きランスから供給される 02力'スとの比  *) Ratio of solid oxygen source supplied by carrier gas to 02 force supplied from top blowing lance
表 1 に^すよ うに、上吹きランスからの酸素ガスの吹き付け面に固体酸素 源を供給した全ての本発明例において、 脱燐処理後の溶銑中燐濃度は、 0. 0 2 0質量%以下になり、 且つ、 鉄歩留り は 9 8 %以上となつた。 これに対 して、比較例では、脱燐処理後の溶銑中燐濃度が 0. 0 2 0質量。/。よ り高く 、 これを低減しょ う とする と、 鉄歩留り が低下して 9 8 %を下回り、 両者が両 立しないことが確認できた。 As shown in Table 1, in all examples of the present invention in which a solid oxygen source was supplied to the blowing surface of the oxygen gas from the top blowing lance, the phosphorus concentration in the hot metal after dephosphorization was 0.02% by mass. And the iron yield reached 98% or more. In contrast, in the comparative example, the phosphorus concentration in the hot metal after the dephosphorization treatment was 0.020 mass. /. Higher, When we tried to reduce this, the iron yield dropped to below 98%, confirming that the two were not both.
(実施例 2 ) (Example 2)
高炉から出銑した溶銑を高炉鍚床で脱珪した後、 300t容量の転炉に搬送し、 この転炉で合計 1 5回の脱りん処理を実施 (本発明例 1 1〜 2 5 ) した。 脱 り ん処理は実施例 1 と同様に実施し、 脱り ん処理後の溶銑の り ん濃度は 0. 020質量 ¾以下、 鉄歩留りは 98¾以上を目標と した。  After desiliconizing the hot metal discharged from the blast furnace in the blast furnace bed, it was transported to a 300t capacity converter, and dephosphorization treatment was performed a total of 15 times in this converter (Invention Example 1 1-25). . The deaeration treatment was carried out in the same manner as in Example 1. The hot metal concentration after the deaeration treatment was set to 0.020 mass ¾ or less and the iron yield was set to 98 ¾ or more.
酸化鉄と しては、 平均粒度 1 0 0 mの砂鉄を用いた。 酸化鉄は、 搬送 用ガスによる上吹きランスからの供給と、炉上ホッパーからの上置き投入を 併用した。  As iron oxide, iron sand having an average particle size of 100 m was used. Iron oxide was used in combination with a supply gas from the top blow lance and a top hopper from the furnace hopper.
脱りん精鍊剤と しては、 気体酸素源の供給系統から供給する生石灰粉 (平 均粒径 1 m m以下) と、 炉上ホッパーから上置き投入する塊状石灰 (平均径 約 1 O m m ) を併用 し、 スラグの塩基度 (スラグ中 C a O成分と S i O 2成 分の重量比) を調整した。 なお、 発明例 1 8については、 気体酸素源の供給 系統から生石灰粉を供給せず、炉上ホツバ一から塊状石灰のみを上置き投入 した。 さ らに、 発明例 2 2については、 気体酸素源の供給系統から生石灰粉 に加えて石灰石粉 (平均粒径 l m m以下) を供給した。  The dephosphorizing agent consists of quick lime powder (average particle size of 1 mm or less) supplied from the gaseous oxygen source supply system and massive lime (average diameter of about 1 O mm) that is placed on top of the furnace hopper. In combination, the basicity of the slag (weight ratio of C a O component and S i O 2 component in the slag) was adjusted. In Invention Example 18, quick lime powder was not supplied from the supply system of the gaseous oxygen source, and only massive lime was put on top from the furnace on the top. Further, for Invention Example 22, the limestone powder (average particle size of 1 mm or less) was supplied in addition to the quick lime powder from the supply system of the gaseous oxygen source.
また、 比較例 1 1〜 1 4 と して、 酸化鉄を上吹きランスから投射しない場 合についても脱りん処理を行った。 さ らに比較例 1 5から 1 7 と して、 酸化 鉄の一部を気体酸素源の供給系統から供給した場合についても脱りん処理 を行った。 比較例のその他の脱燐処理条件は本発明例に準じて行った。  Further, as Comparative Examples 1 1 to 14, dephosphorization treatment was also performed when iron oxide was not projected from the top blowing lance. Further, as Comparative Examples 15 to 17, dephosphorization treatment was also performed when a part of iron oxide was supplied from a supply system of a gaseous oxygen source. Other dephosphorization treatment conditions in the comparative example were performed in accordance with the examples of the present invention.
表 2に、本発明例および比較例における脱燐処理前後の溶銑成分ならびに 操業条件を示す。 表 2 Table 2 shows the hot metal components before and after the dephosphorization treatment and the operating conditions in the inventive examples and comparative examples. Table 2
Figure imgf000017_0001
表 2に示すよ うに、 酸素源の一部を上置き投入と した場合でも、 本発明例 においては、 脱燐処理後の溶銑中燐濃度が 0. 0 2 0質量%以下になり、 且 つ、 鉄歩留り は 9 8 %以上となった。 これに対して、 比較例では、 脱燐処理 後の溶銑中燐濃度 : 0. 0 2 0質量%以下と、 鉄歩留り : 9 8 %以上を両立 させるこ とはできなかった。
