JPH0517811A - Multiple pipe tuyere cooling method for metallurgical reaction furnace - Google Patents

Multiple pipe tuyere cooling method for metallurgical reaction furnace

Info

Publication number
JPH0517811A
JPH0517811A JP3153342A JP15334291A JPH0517811A JP H0517811 A JPH0517811 A JP H0517811A JP 3153342 A JP3153342 A JP 3153342A JP 15334291 A JP15334291 A JP 15334291A JP H0517811 A JPH0517811 A JP H0517811A
Authority
JP
Japan
Prior art keywords
tuyere
gas
steam
reference value
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3153342A
Other languages
Japanese (ja)
Inventor
Hiroaki Ishida
博章 石田
Masaru Ujisawa
優 宇治澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3153342A priority Critical patent/JPH0517811A/en
Publication of JPH0517811A publication Critical patent/JPH0517811A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To prolong the service life of a multiple pipe tuyere without contaminating a molten metal by using gases prepd. by mixing gaseous hydrocarbon and steam at a specific ratio as tuyere cooling gases at the time of blowing a refining gas and the tuyere cooling gases with the tuyere to the molten metal. CONSTITUTION:The tuyere is made into a multiple pipe structure 23 and the refining gas is blown from the inside pipe 26 thereof into the molten metal 28 to execute refining, such as, decarburization by, for example, oxidation, at the time of refining the metal by blowing the refining reactive gas, such as O2, to the molten metal from the tuyere 23 provided under the bath surface of the molten metal. The gaseous mixture which is formed by mixing the gaseous hydrocarbon and the steam to the mixing volumetric ratio of the steam ranging from -50% up to +50% of the reference value, which is obtd. by determining 1:2m mixing volumetric ratio of the gaseous hydrocarbon and the steam ((m) is the number of the atoms of the hydrocarbon) as the reference value, is used from the outside pipe 26' of the tuyere 23 at the flow rate indices X, Y expressed by equation I if the mixing ratio of the steam is below the reference value and expressed by formula II if the above-mentioned ratio is above the reference value in order to prevent the tuyere 23 from rising to an extremely high temp. and from eroding in such a case. The service life of the tuyere 23 is thus prolonged while the deterioration in the material quality of the molten steel is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、スクラップを溶解す
るスクラップ溶解炉、鉱石を溶融還元する溶融還元炉、
上底吹転炉あるいは底吹転炉のような製鋼炉を主とする
冶金反応炉の炉底または炉壁の溶融金属表面下に設けら
れた羽口であって、溶解または精錬用のガス、あるいは
これらのガスと精錬剤等の粉体を吹き込むための二重
管、三重管等の多重管羽口の冷却方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scrap melting furnace for melting scrap, a smelting reduction furnace for smelting and reducing ores,
A tuyere provided under a molten metal surface of a furnace bottom or a furnace wall of a metallurgical reaction furnace mainly for a steelmaking furnace such as a top-bottom blowing converter or a bottom-blowing converter, a gas for melting or refining, Alternatively, the present invention relates to a method for cooling tuyeres of multiple tubes such as a double tube and a triple tube for blowing powders of these gases and refining agents.

【0002】[0002]

【従来の技術】製鋼用の炉について言えば、従来酸素上
吹き転炉が主流であったが、近年特にわが国においては
複合吹錬転炉、いわゆる上底吹転炉が普及している。こ
のように上底吹転炉が賞用されるようになったのは、上
吹転炉あるいは底吹転炉に対して、上底吹転炉が持つ優
れた精錬機能が注目されたことに加えて底吹羽口の寿命
を延長する技術の向上によるところが大きい。
2. Description of the Related Art Regarding furnaces for steelmaking, oxygen top blowing converters have been the mainstream in the past, but in recent years, especially in Japan, composite blowing converters, so-called top and bottom blowing converters have become popular. In this way, the top-bottom blow converter has come to be prized because the superior refining function of the top-bottom blow converter has attracted attention for the top-blown converter or the bottom-blown converter. In addition, it is largely due to the improvement of technology to extend the life of the bottom blowhole.

【0003】底吹羽口の寿命を延ばす方法として、吹込
羽口外管に冷却用ガス通路を有する二重管羽口、三重管
羽口のような多重管羽口を使用し、羽口先端部にマッシ
ュルームを形成させて羽口を保護する方法が広く用いら
れている。このマッシュルームに関しては、例えば、
「鉄と鋼」定期講演概要集、1981年,S 873、同1982年,S
889 等にその生成機構や性状が紹介されている。
As a method of extending the life of the bottom tuyere, a multi-tube tuyere such as a double-tube tuyere or a triple-tube tuyere having a cooling gas passage in the blowing tuyere is used, and the tip of the tuyere is used. The method of protecting the tuyere by forming mushrooms is widely used. For this mushroom, for example,
"Iron and Steel" Regular Lecture Summary, 1981, S 873, 1982, S
The generation mechanism and properties are introduced in 889.