Figure imgf000017_0001
As shown in Table 2, even when a part of the oxygen source is put on top, in the present invention example, the phosphorus concentration in the hot metal after the dephosphorization treatment becomes 0.020% by mass or less, and The iron yield was over 98%. On the other hand, in the comparative example, it was not possible to achieve both a phosphorus concentration in the hot metal after dephosphorization treatment of 0.020% by mass or less and an iron yield of 98% or more.
(実施例 3 ) (Example 3)
高炉から出銑した溶銑を高炉錶床で脱珪した後、 300t容量の転炉に搬送し、 この転炉で合計 2回の脱りん処理を実施 (本発明例 3 1〜 3 2 ) した。 底吹 きガスと して、転炉炉底の二重管構造の羽口の内管から撹拌ガスと して酸素 ガスを溶銑 1 トンあたり約 0. S Nm SZm i nの流量で吹き込んだ。 外管 からは羽口冷却用のプロパンガスを吹き込んだ以外は、実施例 1 と同様に脱 りん処理を実施した。 酸化鉄と しては、 平均粒度 5 0 0 / mのミルスケール を用いた。脱りん処理後の溶銑のりん濃度は 0. 020質量%以下、鉄歩留りは 98% 以上を目標と した。 The hot metal discharged from the blast furnace was desiliconized in the blast furnace bed, and then transferred to a 300-ton capacity converter, and dephosphorization treatment was carried out twice in total (Invention Examples 31 to 32). As the bottom blowing gas, oxygen gas was blown from the inner tube of the tuyeres of the double tube structure at the bottom of the converter furnace at a flow rate of about 0. S Nm SZmin per ton of hot metal. Outer tube The dephosphorization treatment was performed in the same manner as in Example 1 except that propane gas for cooling the tuyere was blown. As the iron oxide, a mill scale having an average particle size of 500 / m was used. The target concentration of hot metal after dephosphorization was 0.020% by mass or less and iron yield was 98% or more.
表 3に、本発明例における脱燐処理前後の溶銑成分ならびに操業条件を示 す。  Table 3 shows the hot metal components and operating conditions before and after the dephosphorization treatment in the examples of the present invention.
3 Three
Figure imgf000018_0001
産業上の利用の可能性
Figure imgf000018_0001
Industrial applicability
'. 本発明によれば、 溶銑の脱燐処理の際に、 C a Oを主体とする脱りん精鍊 剤を溶銑に添加して、 1つの供給系統から気体酸素源を溶銑浴面に供給し、 他の供給系統から固体酸素源を、気体酸素源が供給されている場所の近傍の 溶銑浴面に供給する。 これによ り、 固体酸素源の溶融が迅速化されて、 脱憐 精鍊用スラグの酸素ポテンシャルが迅速に上昇し、当該スラグの脱燐能力が '向上する。 スラグの脱燐能力が向上するこ とにより、 従来に比べて.少ない石 灰の使用量であっても、 また、 鉄歩留り向上のために脱燐精鍊用スラグの塩 基度 (C a O Z S i 0 2 ) を従来に比べて低下させたり、 脱燐処理後の溶銑 温度を従来に比べて上昇させたり しても、 脱燐反応は阻害されず、 効率良く 溶銑を脱燐処理することができる。 また、 固体酸素源の搬送用ガスと して、 空気、 還元性ガス、 炭酸ガス、 非酸化性ガス、 希ガスなどの気体酸素源に比 ベて酸素濃度の低い気体を使用しているので、火点のよ うに過剰な高酸素ポ テンシャル場を形成せず、脱炭反応を抑えて脱燐反応をさ らに効率的に促進 させることができる。 According to the present invention, during the dephosphorization of the hot metal, a dephosphorizing agent mainly composed of CaO is added to the hot metal, and a gaseous oxygen source is supplied from one supply system to the hot metal bath surface. Supply a solid oxygen source from another supply system to the hot metal bath surface near the place where the gaseous oxygen source is supplied. As a result, the melting of the solid oxygen source is accelerated, the oxygen potential of the degassing / slagging slag is rapidly increased, and the dephosphorization ability of the slag is improved. By improving the dephosphorization capacity of slag, the basicity of slag for dephosphorization and refinement (C a OZS i) 0 2) the or lowered than the conventional, even a molten iron temperature after dephosphorization or raised as compared with the conventional dephosphorization reaction is not inhibited, efficiently molten iron can be dephosphorization process . In addition, as the gas for transporting the solid oxygen source, a gas having a lower oxygen concentration than the gaseous oxygen source such as air, reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas is used. It does not form an excessively high oxygen potential field like the hot spot, and can suppress the decarburization reaction and promote the dephosphorization reaction more efficiently.