【0004】このような多重管羽口の冷却法としては、
ArあるいはN2のような不活性ガスを使用する方法、また
は CO2ガスのみを使用する方法がある。しかし、いずれ
の場合もマッシュルームの成長により底吹ガス流量の安
定制御が困難であること、並びにArガスは高価であるこ
と、N2ガスは溶鋼中に窒素元素として吸収されて鋼の品
質に悪影響を及ぼすこと、などの難点がある。
A cooling method for such a multi-tuyere is as follows:
There is a method using an inert gas such as Ar or N 2 , or a method using only CO 2 gas. However, in any case, it is difficult to stably control the bottom blowing gas flow rate due to the growth of mushrooms, Ar gas is expensive, and N 2 gas is absorbed as nitrogen element in the molten steel and adversely affects the quality of the steel. There are drawbacks such as exerting

【0005】また、 CO2ガスの場合は転炉精錬末期の低
炭域において、 Fe +CO2 = FeO+ CO FeO +C* = Fe + CO ( C* はMgO-C れんがのグラ
ファイト) の反応が起こり羽口周辺のれんがが溶損する傾向にある
ことのため、上底吹転炉の優れた精錬機能を安定して充
分に発揮させるには不適当である (「鉄と鋼」定期講演
概要集、1984年,S 945参照) 。
In the case of CO 2 gas, Fe + CO 2 = FeO + CO FeO + C * = Fe + CO (C * is MgO-C brick graphite) reaction occurs in the low-carbon region at the end of converter refining. Since the bricks around the mouth tend to melt, it is unsuitable for stable and sufficient exertion of the superior refining function of the top-and-bottom blow converter (Abstracts of the lecture by "Iron and Steel", 1984 Year, S 945).

【0006】一方、プロパンガスや灯油のような炭化水
素系ガスを羽口外管に比較的大量に吹き込んで、これら
のガスの熱分解による吸熱を利用する羽口の冷却法があ
る。
On the other hand, there is a tuyere cooling method in which a relatively large amount of hydrocarbon gas such as propane gas or kerosene is blown into the tuyere outer tube to utilize the heat absorption by the thermal decomposition of these gases.

【0007】この方法は、Ar、N2および CO2ガスによる
冷却では認められないマッシュルームの形成を一定に保
持する自己冷却制御機能を持っているが、熱分解により
生成した水素原子の一部が溶鋼中に吸収されて鋼の品質
に悪影響を及ぼすことが知られている。加えて、この方
法では高価なプロパンガスあるいは灯油などを使用する
ので精錬コストの上昇が避けられない。
[0007] This method has a self-cooling control function of keeping the formation of mushrooms, which is not recognized by cooling with Ar, N 2 and CO 2 gas, constant, but some hydrogen atoms generated by thermal decomposition are It is known that it is absorbed in molten steel and adversely affects the quality of steel. In addition, since expensive propane gas or kerosene is used in this method, an increase in refining cost cannot be avoided.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、冶金
反応炉の多重管羽口の冷却に使用する高価な炭化水素ガ
スの使用量を低減して溶鋼中への水素吸収を抑制すると
ともに、羽口先端のマッシュルームの生成を一定に保持
して、底吹きガス流量を安定して制御できる羽口冷却方
法を提供することにある。
An object of the present invention is to reduce the amount of expensive hydrocarbon gas used for cooling the multi-tuyere of a metallurgical reactor to suppress the absorption of hydrogen into molten steel. The object of the present invention is to provide a tuyere cooling method capable of stably controlling the bottom blown gas flow rate while keeping the generation of mushrooms at the tip of the tuyere constant.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は、「冶金
反応炉の溶融金属浴面下に設けられた多重管羽口の外管
から炭化水素系ガスと水蒸気の混合ガスを吹き込むこと
を特徴とする冶金反応炉の多重管羽口冷却方法」にあ
る。
SUMMARY OF THE INVENTION The gist of the present invention is to "inject a mixed gas of hydrocarbon gas and water vapor from an outer tube of a multi-tube tuyere provided below a molten metal bath surface of a metallurgical reactor. Characteristic method for cooling multiple metal tuyere of metallurgical reactor ”.

【0010】本発明において冶金反応炉とは、高炉、転
炉、AOD炉等の製銑、製鋼反応を行わせる各種の炉を
はじめ、溶解を主目的とする電気炉のような炉を意味す
る。
In the present invention, the metallurgical reaction furnace means a furnace such as an electric furnace whose main purpose is melting, including blast furnaces, converters, various furnaces for performing iron-making reactions such as AOD furnaces and steel-making reactions. .