Claims

請求の範囲 The scope of the claims
1 . C a 〇を主体とする脱りん精鍊剤を溶銑に添加して、 添加した C a 〇を主体とする脱りん精鍊剤を滓化させてスラグとなし、溶銑に対して脱燐 処理を施す、 溶銑の脱燐処理方法において、 1. Add a dephosphorizing fertilizer mainly composed of C a 0 to the molten iron, and then add the dephosphorized fermented agent mainly composed of C a 0 to form a slag. In the hot metal dephosphorization method,
1つの供給系統から気体酸素源を溶銑浴面に供給し、他の 1つの供給系統 から固体酸素源を、 気体酸素源が供給されている場所の近傍の溶銑浴面に、 搬送用ガスを用いて供給するこ とを特徴とする、 溶銑の脱憐処理方法。  A gaseous oxygen source is supplied from one supply system to the hot metal bath surface, a solid oxygen source is supplied from the other supply system, and a transport gas is used on the hot metal bath surface near the location where the gaseous oxygen source is supplied. A hot metal degassing method, characterized in that the hot metal is supplied.
2 . 前記気体酸素源と固体酸素源のそれぞれの供給系統を、 同一のラン ス內に配することを特徴とする、 請求項 1 に記載の溶銑の脱燐処理方法。 2. The hot metal dephosphorization method according to claim 1, wherein the supply systems of the gaseous oxygen source and the solid oxygen source are arranged in the same lance.
3 . C a Oを主体とする脱りん精錶剤を、 前記気体酸素源の供給系統を 通じて前記気体酸素源と と もに溶銖浴面に供給するこ とを特徴とする、請求 項 1 に記載の溶銑の脱燐処理方法。 3. A dephosphorizing agent mainly composed of CaO is supplied to the hot metal bath surface together with the gaseous oxygen source through the gaseous oxygen source supply system. The method for removing phosphorus from hot metal as described in 1.
4 . C a Oを主体とする脱りん精鍊剤を、 前記気体酸素源の供給系統を 通じて前記気体酸素源と と もに溶銑浴面に供給することを特徴とする、請求 項 2に記載の溶銑の脱燐処理方法。 4. The dephosphorizing agent mainly composed of CaO is supplied to the hot metal bath surface together with the gaseous oxygen source through the gaseous oxygen source supply system. Of hot metal dephosphorization.
5 . 前記固体酸素源の搬送用ガスが、 空気、 還元性ガス、 炭酸ガス、 非 酸化性ガス、希ガスのうちの何れか 1種または 2種以上の気体であり、かつ、 前記気体酸素源よ り も酸素濃度が低いことを特徴とする、請求項 1 から 4の いずれかに記載の溶銑の脱燐処理方法。 5. The gas for transporting the solid oxygen source is one or more gases selected from the group consisting of air, reducing gas, carbon dioxide gas, non-oxidizing gas, and noble gas, and the gaseous oxygen source. 5. The hot metal dephosphorization method according to any one of claims 1 to 4, wherein the oxygen concentration is lower than that of the hot metal.
6 . 前記固体酸素源は、 粒度が 1 m m以下の焼結鉱、 ミルスケール、 集 塵ダス ト、 砂鉄、 鉄鉱石のうちの何れか 1種または 2種以上であることを特 徴とする、 請求項 1 から 4のいずれかに記載の溶銑の脱燐処理方法。 6. The solid oxygen source may be one or more of sintered ore having a particle size of 1 mm or less, mill scale, dust collection dust, iron sand, or iron ore, The method for dephosphorizing hot metal according to any one of claims 1 to 4.
7 . 転炉において、 C a Oを主体とする脱りん精鍊剤を酸素源と と もに 溶銑に添加して、添加した C a Oを主体とする脱りん精鍊剤を滓化させてス ラグとなし、 溶銑に対して脱燐処理を施す、 溶銑の脱燐処理方法において、 少なく と も 2つの供給経路を有する上吹きランスを用い、その う ちの 1つの 供給系統から C a Oを主体とする脱り ん精鍊剤を気体酸素と と もに溶銑浴 面に供給し、 他の 1つの供給系統から固体酸素源を、 気体酸素が供給されて いる場所と同一場所の近傍の溶銑浴面に、 空気、 還元性ガス、 炭酸ガス、 非 酸化性ガス、希ガスのう ちの何れか 1種または 2種以上の気体を搬送用ガス と して供給することを特徴とする、 溶銑の脱燐処理方法。 7. In the converter, a dephosphorizing agent mainly composed of C a O is used together with the oxygen source. At least in the dephosphorization method for hot metal, which is added to the hot metal, and the dephosphorizing agent mainly composed of added CaO is hatched to form a slag, and the hot metal is dephosphorized. Using a top-blow lance with two supply channels, one of these supply systems supplies a degassing fertilizer composed mainly of CaO to the hot metal bath surface along with gaseous oxygen, and the other one Solid oxygen source from the supply system, one of air, reducing gas, carbon dioxide gas, non-oxidizing gas, and noble gas on the hot metal bath surface near the same location where gaseous oxygen is supplied Alternatively, the hot metal dephosphorization method, wherein two or more gases are supplied as a carrier gas.
8 . 気体酸素源の供給によ り形成される複数の火点に囲まれる位置に、 固体酸素源'を供給するこ とを特徴とする請求項 1 、 2、 3 、 4 、 7のいずれ かに記載の溶銑の脱燐処理方法。 8. The solid oxygen source 'is supplied to a position surrounded by a plurality of fire points formed by supplying the gaseous oxygen source, either 1, 2, 3, 4, or 7 The method for dephosphorizing hot metal as described in 1.
PCT/JP2006/322792 2005-11-09 2006-11-09 Method of hot metal dephosphorization treatment WO2007055404A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800418425A CN101305105B (en) 2005-11-09 2006-11-09 Method of hot metal dephosphorization treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-324253 2005-11-09
JP2005324253 2005-11-09

Publications (1)

Publication Number Publication Date
WO2007055404A1 true WO2007055404A1 (en) 2007-05-18

Family

ID=38023387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322792 WO2007055404A1 (en) 2005-11-09 2006-11-09 Method of hot metal dephosphorization treatment

Country Status (4)

Country Link
KR (1) KR101001078B1 (en)
CN (1) CN101305105B (en)
TW (1) TW200730636A (en)
WO (1) WO2007055404A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI737504B (en) * 2020-09-28 2021-08-21 中國鋼鐵股份有限公司 Dephosphorization method of basic oxygen furnace slag

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5954551B2 (en) * 2013-01-18 2016-07-20 Jfeスチール株式会社 Converter steelmaking
KR101677341B1 (en) * 2014-12-03 2016-11-18 주식회사 포스코 Highly efficient method for hot metal pretreatment
EP3943618B1 (en) * 2019-03-22 2024-02-21 JFE Steel Corporation Blowing control method and blowing control apparatus for converter type dephosphorization refining furnace