【0011】溶融金属の浴面下の羽口は一般に炉底部に
設けることが多いが、浴面より下であれば炉側壁等の位
置に設けてもよい。
The tuyere below the bath surface of the molten metal is generally provided at the bottom of the furnace, but may be provided at a position such as the side wall of the furnace as long as it is below the bath surface.

【0012】多重管羽口とは、上記の冶金反応炉の溶融
金属浴面下に設けられ、ガスあるいはガスと粉体を吹き
込むのに使用されるもので、二重管羽口の場合は内管か
ら酸化性ガス、外管から冷却ガスを吹き込み、三重管羽
口の場合は中心管から不活性ガスとともに粉体を流し、
中間の管から酸化性ガス、最外管から冷却ガスを吹き込
むことが多い。酸化性ガスは酸素ガス単体あるいは酸素
ガスと不活性ガスの混合ガス(例えば空気)のいずれか
である。本発明方法では外管から炭化水素系ガスと水蒸
気の混合ガスが吹き込まれることになる。
The multiple tube tuyere is provided below the surface of the molten metal bath of the metallurgical reaction furnace and is used for blowing gas or gas and powder. In the case of the double tube tuyere, it is Injecting oxidizing gas from the tube and cooling gas from the outer tube, in the case of a triple tube tuyere, flow the powder with the inert gas from the central tube,
Often, an oxidizing gas is blown from the middle pipe and a cooling gas is blown from the outermost pipe. The oxidizing gas is either oxygen gas alone or a mixed gas of oxygen gas and an inert gas (for example, air). In the method of the present invention, a mixed gas of hydrocarbon gas and steam is blown from the outer tube.

【0013】本発明方法の実施に際しては、炭化水素系
ガスと水蒸気との混合体積比率が1:2mである場合を
基準値とし、水蒸気の混合体積比率を基準値の−50%以
上で+10%以下の範囲にするとともに、水蒸気の混合体
積比率が基準値以下の場合は下記 (1)式、基準値以上の
場合は (2)式に示す流量指数の混合ガスを吹き込んで羽
口を冷却するのが望ましい。
In carrying out the method of the present invention, the case where the mixing volume ratio of the hydrocarbon-based gas and the steam is 1: 2 m is taken as a standard value, and the mixing volume ratio of the steam is + 50% of the standard value or more and + 10%. If the mixing volume ratio of water vapor is below the reference value, the tuyere is cooled by blowing the mixed gas with the flow index shown in the following formula (1) and above the reference value when it is above the reference value. Is desirable.

【0014】[0014]

【数2】 [Equation 2]

【0015】[0015]

【作用】本発明による炭化水素ガスと水蒸気との混合ガ
スによる冷却法では、混合ガスの吸熱反応熱を利用して
羽口を冷却する。炭化水素系ガスを例えばメタン(CH
)ガスとすると、メタンガスと水蒸気(HO) と
の吸熱反応は下記 (3)式で示される。
In the cooling method using the mixed gas of hydrocarbon gas and water vapor according to the present invention, the tuyere is cooled by utilizing the heat of endothermic reaction of the mixed gas. Hydrocarbon-based gas is, for example, methane (CH
4 ) When the gas is used, the endothermic reaction between methane gas and water vapor (H 2 O) is represented by the following equation (3).

【0016】[0016]

【数3】 [Equation 3]

【0017】一方、従来の炭化水素系ガスだけを用いる
冷却法ではガスの熱分解による吸熱反応熱を利用して羽
口を冷却する。例えばメタンガスを用いた場合の熱分解
吸熱反応は下記 (4)式で示される。
On the other hand, in the conventional cooling method using only hydrocarbon gas, the tuyere is cooled by utilizing the heat of endothermic reaction due to the thermal decomposition of the gas. For example, the thermal decomposition endothermic reaction when methane gas is used is shown by the following equation (4).

【0018】[0018]

【数4】 [Equation 4]

【0019】上記 (3)、(4) 式の吸熱反応熱を比較する
と、(3)式反応は (4)式反応に対してメタンガス1モル
当たりで199.11/92.75=2.15倍の吸熱量を持っている。
従って本発明方法によれば、従来法と同一の冷却効果を
得るのに必要なメタンガス量は1/2.15=0.47倍量に低減
させることができる。これにより表1に示すように羽口
冷却ガスコストは本発明方法では従来法の約1/2 に削減
できる。
Comparing the endothermic reaction heats of the above equations (3) and (4), the equation (3) has an endothermic amount of 199.11 / 92.75 = 2.15 times per mole of methane gas as compared to the equation (4) reaction. ing.
Therefore, according to the method of the present invention, the amount of methane gas required to obtain the same cooling effect as the conventional method can be reduced to 1 / 2.15 = 0.47 times. As a result, as shown in Table 1, the cost of the tuyere cooling gas can be reduced to about half that of the conventional method by the method of the present invention.

【0020】[0020]

【表1】 [Table 1]

【0021】また (3)式の反応は (4)式の反応に対し
て、メタンガス1モル当たりで 4/2=2倍のH2を発生す
ることになるが、上述したように2.15倍の吸熱量を持っ
ている。従って同一の冷却効果という観点でみれば、本
発明方法は従来法の2/2.15=0.93倍のH2を発生するだけ
である。これにより本発明方法は溶鋼中への水素吸収を
抑制することができ、鋼品質に及ぼす水素の悪影響が軽
減される。
The reaction of the formula (3) generates 4/2 = 2 times more H 2 per mol of methane gas than the reaction of the formula (4). Has an endotherm. Therefore, from the viewpoint of the same cooling effect, the method of the present invention only produces 2 / 2.15 = 0.93 times more H 2 than the conventional method. As a result, the method of the present invention can suppress the absorption of hydrogen into the molten steel and reduce the adverse effect of hydrogen on the steel quality.

【0022】[0022]

【数5】 [Equation 5]

【0023】そしてこの温度は羽口内部あるいはマッシ
ュルーム内部で容易に起こりうる温度であるため、上記
(3)式および (4)式の反応はともにマッシュルームの形
成を一定に保持する自己冷却制御能を持っている。従っ
て、本発明方法は従来のAr、N2あるいは CO2ガスによる
冷却法より優れ、炭化水素系ガスによる冷却法と同等の
良好な底吹きガス流量の安定制御性を有している。
Since this temperature is a temperature that can easily occur inside the tuyere or mushroom,
Both the reactions of Eqs. (3) and (4) have the ability to control self-cooling to keep mushroom formation constant. Therefore, the method of the present invention is superior to the conventional cooling method using Ar, N 2 or CO 2 gas and has the same stable controllability of the bottom blown gas flow rate as the cooling method using a hydrocarbon-based gas.

【0024】つぎに炭化水素系ガス(CmHn)と水蒸気(H
2O) との混合体積比率の適正範囲について説明する。
Next, hydrocarbon gas (CmHn) and steam (H
An appropriate range of the mixing volume ratio with 2 O) will be described.

【0025】[0025]

【数6】 [Equation 6]

【0026】ただし、mは炭化水素系ガスのCの原子
数、nは炭化水素系ガスのHの原子数である。
Here, m is the number of C atoms in the hydrocarbon gas, and n is the number of H atoms in the hydrocarbon gas.

【0027】従って、本発明において好ましいCmHnとH2
O の混合体積比率は1:2mである。すなわちCmHnが1
/(1+2m)、 H2Oが2m/(1+2m)の混合体積比率で混合ガス
を吹き込むと、CmHnとH2O とが過不足なく前記 (3)式の
吸熱反応が進行する。そしてこのH2O の混合体積比率2m
/(1+2m)を基準値として、 H2Oがこの基準値より少ない
場合は、前記 (3)式の反応で消費されるCmHnより過剰に
CmHnが混合ガス中に存在することになる。この過剰のCm
Hnは下記(6)式の熱分解吸熱反応で従来の炭化水素によ
るのと同様の冷却が行われる。
Therefore, CmHn and H 2 which are preferred in the present invention are
The mixing volume ratio of O 2 is 1: 2 m. That is, CmHn is 1
/ (1 + 2m), H 2 O is 2m / (1 + 2m) When the mixed gas is blown at a mixing volume ratio of CmHn and H 2 O, the endothermic reaction of the formula (3) proceeds without excess or deficiency. . And this H 2 O mixed volume ratio 2m
/ (1 + 2m) is the standard value, and if H 2 O is less than this standard value, it will be in excess of CmHn consumed in the reaction of the above formula (3).
CmHn will be present in the mixed gas. This excess Cm
Hn is a thermal decomposition endothermic reaction of the following formula (6), and cooling is performed in the same manner as with conventional hydrocarbons.

【0028】[0028]

【数7】 [Equation 7]

【0029】一方、 H2Oがこの基準値より多い場合は、
上記(5)式の反応で消費される H2Oより過剰に H2Oが混
合ガス中に存在することになる。この過剰の H2Oは下記
(7)式の吸熱反応で羽口が冷却される。
On the other hand, when H 2 O is larger than this reference value,
(5) excess H 2 O from H 2 O to be consumed in the reaction of the formula will be present in the mixed gas. This excess H 2 O is
The tuyere is cooled by the endothermic reaction of equation (7).