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147506A (en) * 1982-02-27 1983-09-02 Kawasaki Steel Corp Preliminary treatment of molten iron
JPS5989710A (en) * 1982-11-11 1984-05-24 Kawasaki Steel Corp Immersion lance for treatment of molten metal
JPS59157209A (en) * 1983-02-25 1984-09-06 Sumitomo Metal Ind Ltd Pretreatment of molten iron
JPS60162712A (en) * 1984-02-02 1985-08-24 Nippon Steel Corp Method for blowing powder into molten iron
JPS61201712A (en) * 1985-03-02 1986-09-06 Kobe Steel Ltd Pretreatment of molten pig iron
JPH01287213A (en) * 1988-05-11 1989-11-17 Nkk Corp Method for reducing cr ore in pre-treatment of molten iron
JPH11256217A (en) * 1998-03-10 1999-09-21 Nippon Steel Corp Method for supplying auxiliary raw material in converter
JP2001131629A (en) * 1999-11-04 2001-05-15 Nippon Steel Corp Top-blown lance for dephosphorizing molten iron and dephosphorizing method of molten iron
JP2004190101A (en) * 2002-12-12 2004-07-08 Nippon Steel Corp Method for pre-treating molten iron

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147506A (en) * 1982-02-27 1983-09-02 Kawasaki Steel Corp Preliminary treatment of molten iron
JPS5989710A (en) * 1982-11-11 1984-05-24 Kawasaki Steel Corp Immersion lance for treatment of molten metal
JPS59157209A (en) * 1983-02-25 1984-09-06 Sumitomo Metal Ind Ltd Pretreatment of molten iron
JPS60162712A (en) * 1984-02-02 1985-08-24 Nippon Steel Corp Method for blowing powder into molten iron
JPS61201712A (en) * 1985-03-02 1986-09-06 Kobe Steel Ltd Pretreatment of molten pig iron
JPH01287213A (en) * 1988-05-11 1989-11-17 Nkk Corp Method for reducing cr ore in pre-treatment of molten iron
JPH11256217A (en) * 1998-03-10 1999-09-21 Nippon Steel Corp Method for supplying auxiliary raw material in converter
JP2001131629A (en) * 1999-11-04 2001-05-15 Nippon Steel Corp Top-blown lance for dephosphorizing molten iron and dephosphorizing method of molten iron
JP2004190101A (en) * 2002-12-12 2004-07-08 Nippon Steel Corp Method for pre-treating molten iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI737504B (en) * 2020-09-28 2021-08-21 中國鋼鐵股份有限公司 Dephosphorization method of basic oxygen furnace slag

Also Published As

Publication number Publication date
CN101305105A (en) 2008-11-12
KR20080059226A (en) 2008-06-26
CN101305105B (en) 2010-09-08
KR101001078B1 (en) 2010-12-14
TW200730636A (en) 2007-08-16
TWI310053B (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP4735169B2 (en) Hot metal dephosphorization method
TWI473883B (en) Converter steelmaking method
JP2013167015A (en) Method for preliminary treatment of molten iron
JP5087905B2 (en) Hot metal dephosphorization method
JP2011157570A (en) Method for dephosphorizing molten iron and top-blowing lance for refining
JP4977874B2 (en) Hot metal dephosphorization method
JP4848757B2 (en) Hot metal dephosphorization method
JP6693536B2 (en) Converter steelmaking method
JP5181520B2 (en) Hot metal dephosphorization method
WO2007055404A1 (en) Method of hot metal dephosphorization treatment
JP5867520B2 (en) Hot metal pretreatment method
JP5471151B2 (en) Converter steelmaking method
JP2013189714A (en) Method for preliminary treatment of molten iron
JP6773135B2 (en) How to dephosphorize hot metal
JP5272378B2 (en) Hot metal dephosphorization method
JP5870584B2 (en) Hot metal dephosphorization method
JP4581751B2 (en) Prevention of dust from hot metal transport container
JP4779464B2 (en) Method for producing low phosphorus hot metal
JP5358975B2 (en) Hot metal refining method
JP5266700B2 (en) Hot metal dephosphorization method
JP2005068533A (en) Method for dephosphorizing molten pig iron
JP4513340B2 (en) Hot metal dephosphorization method
JP2011058046A (en) Method for dephosphorizing molten iron
JP4305127B2 (en) Hot metal dephosphorization method
JP6760399B2 (en) Hot metal dephosphorization method and refining agent

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680041842.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087009225

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823440

Country of ref document: EP

Kind code of ref document: A1