【0030】[0030]

【数8】 [Equation 8]

【0031】上述の吸熱反応を用いて、CmHn単味吹き込
みの従来法と同一冷却効果を得るための H2Oの混合体積
比率とCmHnおよび H2O流量との関係を求めると、下記
(8)、(9) 式が得られる。なお、混合ガスの流量は従来
法のCmHn単味ガス冷却法 (上記(4) 式の吸熱反応) の適
正流量を1mol/Hrとする指数表示とした。また H2Oの混
合体積比率は上記(3) 式の反応の mol比から算出される
H2Oの混合比2m/(2m+1)を基準値とし、この基準値の増
減率で示す。
[0031] Using the above endothermic reaction, when determining the relationship between the mixing ratio by volume and CmHn and H 2 O flow rate of of H 2 O to obtain a conventional method and the same cooling effect of the blowing CmHn plain, below
Equations (8) and (9) are obtained. The flow rate of the mixed gas was expressed as an index with an appropriate flow rate of the conventional CmHn plain gas cooling method (the endothermic reaction of the above formula (4)) being 1 mol / Hr. The H 2 O mixing volume ratio is calculated from the mol ratio of the reaction in the above equation (3).
The mixing ratio of H 2 O of 2 m / (2 m + 1) is used as a reference value, and the rate of increase or decrease of this reference value is shown.

【0032】(a) H2O の混合比が基準値より少ない場
合:
(A) When the mixture ratio of H 2 O is less than the standard value:

【0033】[0033]

【数9】 [Equation 9]

【0034】(b) H2O の混合比が基準値より多い場合(B) When the mixture ratio of H 2 O is larger than the reference value

【0035】[0035]

【数10】 [Equation 10]

【0036】炭化水素系ガスとしてメタン(CH4,m=1) を
用いた場合、従来法と同一の冷却効果が得られる混合ガ
ス中の CH4流量指数および H2O流量指数と H2Oの混合体
積比率との関係を図1に示す。なお、 H2Oの混合体積比
率が基準値の−100%の場合は CH4のみによる冷却の従
来法に相当する。
When methane (CH 4 , m = 1) is used as the hydrocarbon gas, the CH 4 flow rate index and H 2 O flow rate index and H 2 O in the mixed gas that achieve the same cooling effect as the conventional method can be obtained. The relationship with the mixed volume ratio of is shown in FIG. In addition, when the mixing volume ratio of H 2 O is -100% of the standard value, it corresponds to the conventional method of cooling only with CH 4 .

【0037】図に示すように、 H2Oの混合体積比率が基
準値の−50%より少ない場合、 CH4の低減量は少なく、
大きな経済的メリットは得られない。一方、 H2Oの混合
体積比率が基準値の+10%より過剰にしても CH4を一層
低減させる効果は殆どなく、コストメリットがなくな
る。しかも H2Oは酸化性のガスであるため、溶鋼と反応
して前記 (7)式の反応で FeOを生成し、羽口れんがの損
耗を助長することになり好ましくない。
As shown in the figure, when the mixed volume ratio of H 2 O is less than -50% of the reference value, the amount of CH 4 reduction is small,
No significant economic benefit. On the other hand, even if the mixed volume ratio of H 2 O exceeds + 10% of the standard value, there is almost no effect of further reducing CH 4 , and the cost merit disappears. Moreover, since H 2 O is an oxidizing gas, it reacts with molten steel to produce FeO by the reaction of the above formula (7), which promotes the wear of tuyere bricks, which is not preferable.

【0038】従って、炭化水素系ガスと水蒸気の混合体
積比率が1:2mの場合を基準とし、水蒸気の混合体積
比率を基準値の−50%以上、+10%以下の範囲にすると
ともに、水蒸気の混合体積比率が基準値以下の場合は前
記 (8)式に示す流量指数の混合ガスを、基準値以上の場
合は前記 (9)式に示す流量指数の混合ガスを吹き込んで
羽口を冷却するのが望ましい。
Therefore, based on the case where the mixing volume ratio of the hydrocarbon gas and steam is 1: 2 m, the mixing volume ratio of the steam is set within the range of -50% to + 10% of the reference value, and When the mixing volume ratio is below the reference value, the mixed gas with the flow index shown in the above formula (8) is blown, and when it is above the reference value, the mixed gas with the flow index shown in the above formula (9) is blown to cool the tuyere. Is desirable.

【0039】以下実施例より本発明の効果を具体的に説
明する。
The effects of the present invention will be specifically described with reference to the following examples.

【0040】[0040]

【実施例1】図2に概略断面を示す炉容積6m3の転炉に
類似した試験用小型筒型炉を使用してスクラップおよび
鉄鉱石を溶解した。この炉は、炉底に二重管一次羽口
3′を有する。
EXAMPLE 1 Scrap and iron ore were melted using a small test cylinder furnace similar to the converter with a furnace volume of 6 m 3 shown schematically in FIG. This furnace has a double tube primary tuyere 3'at the bottom of the furnace.

【0041】まず、筒型炉1内に一次羽口3を含むレベ
ルまでコークス充填層7を形成し、その上に二次羽口4
を含むレベルまで鉱石・スクラップ充填層8を形成し
た。一次羽口3からO2 800Nm3/Hr、炉底二重管一次羽口
3′の内管6からO2 400Nm3/Hr、外管6’からメタンガ
ス14〜25Nm3/Hrと水蒸気12〜39Nm3/Hrの羽口冷却用混合
ガスを吹き込んでコークスを燃焼させた。
First, a coke filling layer 7 is formed in the tubular furnace 1 to a level including the primary tuyere 3, and a secondary tuyere 4 is formed thereon.
The ore / scrap packing layer 8 was formed to a level including. O 2 800Nm 3 / Hr, methane 14~25Nm 3 / Hr and water vapor 12 from the 'O 2 400Nm 3 / Hr, the outer tube 6 from the inner tube 6 of the' hearth double pipe primary tuyeres 3 from the primary tuyeres 3 The coke was burned by blowing a mixed gas of 39 Nm 3 / Hr for the tuyere cooling.

【0042】羽口冷却用混合ガスの水蒸気の混合体積比
率は(A)基準値の−50%、(B)基準値、(C)基準
値の+10%とし、メタンガス流量、水蒸気流量は前記
(8)、(9) 式で算出し、表2に示すBの2以外は従来法
と同一の冷却効果とした。Bの2は流量指数を1.07倍し
て冷却効果を従来法の1.07倍とした。
The mixing volume ratio of water vapor of the mixed gas for tuyere cooling is (A) reference value -50%, (B) reference value, (C) reference value + 10%, and the methane gas flow rate and water vapor flow rate are as described above.
The cooling effect was the same as that of the conventional method except for B2 shown in Table 2 which was calculated by the formulas (8) and (9). In B-2, the flow index was multiplied by 1.07 to make the cooling effect 1.07 times that of the conventional method.

【0043】燃焼生成COガスを二次羽口4からO2 800Nm
3/Hrを吹き込んで二次燃焼させ、その燃焼熱でスクラッ
プ、鉄鉱石を溶解し銑鉄9を製造した。スクラップが全
量溶解する2分前から内管6のO2吹き込みを停止し、N2
60Nm3/HrをキャリヤーガスとしてCaO 92重量%、CaF2
重量%の脱硫剤1200kg/Hr を吹き込んで脱硫精錬を実施
した。
Combustion-produced CO gas from the secondary tuyere 4 to O 2 800 Nm
Blowing in 3 / Hr for secondary combustion, scrap and iron ore were melted by the combustion heat to produce pig iron 9. 2 minutes before the total amount of scrap melted, stop blowing O 2 into the inner pipe 6 and remove N 2
92% by weight of CaO with 60 Nm 3 / Hr as carrier gas, CaF 2 8
Desulfurization refining was carried out by injecting 1200% by weight of desulfurizing agent 1200 kg / Hr.

【0044】この操業を50ヒート実施した後、炉底二重
管一次羽口3′の溶損長さを測定して羽口冷却効果を調
査した。
After carrying out this operation for 50 heats, the meltdown length of the furnace bottom double tube primary tuyere 3'was measured to investigate the tuyere cooling effect.

【0045】比較例1として、炉底二重管一次羽口3′
の外管6′からメタンガスだけを32Nm3/Hrを吹き込む従
来の羽口冷却を行った。それ以外は実施例1と同じ条件
で操業を実施した。
As a comparative example 1, a furnace bottom double tube primary tuyere 3 '
The conventional tuyere cooling in which 32 Nm 3 / Hr of only methane gas was blown from the outer pipe 6 ′ of the above was performed. Other than that, the operation was performed under the same conditions as in Example 1.

【0046】炉底二重管羽口の溶損量とトータル冷却用
ガスコスト指数とを表2に示す。
Table 2 shows the amount of melting loss at the bottom of the double tube tuyeres and the total cooling gas cost index.

【0047】[0047]

【表2】 [Table 2]

【0048】表2に示すように、実施例1の羽口平均溶
損量はいずれも 0.3mm/ヒートで、従来法の比較例1と
同等であった。一方、トータル冷却用ガスコスト指数は
実施例1が比較例1の80〜52%に低減された。
As shown in Table 2, the average tuyere erosion amount of Example 1 was 0.3 mm / heat, which was equivalent to that of Comparative Example 1 of the conventional method. On the other hand, the total cooling gas cost index of Example 1 was reduced to 80 to 52% of that of Comparative Example 1.

【0049】[0049]

【実施例2】図3に概略断面を示す炉容積6m3の上底吹
転炉21を使用して溶鉄を溶鋼にする製鋼精錬を実施し
た。
[Embodiment 2] Steelmaking and refining for converting molten iron into molten steel was carried out by using an upper-bottom blowing converter 21 having a furnace volume of 6 m 3 whose schematic cross section is shown in FIG.

【0050】転炉21内に溶銑を受銑し、造滓材を装入し
た後、炉底に設けた2本の二重管羽口23の内管26から羽
口1本当たり40Nm3/HrのO2ガスを、外管26′からメタン
ガス2Nm3/Hrと水蒸気4Nm3/Hrとの羽口冷却用混合ガス
を溶銑中に吹き込み、上吹ランス27からO2ガス1800Nm3/
Hrを吹き込んで脱炭精錬し、溶鋼を製造した。28は溶
鋼、29はスラグである。この操業を50ヒート実施した
後、二重管羽口23の溶損長さを測定した。
After receiving the hot metal into the converter 21 and charging the slag material, the inner pipes 26 of the two double pipe tuyere 23 provided at the bottom of the furnace are 40 Nm 3 / per tuyere. the Hr O 2 gas, blowing from the outer tube 26 'methane gas 2 Nm 3 / Hr and the tuyere cooling gas mixture of steam 4 Nm 3 / Hr into the hot metal, O from the top blowing lance 27 2 gas 1800 Nm 3 /
Molten steel was manufactured by blowing Hr for decarburization refining. 28 is molten steel and 29 is slag. After performing this operation for 50 heats, the erosion length of the double tube tuyere 23 was measured.

【0051】比較例2として、二重管羽口23の外管26′
から4Nm3/Hrのメタンガス単味を吹き込む従来の羽口冷
却を行った。それ以外の条件は実施例2と同じにして操
業を実施した。
As Comparative Example 2, the outer tube 26 'of the double tube tuyere 23
The conventional tuyere cooling was performed by blowing in methane gas of 4 Nm 3 / Hr. The other conditions were the same as in Example 2, and the operation was carried out.

【0052】表3に実施例2と比較例2における炉底二
重管羽口の溶損量と吹き止め時の溶鋼中水素含有量(以
下〔H〕と記す)とを示す。
Table 3 shows the amount of melting loss of the furnace bottom double tube tuyere in Example 2 and Comparative Example 2 and the hydrogen content in molten steel at the time of blowing stop (hereinafter referred to as [H]).

【0053】[0053]

【表3】 [Table 3]

【0054】表3に示すとおり実施例2の羽口平均溶損
量は 0.2mm/ヒートで、従来法の比較例2と同等であっ
た。一方、トータル冷却用ガスコスト指数は比較例2の
1に対し、半減させることができた。また転炉吹き止め
時の平均吹止〔H〕を見ると、実施例2の〔H〕が比較
例2より低目に抑制されている。
As shown in Table 3, the average erosion loss of the tuyere of Example 2 was 0.2 mm / heat, which was equivalent to that of Comparative Example 2 of the conventional method. On the other hand, the total cooling gas cost index could be halved compared to 1 in Comparative Example 2. Looking at the average blow-off [H] at the time of blow-off of the converter, [H] of Example 2 is suppressed to a lower level than that of Comparative Example 2.

【0055】[0055]

【発明の効果】本発明方法によれば溶融金属浴面下に設
けられた多重管羽口の外管側に炭化水素系ガスと水蒸気
の混合ガスと吹き込むことにより、従来の炭化水素系ガ
ス単味の羽口冷却法と同等の羽口溶損量と低い溶鋼中
〔H〕レベルを維持することができる。しかも底吹きガ
ス流量を安定して制御することができ、高価な炭化水素
系ガスの使用量を低減して羽口冷却用ガスコストを大幅
に削減できる。従って、低いコストで従来法と同等の良
好な羽口冷却効果を得ることができ、銑鉄や鋼の製造コ
ストを下げる効果が極めて大きい。
According to the method of the present invention, by blowing a mixed gas of a hydrocarbon-based gas and water vapor into the outer tube side of a multi-tube tuyere provided below the surface of a molten metal bath, a conventional hydrocarbon-based gas unit It is possible to maintain the amount of tuyere melting loss equivalent to that of the taste tuyere cooling method and a low [H] level in molten steel. Moreover, the bottom blown gas flow rate can be controlled stably, the amount of expensive hydrocarbon-based gas used can be reduced, and the tuyere cooling gas cost can be significantly reduced. Therefore, a good tuyere cooling effect equivalent to that of the conventional method can be obtained at a low cost, and the effect of reducing the manufacturing costs of pig iron and steel is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来法と同一の冷却効果が得られる混合ガス中
の CH4流量指数および H2O流量指数と H2Oの混合体積比
率との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a CH 4 flow rate index and a H 2 O flow rate index in a mixed gas and a mixing volume ratio of H 2 O in which the same cooling effect as that of a conventional method can be obtained.

【図2】本発明方法の実施例で使用した筒型炉の概略断
面図である。
FIG. 2 is a schematic sectional view of a cylindrical furnace used in an example of the method of the present invention.

【図3】本発明方法のもう一つの実施例で使用した上底
吹転炉の概略断面図である。
FIG. 3 is a schematic sectional view of an upper bottom blowing converter used in another embodiment of the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】冶金反応炉の溶融金属浴面下に設けられた
多重管羽口の外管から炭化水素系ガスと水蒸気の混合ガ
スを吹き込むことを特徴とする冶金反応炉の多重管羽口
冷却方法。
1. A multi-tube tuyere of a metallurgical reaction furnace, wherein a mixed gas of a hydrocarbon-based gas and steam is blown from an outer tube of the multi-tube tuyere provided below a molten metal bath surface of the metallurgical reaction furnace. Cooling method.
【請求項2】炭化水素系ガスと水蒸気との混合体積比率
が1:2m(mは炭化水素の炭素数)である場合を基準
値とし、水蒸気の混合体積比率を基準値の−50%から+
10%までの範囲にするとともに、水蒸気の混合体積比率
が基準値以下の場合は下記(1)式、基準値以上の場合は
(2)式にそれぞれ示す流量指数の混合ガスを吹き込むこ
とを特徴とする請求項1記載の冶金反応炉の多重管羽口
冷却方法。 【数1】
2. A standard value is the case where the mixing volume ratio of the hydrocarbon gas and steam is 1: 2 m (m is the number of carbon atoms of the hydrocarbon), and the mixing volume ratio of the steam is from -50% of the standard value. +
In addition to the range up to 10%, if the mixing volume ratio of water vapor is below the reference value, the following formula (1), if it is above the reference value,
The method for cooling a multi-tube tuyere of a metallurgical reaction furnace according to claim 1, wherein a mixed gas having a flow index shown in the equation (2) is blown. [Equation 1]
JP3153342A 1991-06-25 1991-06-25 Multiple pipe tuyere cooling method for metallurgical reaction furnace Pending JPH0517811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3153342A JPH0517811A (en) 1991-06-25 1991-06-25 Multiple pipe tuyere cooling method for metallurgical reaction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3153342A JPH0517811A (en) 1991-06-25 1991-06-25 Multiple pipe tuyere cooling method for metallurgical reaction furnace

Publications (1)

Publication Number Publication Date
JPH0517811A true JPH0517811A (en) 1993-01-26

Family

ID=15560378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3153342A Pending JPH0517811A (en) 1991-06-25 1991-06-25 Multiple pipe tuyere cooling method for metallurgical reaction furnace

Country Status (1)

Country Link
JP (1) JPH0517811A (en)

Similar Documents

Publication Publication Date Title
US9580764B2 (en) Top-blowing lance and method for refining molten iron using the same
US4410360A (en) Process for producing high chromium steel
US3323907A (en) Production of chromium steels
US4330108A (en) Method for cooling tuyeres
JPS58130216A (en) Refining method of high alloy steel and stainless steel
JPH0517811A (en) Multiple pipe tuyere cooling method for metallurgical reaction furnace
US5084093A (en) Method for manufacturing molten pig iron
JP2661478B2 (en) Cylindrical furnace and method for producing hot metal using the same
JPS6250544B2 (en)
JPH0477046B2 (en)
EP0099713B1 (en) A method for protecting tuyères for refining a molten iron
KR100225249B1 (en) Remaining slag control method of of slopping control
JPS6216243B2 (en)
JP5949627B2 (en) Method of refining hot metal in converter
JPH08199213A (en) Production of molten iron
JPS61213310A (en) Production of molten ferrous alloy
JP2979788B2 (en) Hot metal production method
KR830000064B1 (en) Melting temperature control method for refining subsurface compressed air of steel
JP2760155B2 (en) Hot metal production method
KR20230136164A (en) Method of refining molten iron and manufacturing method of molten steel using the same
JPS6335723A (en) Method for inhibiting foaming during refining by smelting and reducting
JPH02282410A (en) Smelting reduction method for ore
JPH07278624A (en) Operation method to blow large amount of pulverized carbon to blast furnace
JPS60194009A (en) Method for refining stainless steel
JPS62109918A (en) Method for cooling multiply tubed tuyere of bottom blowing refining furnace